1
|
Martino C, Kellman BP, Sandoval DR, Clausen TM, Cooper R, Benjdia A, Soualmia F, Clark AE, Garretson AF, Marotz CA, Song SJ, Wandro S, Zaramela LS, Salido RA, Zhu Q, Armingol E, Vázquez-Baeza Y, McDonald D, Sorrentino JT, Taylor B, Belda-Ferre P, Das P, Ali F, Liang C, Zhang Y, Schifanella L, Covizzi A, Lai A, Riva A, Basting C, Broedlow CA, Havulinna AS, Jousilahti P, Estaki M, Kosciolek T, Kuplicki R, Victor TA, Paulus MP, Savage KE, Benbow JL, Spielfogel ES, Anderson CAM, Martinez ME, Lacey JV, Huang S, Haiminen N, Parida L, Kim HC, Gilbert JA, Sweeney DA, Allard SM, Swafford AD, Cheng S, Inouye M, Niiranen T, Jain M, Salomaa V, Zengler K, Klatt NR, Hasty J, Berteau O, Carlin AF, Esko JD, Lewis NE, Knight R. SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx. mBio 2025; 16:e0401524. [PMID: 39998226 PMCID: PMC11980591 DOI: 10.1128/mbio.04015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucosa are known to modify. To explore human gut HS-modifying bacterial abundances and how their presence may impact SARS-CoV-2 infection, we developed a task-based analysis of proteoglycan degradation on large-scale shotgun metagenomic data. We observed that gut bacteria with high predicted catabolic capacity for HS differ by age and sex, factors associated with coronavirus disease 2019 (COVID-19) severity, and directly by disease severity during/after infection, but do not vary between subjects with COVID-19 comorbidities or by diet. Gut commensal bacterial HS-modifying enzymes reduce spike protein binding and infection of authentic SARS-CoV-2, suggesting that bacterial grooming of the GI mucosa may impact viral susceptibility.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019, can infect the gastrointestinal (GI) tract, and individuals who exhibit GI symptoms often have more severe disease. The GI tract's glycocalyx, a component of the mucosa covering the large intestine, plays a key role in viral entry by binding SARS-CoV-2's spike protein via heparan sulfate (HS). Here, using metabolic task analysis of multiple large microbiome sequencing data sets of the human gut microbiome, we identify a key commensal human intestinal bacteria capable of grooming glycocalyx HS and modulating SARS-CoV-2 infectivity in vitro. Moreover, we engineered the common probiotic Escherichia coli Nissle 1917 (EcN) to effectively block SARS-CoV-2 binding and infection of human cell cultures. Understanding these microbial interactions could lead to better risk assessments and novel therapies targeting viral entry mechanisms.
Collapse
Affiliation(s)
- Cameron Martino
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Benjamin P. Kellman
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California, USA
| | - Daniel R. Sandoval
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Cooper
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Alhosna Benjdia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, 78350, Jouy-en-Josas, France
| | - Feryel Soualmia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, 78350, Jouy-en-Josas, France
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8263 CNRS-SU, ERL INSERM U1345, Development, Adaptation and Ageing, F-75252 Paris, France
| | - Alex E. Clark
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Aaron F. Garretson
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Clarisse A. Marotz
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Se Jin Song
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Stephen Wandro
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Livia S. Zaramela
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Department of Biochemistry, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodolfo A. Salido
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Erick Armingol
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - James T. Sorrentino
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California, USA
| | - Bryn Taylor
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Promi Das
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Farhana Ali
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Chenguang Liang
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Yujie Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Biological & Medical Informatics, University of California San Francisco, School of Pharmacy, San Francisco, California, USA
| | - Luca Schifanella
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Animal Models and Retroviral Vaccine Section, Bethesda, Maryland, USA
| | - Alice Covizzi
- Department of Infectious diseases, Luigi Sacco Hospital, Milan and Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, Italy
| | - Alessia Lai
- Department of Infectious diseases, Luigi Sacco Hospital, Milan and Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, Italy
| | - Agostino Riva
- Department of Infectious diseases, Luigi Sacco Hospital, Milan and Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, Italy
| | - Christopher Basting
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Courtney Ann Broedlow
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aki S. Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki and Turku, Finland
- Institute for Molecular Medicine Finland, FIMM - HiLIFE, Helsinki, Finland
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki and Turku, Finland
| | - Mehrbod Estaki
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Sano Centre for Computational Medicine, Krakow, Poland
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | | | | | - Kristen E. Savage
- Division of Health Analytics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California, USA
| | - Jennifer L. Benbow
- Division of Health Analytics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California, USA
- UC Health Data Warehouse, University of California Irvine, Irvine, California, USA
| | - Emma S. Spielfogel
- Division of Health Analytics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California, USA
| | - Cheryl A. M. Anderson
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Maria Elena Martinez
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - James V. Lacey
- Division of Health Analytics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California, USA
| | - Shi Huang
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Niina Haiminen
- IBM T. J. Watson Research Center, Yorktown Heights, New York, USA
| | - Laxmi Parida
- IBM T. J. Watson Research Center, Yorktown Heights, New York, USA
| | - Ho-Cheol Kim
- AI and Cognitive Software, IBM Research-Almaden, San Jose, California, USA
| | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Daniel A. Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sarah M. Allard
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Austin D. Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- International Biomedical Research Alliance, Bethesda, Maryland, USA
| | - Susan Cheng
- Division of Cardiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael Inouye
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki and Turku, Finland
- Division of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Mohit Jain
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki and Turku, Finland
| | - Karsten Zengler
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Nichole R. Klatt
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeff Hasty
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Molecular Biology Section, Division of Biological Science, University of California San Diego, La Jolla, California, USA
| | - Olivier Berteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, 78350, Jouy-en-Josas, France
| | - Aaron F. Carlin
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Nathan E. Lewis
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Center for Molecular Medicine, Complex Carbohydrate Research Center, and Dept of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Mao W, Rong Y, Zhang H, Yuan F, Wang Y, Wang M, Wang L, Wang PG, Chen M, Wang S, Kong Y. Characterization and application in recombinant N-GlcNAc-protein production of a novel endo-β-N-acetylglucosaminidase from Listeria booriae. Bioorg Chem 2025; 157:108290. [PMID: 39983405 DOI: 10.1016/j.bioorg.2025.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are essential enzymes for hydrolyzing N-glycans, with applications in protein N-glycosylation analysis and glycoprotein synthesis. In this study, a novel GH18 family ENGase, Endo-LB, was identified from Listeria booriae FSL A5-0281. Composed of 593 amino acids (65.78 kDa), Endo-LB features with two domains: an Endo S-like catalytic domain and a mucin-binding protein (MucBP) domain. Recombinant Endo-LB, expressed in Escherichia coli BL21 (DE3) pLysS, exhibited a specific activity of 198.25 U/mg and hydrolyzed high mannose-type N-glycans at a temperature from 4 °C to 60 °C with optimal activity at 37 °C and pH 6.0 (range 3.0 to 10.0), making it versatile for various environmental conditions. The MucBP domain does not affect soluble Endo-LB activity but influences interaction with mucin on cell surface, suggesting potential application in targeting specific glycoproteins in complex biological environments. To address the heterogeneity of N-glycans in Pichia pastoris (Komagataella phaffii) expression, Endo-LB was further expressed in the Golgi of P. pastoris, efficiently producing glycoproteins, such as Erythropoietin (EPO) (37 mg/L) and Darbepoetin α (53 mg/L) with nearly complete N-glycans truncation, which can be further extended to generate diverse N-glycan structures. These findings highlight the versatility and potential utility of Endo-LB in glycoprotein engineering and biotechnological applications.
Collapse
Affiliation(s)
- Weian Mao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yongheng Rong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hongmei Zhang
- Department of Endocrinology, Zibo Central Hospital, Zibo 255020, China
| | - Fang Yuan
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yankang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Mei Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Linhan Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Chen
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shengjun Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Yun Kong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Zhang BW, Fajer M, Chen W, Moraca F, Wang L. Leveraging the Thermodynamics of Protein Conformations in Drug Discovery. J Chem Inf Model 2025; 65:252-264. [PMID: 39681511 DOI: 10.1021/acs.jcim.4c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
As the name implies, structure-based drug design requires confidence in the holo complex structure. The ability to clarify which protein conformation to use when ambiguity arises would be incredibly useful. We present a large scale validation of the computational method Protein Reorganization Free Energy Perturbation (PReorg-FEP) and demonstrate its quantitative accuracy in selecting the correct protein conformation among candidate models in apo or ligand induced states for 14 different systems. These candidate conformations are pulled from various drug discovery related campaigns: cryptic conformations induced by novel hits in lead identification, binding site rearrangement during lead optimization, and conflicting structural biology models. We also show an example of a pH-dependent conformational change, relevant to protein design.
Collapse
Affiliation(s)
- Bin W Zhang
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Mikolai Fajer
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Wei Chen
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Francesca Moraca
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Lingle Wang
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| |
Collapse
|
4
|
Moran CL, Debowski A, Vrielink A, Stubbs K, Sarkar-Tyson M. N-acetyl-β-hexosaminidase activity is important for chitooligosaccharide metabolism and biofilm formation in Burkholderia pseudomallei. Environ Microbiol 2024; 26:e16571. [PMID: 38178319 DOI: 10.1111/1462-2920.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Burkholderia pseudomallei is a saprophytic Gram-negative bacillus that can cause the disease melioidosis. Although B. pseudomallei is a recognised member of terrestrial soil microbiomes, little is known about its contribution to the saprophytic degradation of polysaccharides within its niche. For example, while chitin is predicted to be abundant within terrestrial soils the chitinolytic capacity of B. pseudomallei is yet to be defined. This study identifies and characterises a putative glycoside hydrolase, bpsl0500, which is expressed by B. pseudomallei K96243. Recombinant BPSL0500 was found to exhibit activity against substrate analogues and GlcNAc disaccharides relevant to chitinolytic N-acetyl-β-d-hexosaminidases. In B. pseudomallei, bpsl0500 was found to be essential for both N-acetyl-β-d-hexosaminidase activity and chitooligosaccharide metabolism. Furthermore, bpsl0500 was also observed to significantly affect biofilm deposition. These observations led to the identification of BPSL0500 activity against model disaccharide linkages that are present in biofilm exopolysaccharides, a feature that has not yet been described for chitinolytic enzymes. The results in this study indicate that chitinolytic N-acetyl-β-d-hexosaminidases like bpsl0500 may facilitate biofilm disruption as well as chitin assimilation, providing dual functionality for saprophytic bacteria such as B. pseudomallei within the competitive soil microbiome.
Collapse
Affiliation(s)
- Clare L Moran
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Aleksandra Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Alice Vrielink
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Keith Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, University of Western Australia, Crawley, Australia
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
5
|
Bains RK, Nasseri SA, Liu F, Wardman JF, Rahfeld P, Withers SG. Characterization of a new family of 6-sulfo-N-acetylglucosaminidases. J Biol Chem 2023; 299:105214. [PMID: 37660924 PMCID: PMC10570127 DOI: 10.1016/j.jbc.2023.105214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Sulfation is widespread in nature and plays an important role in modulating biological function. Among the strategies developed by microbes to access sulfated oligosaccharides as a nutrient source is the production of 6-sulfoGlcNAcases to selectively release 6-sulfoGlcNAc from target oligosaccharides. Thus far, all 6-sulfoGlcNAcases identified have belonged to the large GH20 family of β-hexosaminidases. Ηere, we identify and characterize a new, highly specific non-GH20 6-sulfoGlcNAcase from Streptococcus pneumoniae TIGR4, Sp_0475 with a greater than 110,000-fold preference toward N-acetyl-β-D-glucosamine-6-sulfate substrates over the nonsulfated version. Sp_0475 shares distant sequence homology with enzymes of GH20 and with the newly formed GH163 family. However, the sequence similarity between them is sufficiently low that Sp_0475 has been assigned as the founding member of a new glycoside hydrolase family, GH185. By combining results from site-directed mutagenesis with mechanistic studies and bioinformatics we provide insight into the substrate specificity, mechanism, and key active site residues of Sp_0475. Enzymes of the GH185 family follow a substrate-assisted mechanism, consistent with their distant homology to the GH20 family, but the catalytic residues involved are quite different. Taken together, our results highlight in more detail how microbes can degrade sulfated oligosaccharides for nutrients.
Collapse
Affiliation(s)
- Rajneesh K Bains
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seyed A Nasseri
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Feng Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacob F Wardman
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Rahfeld
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Green AE, Pottenger S, Monshi MS, Barton TE, Phelan M, Neill DR. Airway metabolic profiling during Streptococcus pneumoniae infection identifies branched chain amino acids as signatures of upper airway colonisation. PLoS Pathog 2023; 19:e1011630. [PMID: 37669280 PMCID: PMC10503754 DOI: 10.1371/journal.ppat.1011630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/15/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Streptococcus pneumoniae is a leading cause of community-acquired pneumonia and bacteraemia and is capable of remarkable phenotypic plasticity, responding rapidly to environmental change. Pneumococcus is a nasopharyngeal commensal, but is responsible for severe, acute infections following dissemination within-host. Pneumococcus is adept at utilising host resources, but the airways are compartmentalised and those resources are not evenly distributed. Challenges and opportunities in metabolite acquisition within different airway niches may contribute to the commensal-pathogen switch when pneumococcus moves from nasopharynx into lungs. We used NMR to characterise the metabolic landscape of the mouse airways, in health and during infection. Using paired nasopharynx and lung samples from naïve animals, we identified fundamental differences in metabolite bioavailability between airway niches. Pneumococcal pneumonia was associated with rapid and dramatic shifts in the lung metabolic environment, whilst nasopharyngeal carriage led to only modest change in upper airway metabolite profiles. NMR spectra derived from the nasopharynx of mice infected with closely-related pneumococcal strains that differ in their colonisation potential could be distinguished from one another using multivariate dimensionality reduction methods. The resulting models highlighted that increased branched-chain amino acid (BCAA) bioavailability in nasopharynx is a feature of infection with the high colonisation potential strain. Subsequent analysis revealed increased expression of BCAA transport genes and increased intracellular concentrations of BCAA in that same strain. Movement from upper to lower airway environments is associated with shifting challenges in metabolic resource allocation for pneumococci. Efficient biosynthesis, liberation or acquisition of BCAA is a feature of adaptation to nasopharyngeal colonisation.
Collapse
Affiliation(s)
- Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Manal S. Monshi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Thomas E. Barton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marie Phelan
- Highfield NMR Facility, Liverpool Shared Research Facilities (LIV-SRF), University of Liverpool, Liverpool, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Molecular, Systems and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Bhosale S, Deen MC, Proceviat C, Hettle A, Winter DK, Brockerman J, Levene M, Bennet AJ, Spino C, Boraston AB, Vocadlo DJ. A Fluorogenic Disaccharide Substrate for α-Mannosidases Enables High-Throughput Screening and Identification of an Inhibitor of the GH92 Virulence Factor from Streptococcus pneumoniae. ACS Chem Biol 2023; 18:1730-1737. [PMID: 37531094 DOI: 10.1021/acschembio.3c00053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Trimming of host glycans is a mechanism that is broadly employed by both commensal and pathogenic microflora to enable colonization. Host glycan trimming by the opportunistic Gram-positive bacterium Streptococcus pneumoniae has been demonstrated to be an important mechanism of virulence. While S. pneumoniae employs a multitude of glycan processing enzymes, the exo-mannosidase SpGH92 has been shown to be an important virulence factor. Accordingly, SpGH92 is hypothesized to be a target for much-needed new treatments of S. pneumoniae infection. Here we report the synthesis of 4-methylumbelliferyl α-d-mannopyranosyl-(1→2)-β-d-mannopyranoside (Manα1,2Manβ-4MU) as a fluorogenic disaccharide substrate and development of an assay for SpGH92 that overcomes its requirement for +1 binding site occupancy. We miniaturize our in vitro assay and apply it to a high-throughput screen of >65 000 compounds, identifying a single inhibitory chemotype, LIPS-343. We further show that Manα1,2Manβ-4MU is also a substrate of the human Golgi-localized α-mannosidase MAN1A1, suggesting that this substrate should be useful for assessing the activity of this and other mammalian α-mannosidases.
Collapse
Affiliation(s)
- Sandeep Bhosale
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Matthew C Deen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Cameron Proceviat
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew Hettle
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia V8W 3P6, Canada
| | - Dana K Winter
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Jacob Brockerman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Marina Levene
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew J Bennet
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Claude Spino
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Alisdair B Boraston
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia V8W 3P6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
8
|
Kołaczkowski BM, Moroz OV, Blagova E, Davies GJ, Møller MS, Meyer AS, Westh P, Jensen K, Wilson KS, Krogh KBRM. Structural and functional characterization of a multi-domain GH92 α-1,2-mannosidase from Neobacillus novalis. Acta Crystallogr D Struct Biol 2023; 79:387-400. [PMID: 37071393 PMCID: PMC10167667 DOI: 10.1107/s2059798323001663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 04/19/2023] Open
Abstract
Many secreted eukaryotic proteins are N-glycosylated with oligosaccharides composed of a high-mannose N-glycan core and, in the specific case of yeast cell-wall proteins, an extended α-1,6-mannan backbone carrying a number of α-1,2- and α-1,3-mannose substituents of varying lengths. α-Mannosidases from CAZy family GH92 release terminal mannose residues from these N-glycans, providing access for the α-endomannanases, which then degrade the α-mannan backbone. Most characterized GH92 α-mannosidases consist of a single catalytic domain, while a few have extra domains including putative carbohydrate-binding modules (CBMs). To date, neither the function nor the structure of a multi-domain GH92 α-mannosidase CBM has been characterized. Here, the biochemical investigation and crystal structure of the full-length five-domain GH92 α-1,2-mannosidase from Neobacillus novalis (NnGH92) with mannoimidazole bound in the active site and an additional mannoimidazole bound to the N-terminal CBM32 are reported. The structure of the catalytic domain is very similar to that reported for the GH92 α-mannosidase Bt3990 from Bacteroides thetaiotaomicron, with the substrate-binding site being highly conserved. The function of the CBM32s and other NnGH92 domains was investigated by their sequential deletion and suggested that whilst their binding to the catalytic domain was crucial for the overall structural integrity of the enzyme, they appear to have little impact on the binding affinity to the yeast α-mannan substrate. These new findings provide a better understanding of how to select and optimize other multi-domain bacterial GH92 α-mannosidases for the degradation of yeast α-mannan or mannose-rich glycans.
Collapse
Affiliation(s)
- Bartłomiej M. Kołaczkowski
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, 4000 Roskilde, Denmark
- Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark
| | - Olga V. Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | |
Collapse
|
9
|
Crouch LI. N-glycan breakdown by bacterial CAZymes. Essays Biochem 2023; 67:373-385. [PMID: 37067180 PMCID: PMC10154615 DOI: 10.1042/ebc20220256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 04/18/2023]
Abstract
The modification of proteins by N-glycans is ubiquitous to most organisms and they have multiple biological functions, including protecting the adjoining protein from degradation and facilitating communication or adhesion between cells, for example. Microbes have evolved CAZymes to deconstruct different types of N-glycans and some of these have been characterised from microbes originating from different niches, both commensals and pathogens. The specificity of these CAZymes provides clues as to how different microbes breakdown these substrates and possibly cross-feed them. Discovery of CAZymes highly specific for N-glycans also provides new tools and options for modifying glycoproteins.
Collapse
Affiliation(s)
- Lucy I Crouch
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
10
|
Gao C, Cai X, Ma L, Sun P, Li C. Systematic analysis of circRNA-related ceRNA networks of black rockfish (Sebastes schlegelii) in response to Aeromonas salmonicides infection. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108648. [PMID: 36842642 DOI: 10.1016/j.fsi.2023.108648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Aeromonas salmonicides is a type of Gram-negative bacteria and has become the main fish pathogen in aquaculture because of its characteristics of worldwide distribution, broad host range and potentially devastating impacts. In the past years, studies have been focused to explore the regulatory roles of circRNA-miRNA-mRNA network in fish diseases. However, there are only few systematic studies linked to the anti-bacterial roles of circRNA-related ceRNA networks in the spleen immune system of black rockfish (Sebastes schlegelii). In this study, the whole-transcriptome sequencing (RNA-seq) was conducted in the black rockfish spleen with A. salmonicida challenging. The differentially expressed (DE) circRNAs were identified comprehensively for the following enrichment analysis. Interactions of miRNA-circRNA pairs and miRNA-mRNA pairs were predicted for the construction of circRNA-related ceRNA regulatory networks. Then, protein-protein interaction (PPI) analysis of mRNAs from these ceRNA networks were conducted. Finally, a total number of 39 circRNAs exhibited significantly differential expressions during A. salmonicida infection in the black rockfish spleen in 4338 identified circRNAs from 12 samples in 4 libraries. Functional enrichment analysis suggested that they were significantly enriched in several immune-related pathways, including Endocytosis, FoxO signaling pathway, Jak-STST signaling pathway, Herpes simplex infection, etc. Subsequently, 290 circRNA-miRNA-mRNA pathways (91 at 2 h, 142 at 12 h and 65 at 24 h) were constructed including 31 circRNAs, 50 miRNAs, and 156 mRNAs. In conclusion, the circRNA-related ceRNA networks were established, which will provide some novel insights in molecular mechanistic investigations of anti-bacterial immune response in teleost. Also, these findings will propose significant predictive values for the development of methods of treatment and prevention in black rockfish after bacterial infection in the future.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Le Ma
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Peng Sun
- Shandong Weifang Ecological Environment Monitoring Center, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
11
|
Mathew BJ, Gupta P, Naaz T, Rai R, Gupta S, Gupta S, Chaurasiya SK, Purwar S, Biswas D, Vyas AK, Singh AK. Role of Streptococcus pneumoniae extracellular glycosidases in immune evasion. Front Cell Infect Microbiol 2023; 13:1109449. [PMID: 36816580 PMCID: PMC9937060 DOI: 10.3389/fcimb.2023.1109449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) typically colonizes the human upper airway asymptomatically but upon reaching other sites of the host body can cause an array of diseases such as pneumonia, bacteremia, otitis media, and meningitis. Be it colonization or progression to disease state, pneumococcus faces multiple challenges posed by host immunity ranging from complement mediated killing to inflammation driven recruitment of bactericidal cells for the containment of the pathogen. Pneumococcus has evolved several mechanisms to evade the host inflicted immune attack. The major pneumococcal virulence factor, the polysaccharide capsule helps protect the bacteria from complement mediated opsonophagocytic killing. Another important group of pneumococcal proteins which help bacteria to establish and thrive in the host environment is surface associated glycosidases. These enzymes can hydrolyze host glycans on glycoproteins, glycolipids, and glycosaminoglycans and consequently help bacteria acquire carbohydrates for growth. Many of these glycosidases directly or indirectly facilitate bacterial adherence and are known to modulate the function of host defense/immune proteins likely by removing glycans and thereby affecting their stability and/or function. Furthermore, these enzymes are known to contribute the formation of biofilms, the bacterial communities inherently resilient to antimicrobials and host immune attack. In this review, we summarize the role of these enzymes in host immune evasion.
Collapse
Affiliation(s)
- Bijina J. Mathew
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Priyal Gupta
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Tabassum Naaz
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Rupal Rai
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Sudheer Gupta
- Research and Development, 3B Blackbio Biotech India Ltd., Bhopal, India
| | - Sudipti Gupta
- Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Shivendra K. Chaurasiya
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Shashank Purwar
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Debasis Biswas
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Ashish Kumar Vyas
- John C Martin Centre for Liver Research and Innovation, Liver Foundation Sonarpur, Kolkata, India
| | - Anirudh K. Singh
- School of Sciences, SAM Global University, Raisen, India,*Correspondence: Anirudh K. Singh,
| |
Collapse
|
12
|
Cordeiro RL, Santos CR, Domingues MN, Lima TB, Pirolla RAS, Morais MAB, Colombari FM, Miyamoto RY, Persinoti GF, Borges AC, de Farias MA, Stoffel F, Li C, Gozzo FC, van Heel M, Guerin ME, Sundberg EJ, Wang LX, Portugal RV, Giuseppe PO, Murakami MT. Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum. Nat Chem Biol 2023; 19:218-229. [PMID: 36443572 PMCID: PMC10367113 DOI: 10.1038/s41589-022-01202-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-β-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.
Collapse
Affiliation(s)
- Rosa L Cordeiro
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Camila R Santos
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Tatiani B Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Mariana A B Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Felippe M Colombari
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Renan Y Miyamoto
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Antonio C Borges
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo A de Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Fabiane Stoffel
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Marin van Heel
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Priscila O Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| |
Collapse
|
13
|
Zafar MA, Costa-Terryl A, Young TM. The Two-Component System YesMN Promotes Pneumococcal Host-to-Host Transmission and Regulates Genes Involved in Zinc Homeostasis. Infect Immun 2023; 91:e0037522. [PMID: 36537790 PMCID: PMC9872629 DOI: 10.1128/iai.00375-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/27/2022] [Indexed: 01/25/2023] Open
Abstract
The ability to sense and respond rapidly to the dynamic environment of the upper respiratory tract (URT) makes Streptococcus pneumoniae (Spn) a highly successful human pathogen. Two-component systems (TCSs) of Spn sense and respond to multiple signals it encounters allowing Spn to adapt and thrive in various host sites. Spn TCS have been implicated in their ability to promote pneumococcal colonization of the URT and virulence. As the disease state can be a dead-end for a pathogen, we considered whether TCS would contribute to pneumococcal transmission. Herein, we determined the role of YesMN, an understudied TCS of Spn, and observe that YesMN contributes toward pneumococcal shedding and transmission but is not essential for colonization. The YesMN regulon includes genes involved in zinc homeostasis and glycan metabolism, which are upregulated during reduced zinc availability in a YesMN-dependent fashion. Thus, we identified the YesMN regulon and a potential molecular signal it senses that lead to the activation of genes involved in zinc homeostasis and glycan metabolism. Furthermore, in contrast to Spn monoinfection, we demonstrate that YesMN is critical for high pneumococcal density in the URT during influenza A virus (IAV) coinfection. We attribute reduced colonization of the yesMN mutant possibly due to increased association with and clearance by the mucus covering the URT epithelial surface. Thus, our results highlight the dynamic interactions that occur between Spn and IAV in the URT, and the role that TCSs play in modulation of these interactions.
Collapse
Affiliation(s)
- M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Alicia Costa-Terryl
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Taylor M. Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
14
|
Combining the In Silico and In Vitro Assays to Identify Strobilanthes cusia Kuntze Bioactives against Penicillin-Resistant Streptococcus pneumoniae. Pharmaceuticals (Basel) 2023; 16:ph16010105. [PMID: 36678602 PMCID: PMC9863409 DOI: 10.3390/ph16010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Leaves of Strobilanthes cusia Kuntze (S. cusia) are a widely used alexipharmic Traditional Chinese Medicine (TCM) in southern China for the prevention of cold and respiratory tract infectious diseases. One of the most common bacterial pathogens in the respiratory tract is the gram-positive bacterium Streptococcus pneumoniae. The antibiotic resistance of colonized S. pneumoniae makes it a more serious threat to public health. In this study, the leaves of S. cusia were found to perform antibacterial effects on the penicillin-resistant S. pneumoniae (PRSP). Confocal assay and Transmission Electron Microscopy (TEM) monitored the diminished cell wall integrity and capsule thickness of the PRSP with treatment. The following comparative proteomics analysis revealed that the glycometabolism-related pathways were enriched for the differentially expressed proteins between the samples with treatment and the control. To further delve into the specific single effective compound, the bio-active contents of leaves of S. cusia were analyzed by UPLC-UV-ESI-Q-TOF/MS, and 23 compounds were isolated for anti-PRSP screening. Among them, Tryptanthrin demonstrated the most promising effect, and it possibly inhibited the N-glycan degradation proteins, as suggested by reverse docking analysis in silico and further experimental verification by the surface plasmon resonance assay (SPR). Our study provided a research foundation for applications of the leaves of S. cusia as a TCM, and supplied a bio-active compound Tryptanthrin as a candidate drug skeleton for infectious diseases caused by the PRSP.
Collapse
|
15
|
Abstract
The intestinal lining is protected by a mucous barrier composed predominantly of complex carbohydrates. Gut microbes employ diverse glycoside hydrolases (GHs) to liberate mucosal sugars as a nutrient source to facilitate host colonization. Intensive catabolism of mucosal glycans, however, may contribute to barrier erosion, pathogen encroachment, and inflammation. Sialic acid is an acidic sugar featured at terminal positions of host glycans. Characterized sialidases from the microbiome belong to the GH33 family, according to CAZy (Carbohydrate-Active enZYmes Database). In 2018 a functional metagenomics screen using thermal spring DNA uncovered the founding member of the GH156 sialidase family, the presence of which has yet to be reported in the context of the human microbiome. A subset of GH156 sequences from the CAZy database containing key sialidase residues was used to build a hidden Markov model. HMMsearch against public databases revealed ~10× more putative GH156 sialidases than currently cataloged by CAZy. Represented phyla include Bacteroidota, Verrucomicrobiota, and Firmicutes_A from human microbiomes, all of which play notable roles in carbohydrate fermentation. Analyses of metagenomic data sets revealed that GH156s are frequently encoded in metagenomes, with a greater variety and abundance of GH156 genes observed in traditional hunter-gatherer or agriculturalist societies than in industrialized societies, particularly relative to individuals with inflammatory bowel disease (IBD). Nineteen GH156s were recombinantly expressed and assayed for sialidase activity. The five GH156 sialidases identified here share limited sequence identity to each other or the founding GH156 family member and are representative of a large subset of the family. IMPORTANCE Sialic acids occupy terminal positions of human glycans where they act as receptors for microbes, toxins, and immune signaling molecules. Microbial enzymes that remove sialic acids, sialidases, are abundant in the human microbiome where they may contribute to shaping the microbiota community structure or contribute to pathology. Furthermore, sialidases have proven to hold therapeutic potential for cancer therapy. Here, we examined the sequence space of a sialidase family of enzymes, GH156, previously unknown in the human gut environment. Our analyses suggest that human populations with disparate dietary practices harbor distinct varieties and abundances of GH156-encoding genes. Furthermore, we demonstrate the sialidase activity of 5 gut-derived GH156s. These results expand the diversity of sialidases that may contribute to host glycan degradation, and these sequences may have biotechnological or clinical utility.
Collapse
|
16
|
Pn-AqpC-Mediated Fermentation Pattern Coordination with the Two-Component System 07 Regulates Host N-Glycan Degradation of Streptococcus pneumoniae. Microbiol Spectr 2022; 10:e0249622. [PMID: 36106896 PMCID: PMC9603416 DOI: 10.1128/spectrum.02496-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) is a human nasopharyngeal commensal, and host N-glycan metabolism promotes its colonization and invasion. It has been reported that glucose represses, while fetuin, a glycoconjugated model protein, induces, the genes involved in N-glycan degradation through the two-component system TCS07. However, the mechanisms of glucose repression and TCS07 induction remain unknown. Previously, we found that the pneumococcal aquaglyceroporin Pn-AqpC facilitates oxygen uptake, thereby contributing to the antioxidant potential and virulence. In this study, through Tandem Mass Tag (TMT) quantitative proteomics, we found that the deletion of Pn-aqpC caused a marked upregulation of 11 proteins involved in N-glycan degradation in glucose-grown pneumococcus R6. Both quantitative RT-PCR and GFP fluorescence reporters revealed that the upregulation of N-glycan genes was completely dependent on response regulator (RR) 07, but not on the histidine kinase HK07 of TCS07 or the phosphoryl-receiving aspartate residue of RR07 in ΔPn-aqpC, indicating that RR07 was activated in an HK07-independent manner when Pn-AqpC was absent. The deletion of Pn-aqpC also enhanced the expression of pyruvate formate lyase and increased formate production, probably due to reduced cellular oxygen content, indicating that a shunt of glucose catabolism to mixed acid fermentation occurs. Notably, formate induced the N-glycan degradation genes in glucose-grown R6, but the deletion of rr07 abolished this induction, indicating that formate activates RR07. However, the induction of N-glycan degradation proteins reduced the intraspecies competition of R6 in glucose. Therefore, although N-glycan degradation promotes pneumococcal pathogenesis, the glucose metabolites-based RR07 regulation reported here is of importance for balancing growth fitness and the pathogenicity of pneumococcus. IMPORTANCE Pneumococcus, a human opportunistic pathogen, is capable of metabolizing host complex N-glycans. N-glycan degradation promotes pneumococcus colonization in the nasopharynx as well as invasion into deeper tissues, thus significantly contributing to pathogenesis. It is known that the two-component system 07 induces the N-glycan metabolizing genes; however, how TCS07 is activated remains unknown. This study reveals that formate, the anaerobic fermentation metabolite of pneumococcus, is a novel activator of the response regulator (RR) 07. Although the high expression of N-glycan degradation genes promotes pneumococcal colonization in the nasopharynx and pathogenesis, this reduces pneumococcal growth fitness in glucose as indicated in this work. Notably, the presence of Pn-AqpC, an oxygen-transporting aquaglyceroporin, enables pneumococcus to maintain glucose homolactic acid fermentation, thus reducing formate production, maintaining RR07 inactivation, and controlling N-glycan degrading genes at a non-induced status. Thus, this study highlights a novel fermentation metabolism pattern linking TCS-regulated carbohydrate utilization strategies as a trade-off between the fitness and the pathogenicity of pneumococcus.
Collapse
|
17
|
Abstract
N-glycans are common posttranslational modifications on plant proteins, particularly secreted proteins. As plants are the major component of the human diet, and especially in high-fiber diets, plant N-glycans are prominent in the gut. Despite their ubiquity in the gut, the degradation of plant N-glycans by the microbiota has not been described. Here we used a functional analysis approach, coupled to detailed biochemistry and structural biology, to reveal a pathway for the degradation of plant N-glycans encoded by the human gut microbiota. The work reveals insight into how our gut microbes use plant N-glycans as a nutrient source and also provides tools to modify plant N-glycans to mitigate allergic responses, either from foods or plant-expressed therapeutics. The major nutrients available to the human colonic microbiota are complex glycans derived from the diet. To degrade this highly variable mix of sugar structures, gut microbes have acquired a huge array of different carbohydrate-active enzymes (CAZymes), predominantly glycoside hydrolases, many of which have specificities that can be exploited for a range of different applications. Plant N-glycans are prevalent on proteins produced by plants and thus components of the diet, but the breakdown of these complex molecules by the gut microbiota has not been explored. Plant N-glycans are also well characterized allergens in pollen and some plant-based foods, and when plants are used in heterologous protein production for medical applications, the N-glycans present can pose a risk to therapeutic function and stability. Here we use a novel genome association approach for enzyme discovery to identify a breakdown pathway for plant complex N-glycans encoded by a gut Bacteroides species and biochemically characterize five CAZymes involved, including structures of the PNGase and GH92 α-mannosidase. These enzymes provide a toolbox for the modification of plant N-glycans for a range of potential applications. Furthermore, the keystone PNGase also has activity against insect-type N-glycans, which we discuss from the perspective of insects as a nutrient source.
Collapse
|
18
|
Takemura M, Yamaguchi M, Kobayashi M, Sumitomo T, Hirose Y, Okuzaki D, Ono M, Motooka D, Goto K, Nakata M, Uzawa N, Kawabata S. Pneumococcal BgaA Promotes Host Organ Bleeding and Coagulation in a Mouse Sepsis Model. Front Cell Infect Microbiol 2022; 12:844000. [PMID: 35846740 PMCID: PMC9284207 DOI: 10.3389/fcimb.2022.844000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae is a major cause of invasive diseases such as pneumonia, meningitis, and sepsis, with high associated mortality. Our previous molecular evolutionary analysis revealed that the S. pneumoniae gene bgaA, encoding the enzyme β-galactosidase (BgaA), had a high proportion of codons under negative selection among the examined pneumococcal genes and that deletion of bgaA significantly reduced host mortality in a mouse intravenous infection assay. BgaA is a multifunctional protein that plays a role in cleaving terminal galactose in N-linked glycans, resistance to human neutrophil-mediated opsonophagocytic killing, and bacterial adherence to human epithelial cells. In this study, we performed in vitro and in vivo assays to evaluate the precise role of bgaA as a virulence factor in sepsis. Our in vitro assays showed that the deletion of bgaA significantly reduced the bacterial association with human lung epithelial and vascular endothelial cells. The deletion of bgaA also reduced pneumococcal survival in human blood by promoting neutrophil-mediated killing, but did not affect pneumococcal survival in mouse blood. In a mouse sepsis model, mice infected with an S. pneumoniae bgaA-deleted mutant strain exhibited upregulated host innate immunity pathways, suppressed tissue damage, and blood coagulation compared with mice infected with the wild-type strain. These results suggest that BgaA functions as a multifunctional virulence factor whereby it induces host tissue damage and blood coagulation. Taken together, our results suggest that BgaA could be an attractive target for drug design and vaccine development to control pneumococcal infection.
Collapse
Affiliation(s)
- Moe Takemura
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- *Correspondence: Masaya Yamaguchi,
| | - Momoko Kobayashi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masayuki Ono
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kana Goto
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Narikazu Uzawa
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
19
|
Cao L, Li N, Dong Y, Yang XY, Liu J, He QY, Ge R, Sun X. SPD_0090 Negatively Contributes to Virulence of Streptococcus pneumoniae. Front Microbiol 2022; 13:896896. [PMID: 35770170 PMCID: PMC9234739 DOI: 10.3389/fmicb.2022.896896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
In most bacteria, iron plays an important role in the survival of bacteria and the process of infection to the host. Streptococcus pneumoniae (S. pneumoniae) evolved three iron transporters (i.e., PiaABC, PiuABC, and PitABC) responsible for the transportation of three kinds of iron (i.e., ferrichrome, hemin, and ferric ion). Our previous study showed that both mRNA and protein levels of SPD_0090 were significantly upregulated in the ΔpiuA/ΔpiaA/ΔpitA triple mutant, but its detailed biological function is unknown. In this study, we constructed spd_0090 knockout and complement strain and found that the deletion of spd_0090 hinders bacterial growth. SPD_0090 is located on the cell membrane and affects the hemin utilization ability of S. pneumoniae. The cell infection model showed that the knockout strain had stronger invasion and adhesion ability. Notably, knockout of the spd_0090 gene resulted in an enhanced infection ability of S. pneumoniae in mice by increasing the expression of virulence factors. Furthermore, iTRAQ quantitative proteomics studies showed that the knockout of spd_0090 inhibited carbon metabolism and thus suppressed bacterial growth. Our study showed that SPD_0090 negatively regulates the virulence of S. pneumoniae.
Collapse
Affiliation(s)
- Linlin Cao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yingshan Dong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Yan Yang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiajia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- *Correspondence: Qing-Yu He,
| | - Ruiguang Ge
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Ruiguang Ge,
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Xuesong Sun,
| |
Collapse
|
20
|
Kołaczkowski BM, Jørgensen CI, Spodsberg N, Stringer MA, Supekar NT, Azadi P, Westh P, Krogh KBRM, Jensen K. Analysis of fungal high-mannose structures using CAZymes. Glycobiology 2022; 32:304-313. [PMID: 34939126 PMCID: PMC8970417 DOI: 10.1093/glycob/cwab127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Glycoengineering ultimately allows control over glycosylation patterns to generate new glycoprotein variants with desired properties. A common challenge is glycan heterogeneity, which may affect protein function and limit the use of key techniques such as mass spectrometry. Moreover, heterologous protein expression can introduce nonnative glycan chains that may not fulfill the requirement for therapeutic proteins. One strategy to address these challenges is partial trimming or complete removal of glycan chains, which can be obtained through selective application of exoglycosidases. Here, we demonstrate an enzymatic O-deglycosylation toolbox of a GH92 α-1,2-mannosidase from Neobacillus novalis, a GH2 β-galactofuranosidase from Amesia atrobrunnea and the jack bean α-mannosidase. The extent of enzymatic O-deglycosylation was mapped against a full glycosyl linkage analysis of the O-glycosylated linker of cellobiohydrolase I from Trichoderma reesei (TrCel7A). Furthermore, the influence of deglycosylation on TrCel7A functionality was evaluated by kinetic characterization of native and O-deglycosylated forms of TrCel7A. This study expands structural knowledge on fungal O-glycosylation and presents a ready-to-use enzymatic approach for controlled O-glycan engineering in glycoproteins expressed in filamentous fungi.
Collapse
Affiliation(s)
- Bartłomiej M Kołaczkowski
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, Roskilde 4000, Denmark
| | | | | | - Mary A Stringer
- Novozymes A/S, Biologiens Vej 2, Kongens Lyngby 2800, Denmark
| | - Nitin T Supekar
- Complex Carbohydrate Research Center, 315 Riverbend Rd. University of Georgia, Athens, Georgia 30602 USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, 315 Riverbend Rd. University of Georgia, Athens, Georgia 30602 USA
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Kongens Lyngby 2800, Denmark
| | | | - Kenneth Jensen
- Novozymes A/S, Biologiens Vej 2, Kongens Lyngby 2800, Denmark
| |
Collapse
|
21
|
Alghofaili F, Najmuldeen H, Kareem BO, Shlla B, Fernandes VE, Danielsen M, Ketley JM, Freestone P, Yesilkaya H. Host Stress Signals Stimulate Pneumococcal Transition from Colonization to Dissemination into the Lungs. mBio 2021; 12:e0256921. [PMID: 34696596 PMCID: PMC8546540 DOI: 10.1128/mbio.02569-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is an asymptomatic colonizer of the nasopharynx, but it is also one of the most important bacterial pathogens of humans, causing a wide range of mild to life-threatening diseases. The basis of the pneumococcal transition from a commensal to a parasitic lifestyle is not fully understood. We hypothesize that exposure to host catecholamine stress hormones is important for this transition. In this study, we demonstrated that pneumococci preexposed to a hormone released during stress, norepinephrine (NE), have an increased capacity to translocate from the nasopharynx into the lungs compared to untreated pneumococci. Examination of NE-treated pneumococci revealed major alterations in metabolic profiles, cell associations, capsule synthesis, and cell size. By systemically mutating all 12 two-component and 1 orphan regulatory systems, we also identified a unique genetic regulatory circuit involved in pneumococcal recognition and responsiveness to human stress hormones. IMPORTANCE Microbes acquire unique lifestyles under different environmental conditions. Although this is a widespread occurrence, our knowledge of the importance of various host signals and their impact on microbial behavior is not clear despite the therapeutic value of this knowledge. We discovered that catecholamine stress hormones are the host signals that trigger the passage of Streptococcus pneumoniae from a commensal to a parasitic state. We identify that stress hormone treatment of this microbe leads to reductions in cell size and capsule synthesis and renders it more able to migrate from the nasopharynx into the lungs in a mouse model of infection. The microbe requires the TCS09 protein for the recognition and processing of stress hormone signals. Our work has particular clinical significance as catecholamines are abundant in upper respiratory fluids as well as being administered therapeutically to reduce inflammation in ventilated patients, which may explain why intubation in the critically ill is a recognized risk factor for the development of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Fayez Alghofaili
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
- Department of Biology, College of Science, Majmaah University, Majmaah, Saudi Arabia
| | - Hastyar Najmuldeen
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
- Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah, Iraq
| | - Banaz O. Kareem
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Bushra Shlla
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
- Department of Biology, College of Science, University of Mosul, Mosul, Iraq
| | - Vitor E. Fernandes
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Julian M. Ketley
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Primrose Freestone
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
22
|
Bai Q, Ma J, Zhang Z, Zhong X, Pan Z, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. YSIRK-G/S-directed translocation is required for Streptococcus suis to deliver diverse cell wall anchoring effectors contributing to bacterial pathogenicity. Virulence 2021; 11:1539-1556. [PMID: 33138686 PMCID: PMC7644249 DOI: 10.1080/21505594.2020.1838740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Streptococcus suis serotype 2 (SS2) is a significant zoonotic pathogen that is responsible for various swine diseases, even causing cytokine storms of Streptococcal toxic shock-like syndromes amongst human. Cell wall anchoring proteins with a C-terminal LPxTG are considered to play vital roles during SS2 infection; however, their exporting mechanism across cytoplasmic membranes has remained vague. This study found that YSIRK-G/S was involved in the exportation of LPxTG-anchoring virulence factors MRP and SspA in virulent SS2 strain ZY05719. The whole-genome analysis indicated that diverse LPxTG proteins fused with an N-terminal YSIRK-G/S motif are encoded in strain ZY05719. Two novel LPxTG proteins SspB and YzpA were verified to be exported via a putative transport system that was dependent on the YSIRK-G/S directed translocation, and portrayed vital functions during the infection of SS2 strain ZY05719. Instead of exhibiting an inactivation of C5a peptidase in SspB, another LPxTG protein with an N-terminal YSIRK-G/S motif from Streptococcus agalactiae was depicted to cleave the C5a component of the host complement. The consequent domain-architecture retrieval determined more than 10,000 SspB/YzpA like proteins that are extensively distributed in the Gram-positive bacteria, and most of them harbor diverse glycosyl hydrolase or peptidase domains within their middle regions, thus presenting their capability to interact with host cells. The said findings provide compelling evidence that LPxTG proteins with an N-terminal YSIRK-G/S motif are polymorphic effectors secreted by Gram-positive bacteria, which can be further proposed to define as cell wall anchoring effectors in a new subset.
Collapse
Affiliation(s)
- Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| |
Collapse
|
23
|
Robertsson C, Svensäter G, Blum Z, Jakobsson ME, Wickström C. Proteomic response in Streptococcus gordonii DL1 biofilm cells during attachment to salivary MUC5B. J Oral Microbiol 2021; 13:1967636. [PMID: 34447490 PMCID: PMC8386731 DOI: 10.1080/20002297.2021.1967636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Salivary mucin MUC5B seems to promote biodiversity in dental biofilms, and thereby oral health, for example, by inducing synergistic ‘mucolytic’ activities in a variety of microbial species that need to cooperate for the release of nutrients from the complex glycoprotein. Knowledge of how early colonizers interact with host salivary proteins is integral to better understand the maturation of putatively harmful oral biofilms and could provide key insights into biofilm physiology. Methods The early oral colonizer Streptococcus gordonii DL1 was grown planktonically and in biofilm flow cell systems with uncoated, MUC5B or low-density salivary protein (LDP) coated surfaces. Bacterial cell proteins were extracted and analyzed using a quantitative mass spectrometry-based workflow, and differentially expressed proteins were identified. Results and conclusions Overall, the proteomic profiles of S. gordonii DL1 were similar across conditions. Six novel biofilm cell proteins and three planktonic proteins absent in all biofilm cultures were identified. These differences may provide insights into mechanisms for adaptation to biofilm growth in this species. Salivary MUC5B also elicited specific responses in the biofilm cell proteome. These regulations may represent mechanisms by which this mucin could promote colonization of the commensal S. gordonii in oral biofilms.
Collapse
Affiliation(s)
- Carolina Robertsson
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Zoltan Blum
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | | | - Claes Wickström
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
24
|
Higgins MA, Tegl G, MacDonald SS, Arnal G, Brumer H, Withers SG, Ryan KS. N-Glycan Degradation Pathways in Gut- and Soil-Dwelling Actinobacteria Share Common Core Genes. ACS Chem Biol 2021; 16:701-711. [PMID: 33764747 DOI: 10.1021/acschembio.0c00995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
N-Glycosylation is a fundamental protein modification found in both eukaryotes and archaea. Despite lacking N-glycans, many commensal and pathogenic bacteria have developed mechanisms to degrade these isoforms for a variety of functions, including nutrient acquisition and evasion of the immune system. Although much is known about many of the enzymes responsible for N-glycan degradation, the enzymes involved in cleaving the N-glycan core have only recently been discovered. Thus, some of the structural details have yet to be characterized, and little is known about their full distribution among bacterial strains and specifically within potential Gram-positive polysaccharide utilization loci. Here, we report crystal structures for Family 5, Subfamily 18 (GH5_18) glycoside hydrolases from the gut bacterium Bifidobacterium longum (BlGH5_18) and the soil bacterium Streptomyces cattleya (ScGH5_18), which hydrolyze the core Manβ1-4GlcNAc disaccharide. Structures of these enzymes in complex with Manβ1-4GlcNAc reveal a more complete picture of the -1 subsite. They also show that a C-terminal active site cap present in BlGH5_18 is absent in ScGH5_18. Although this C-terminal cap is not widely distributed throughout the GH5_18 family, it is important for full enzyme activity. In addition, we show that GH5_18 enzymes are found in Gram-positive polysaccharide utilization loci that share common genes, likely dedicated to importing and degrading N-glycan core structures.
Collapse
|
25
|
The effects of diet and gut microbiota on the regulation of intestinal mucin glycosylation. Carbohydr Polym 2021; 258:117651. [DOI: 10.1016/j.carbpol.2021.117651] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
|
26
|
Lannes-Costa PS, de Oliveira JSS, da Silva Santos G, Nagao PE. A current review of pathogenicity determinants of Streptococcus sp. J Appl Microbiol 2021; 131:1600-1620. [PMID: 33772968 DOI: 10.1111/jam.15090] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
The genus Streptococcus comprises important pathogens, many of them are part of the human or animal microbiota. Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 100 species that have a severe impact on human health and are responsible for substantial economic losses to agriculture. The infectivity of the pathogens is linked to cell-surface components and/or secreted virulence factors. Bacteria have evolved sophisticated and multifaceted adaptation strategies to the host environment, including biofilm formation, survival within professional phagocytes, escape the host immune response, amongst others. This review focuses on virulence mechanism and zoonotic potential of Streptococcus species from pyogenic (S. agalactiae, S. pyogenes) and mitis groups (S. pneumoniae).
Collapse
Affiliation(s)
- P S Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - J S S de Oliveira
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - G da Silva Santos
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - P E Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Minhas V, Paton JC, Trappetti C. Sickly Sweet - How Sugar Utilization Impacts Pneumococcal Disease Progression. Trends Microbiol 2021; 29:768-771. [PMID: 33612397 DOI: 10.1016/j.tim.2021.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen that can spread to multiple sites in the body. However, the mechanisms dictating disease spread are not well understood. Here we highlight the importance of carbohydrate utilization systems on pneumococcal disease, offering insight into how this pathogen causes a spectrum of disease.
Collapse
Affiliation(s)
- Vikrant Minhas
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia.
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
28
|
Hansen AL, Reily C, Novak J, Renfrow MB. Immunoglobulin A Glycosylation and Its Role in Disease. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:433-477. [PMID: 34687019 DOI: 10.1007/978-3-030-76912-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human IgA is comprised of two subclasses, IgA1 and IgA2. Monomeric IgA (mIgA), polymeric IgA (pIgA), and secretory IgA (SIgA) are the main molecular forms of IgA. The production of IgA rivals all other immunoglobulin isotypes. The large quantities of IgA reflect the fundamental roles it plays in immune defense, protecting vulnerable mucosal surfaces against invading pathogens. SIgA dominates mucosal surfaces, whereas IgA in circulation is predominately monomeric. All forms of IgA are glycosylated, and the glycans significantly influence its various roles, including antigen binding and the antibody effector functions, mediated by the Fab and Fc portions, respectively. In contrast to its protective role, the aberrant glycosylation of IgA1 has been implicated in the pathogenesis of autoimmune diseases, such as IgA nephropathy (IgAN) and IgA vasculitis with nephritis (IgAVN). Furthermore, detailed characterization of IgA glycosylation, including its diverse range of heterogeneity, is of emerging interest. We provide an overview of the glycosylation observed for each subclass and molecular form of IgA as well as the range of heterogeneity for each site of glycosylation. In many ways, the role of IgA glycosylation is in its early stages of being elucidated. This chapter provides an overview of the current knowledge and research directions.
Collapse
Affiliation(s)
- Alyssa L Hansen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Colin Reily
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
29
|
Jamalkandi SA, Kouhsar M, Salimian J, Ahmadi A. The identification of co-expressed gene modules in Streptococcus pneumonia from colonization to infection to predict novel potential virulence genes. BMC Microbiol 2020; 20:376. [PMID: 33334315 PMCID: PMC7745498 DOI: 10.1186/s12866-020-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/02/2020] [Indexed: 11/14/2022] Open
Abstract
Background Streptococcus pneumonia (pneumococcus) is a human bacterial pathogen causing a range of mild to severe infections. The complicated transcriptome patterns of pneumococci during the colonization to infection process in the human body are usually determined by measuring the expression of essential virulence genes and the comparison of pathogenic with non-pathogenic bacteria through microarray analyses. As systems biology studies have demonstrated, critical co-expressing modules and genes may serve as key players in biological processes. Generally, Sample Progression Discovery (SPD) is a computational approach traditionally used to decipher biological progression trends and their corresponding gene modules (clusters) in different clinical samples underlying a microarray dataset. The present study aimed to investigate the bacterial gene expression pattern from colonization to severe infection periods (specimens isolated from the nasopharynx, lung, blood, and brain) to find new genes/gene modules associated with the infection progression. This strategy may lead to finding novel gene candidates for vaccines or drug design. Results The results included essential genes whose expression patterns varied in different bacterial conditions and have not been investigated in similar studies. Conclusions In conclusion, the SPD algorithm, along with differentially expressed genes detection, can offer new ways of discovering new therapeutic or vaccine targeted gene products. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02059-0.
Collapse
Affiliation(s)
- Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Kouhsar
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Colonization of the Murine Oropharynx by Streptococcus pyogenes Is Governed by the Rgg2/3 Quorum Sensing System. Infect Immun 2020; 88:IAI.00464-20. [PMID: 32747598 DOI: 10.1128/iai.00464-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes is a human-restricted pathogen most often found in the human nasopharynx. Multiple bacterial factors are known to contribute to persistent colonization of this niche, and many are important in mucosal immunity and vaccine development. In this work, mice were infected intranasally with transcriptional regulator mutants of the Rgg2/3 quorum sensing (QS) system-a peptide-based signaling system conserved in sequenced isolates of S. pyogenes Deletion of the QS system's transcriptional activator (Δrgg2) dramatically diminished the percentage of colonized mice, while deletion of the transcriptional repressor (Δrgg3) increased the percentage of colonized mice compared to that of the wild type (WT). Stimulation of the QS system using synthetic pheromones prior to inoculation did not significantly increase the percentage of animals colonized, indicating that QS-dependent colonization is responsive to the intrinsic conditions within the host upper respiratory tract. Bacterial RNA extracted directly from oropharyngeal swabs and evaluated by quantitative reverse transcription-PCR (qRT-PCR) subsequently confirmed QS upregulation within 1 h of inoculation. In the nasal-associated lymphoid tissue (NALT), a muted inflammatory response to the Δrgg2 bacteria suggests that their rapid elimination failed to elicit the previously characterized response to intranasal inoculation of GAS. This work identifies a new transcriptional regulatory system governing the ability of S. pyogenes to colonize the nasopharynx and provides knowledge that could help lead to decolonization therapeutics.
Collapse
|
31
|
Martino C, Kellman BP, Sandoval DR, Clausen TM, Marotz CA, Song SJ, Wandro S, Zaramela LS, Salido Benítez RA, Zhu Q, Armingol E, Vázquez-Baeza Y, McDonald D, Sorrentino JT, Taylor B, Belda-Ferre P, Liang C, Zhang Y, Schifanella L, Klatt NR, Havulinna AS, Jousilahti P, Huang S, Haiminen N, Parida L, Kim HC, Swafford AD, Zengler K, Cheng S, Inouye M, Niiranen T, Jain M, Salomaa V, Esko JD, Lewis NE, Knight R. Bacterial modification of the host glycosaminoglycan heparan sulfate modulates SARS-CoV-2 infectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32839779 PMCID: PMC7444296 DOI: 10.1101/2020.08.17.238444] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human microbiota has a close relationship with human disease and it remodels components of the glycocalyx including heparan sulfate (HS). Studies of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike protein receptor binding domain suggest that infection requires binding to HS and angiotensin converting enzyme 2 (ACE2) in a codependent manner. Here, we show that commensal host bacterial communities can modify HS and thereby modulate SARS-CoV-2 spike protein binding and that these communities change with host age and sex. Common human-associated commensal bacteria whose genomes encode HS-modifying enzymes were identified. The prevalence of these bacteria and the expression of key microbial glycosidases in bronchoalveolar lavage fluid (BALF) was lower in adult COVID-19 patients than in healthy controls. The presence of HS-modifying bacteria decreased with age in two large survey datasets, FINRISK 2002 and American Gut, revealing one possible mechanism for the observed increase in COVID-19 susceptibility with age. In vitro , bacterial glycosidases from unpurified culture media supernatants fully blocked SARS-CoV-2 spike binding to human H1299 protein lung adenocarcinoma cells. HS-modifying bacteria in human microbial communities may regulate viral adhesion, and loss of these commensals could predispose individuals to infection. Understanding the impact of shifts in microbial community composition and bacterial lyases on SARS-CoV-2 infection may lead to new therapeutics and diagnosis of susceptibility.
Collapse
|
32
|
Chen P, Liu R, Huang M, Zhu J, Wei D, Castellino FJ, Dang G, Xie F, Li G, Cui Z, Liu S, Zhang Y. A unique combination of glycoside hydrolases in Streptococcus suis specifically and sequentially acts on host-derived αGal-epitope glycans. J Biol Chem 2020; 295:10638-10652. [PMID: 32518157 DOI: 10.1074/jbc.ra119.011977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/06/2020] [Indexed: 01/02/2023] Open
Abstract
Infections by many bacterial pathogens rely on their ability to degrade host glycans by producing glycoside hydrolases (GHs). Here, we discovered a conserved multifunctional GH, SsGalNagA, containing a unique combination of two family 32 carbohydrate-binding modules (CBM), a GH16 domain and a GH20 domain, in the zoonotic pathogen Streptococcus suis 05ZYH33. Enzymatic assays revealed that the SsCBM-GH16 domain displays endo-(β1,4)-galactosidase activity specifically toward the host-derived αGal epitope Gal(α1,3)Gal(β1,4)Glc(NAc)-R, whereas the SsGH20 domain has a wide spectrum of exo-β-N-acetylhexosaminidase activities, including exo-(β1,3)-N-acetylglucosaminidase activity, and employs this activity to act in tandem with SsCBM-GH16 on the αGal-epitope glycan. Further, we found that the CBM32 domain adjacent to the SsGH16 domain is indispensable for SsGH16 catalytic activity. Surface plasmon resonance experiments uncovered that both CBM32 domains specifically bind to αGal-epitope glycan, and together they had a KD of 3.5 mm toward a pentasaccharide αGal-epitope glycan. Cell-binding and αGal epitope removal assays revealed that SsGalNagA efficiently binds to both swine erythrocytes and tracheal epithelial cells and removes the αGal epitope from these cells, suggesting that SsGalNagA functions in nutrient acquisition or alters host signaling in S. suis Both binding and removal activities were blocked by an αGal-epitope glycan. SsGalNagA is the first enzyme reported to sequentially act on a glycan containing the αGal epitope. These findings shed detailed light on the evolution of GHs and an important host-pathogen interaction.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ran Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengmeng Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinlu Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dong Wei
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Francis J Castellino
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.,W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yueling Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
33
|
Minhas V, Aprianto R, McAllister LJ, Wang H, David SC, McLean KT, Comerford I, McColl SR, Paton JC, Veening JW, Trappetti C. In vivo dual RNA-seq reveals that neutrophil recruitment underlies differential tissue tropism of Streptococcus pneumoniae. Commun Biol 2020; 3:293. [PMID: 32504007 PMCID: PMC7275033 DOI: 10.1038/s42003-020-1018-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
Streptococcus pneumoniae is a genetically diverse human-adapted pathogen commonly carried asymptomatically in the nasopharynx. We have recently shown that a single nucleotide polymorphism (SNP) in the raffinose pathway regulatory gene rafR accounts for a difference in the capacity of clonally-related strains to cause localised versus systemic infection. Using dual RNA-seq, we show that this SNP affects expression of bacterial genes encoding multiple sugar transporters, and fine-tunes carbohydrate metabolism, along with extensive rewiring of host transcriptional responses to infection, particularly expression of genes encoding cytokine and chemokine ligands and receptors. The data predict a crucial role for differential neutrophil recruitment (confirmed by in vivo neutrophil depletion and IL-17 neutralization) indicating that early detection of bacteria by the host in the lung environment is crucial for effective clearance. Thus, dual RNA-seq provides a powerful tool for understanding complex host-pathogen interactions and reveals how a single bacterial SNP can drive differential disease outcomes. Minhas, Aprianto et al. apply dual RNA seq to a set of related Streptococcus pneumoniae strains to find that differential neutrophil recruitment explains different tissue tropism of these strains. This study highlights the power of dual RNA-seq in investigating how a single bacterial SNP determines the host’s disease outcomes.
Collapse
Affiliation(s)
- Vikrant Minhas
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Rieza Aprianto
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Lauren J McAllister
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Hui Wang
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Shannon C David
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Kimberley T McLean
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Iain Comerford
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Shaun R McColl
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia.
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
34
|
Ma J, Zhang Z, Pan Z, Bai Q, Zhong X, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens 2020; 9:E387. [PMID: 32443590 PMCID: PMC7281376 DOI: 10.3390/pathogens9050387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Infection with the epidemic virulent strain of Streptococcus suis serotype 2 (SS2) can cause septicemia in swine and humans, leading to pneumonia, meningitis and even cytokine storm of Streptococcal toxic shock-like syndrome. Despite some progress concerning the contribution of bacterial adhesion, biofilm, toxicity and stress response to the SS2 systemic infection, the precise mechanism underlying bacterial survival and growth within the host bloodstream remains elusive. Here, we reported the SS2 virulent strains with a more than 20 kb endoSS-related insertion region that showed significantly higher proliferative ability in swine serum than low-virulent strains. Further study identified a complete N-glycans degradation system encoded within this insertion region, and found that both GH92 and EndoSS contribute to bacterial virulence, but that only DndoSS was required for optimal growth of SS2 in host serum. The supplement of hydrolyzed high-mannose-containing glycoprotein by GH92 and EndoSS could completely restore the growth deficiency of endoSS deletion mutant in swine serum. EndoSS only hydrolyzed a part of the model glycoprotein RNase B with high-mannose N-linked glycoforms into a low molecular weight form, and the solo activity of GH92 could not show any changes comparing with the blank control in SDS-PAGE gel. However, complete hydrolyzation was observed under the co-incubation of EndoSS and GH92, suggesting GH92 may degrade the high-mannose arms of N-glycans to generate a substrate for EndoSS. In summary, these findings provide compelling evidences that EndoSS-related N-glycans degradation system may enable SS2 to adapt to host serum-specific availability of carbon sources from glycoforms, and be required for optimal colonization and full virulence during systemic infection.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| |
Collapse
|
35
|
Paradoxical Pro-inflammatory Responses by Human Macrophages to an Amoebae Host-Adapted Legionella Effector. Cell Host Microbe 2020; 27:571-584.e7. [PMID: 32220647 DOI: 10.1016/j.chom.2020.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/08/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila has co-evolved with amoebae, their natural hosts. Upon transmission to humans, the bacteria proliferate within alveolar macrophages causing pneumonia. Here, we show L. pneumophila injects the effector LamA, an amylase, into the cytosol of human macrophage (hMDMs) and amoebae to rapidly degrade glycogen to generate cytosolic hyper-glucose. In response, hMDMs shift their metabolism to aerobic glycolysis, which directly triggers an M1-like pro-inflammatory differentiation and nutritional innate immunity through enhanced tryptophan degradation. This leads to a modest restriction of bacterial proliferation in hMDMs. In contrast, LamA-mediated glycogenolysis in amoebae deprives the natural host from the main building blocks for synthesis of the cellulose-rich cyst wall, leading to subversion of amoeba encystation. This is non-permissive for bacterial proliferation. Therefore, LamA of L. pneumophila is an amoebae host-adapted effector that subverts encystation of the amoebae natural host, and the paradoxical hMDMs' pro-inflammatory response is likely an evolutionary accident.
Collapse
|
36
|
Jia N, Byrd-Leotis L, Matsumoto Y, Gao C, Wein AN, Lobby JL, Kohlmeier JE, Steinhauer DA, Cummings RD. The Human Lung Glycome Reveals Novel Glycan Ligands for Influenza A Virus. Sci Rep 2020; 10:5320. [PMID: 32210305 PMCID: PMC7093477 DOI: 10.1038/s41598-020-62074-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Glycans within human lungs are recognized by many pathogens such as influenza A virus (IAV), yet little is known about their structures. Here we present the first analysis of the N- and O- and glycosphingolipid-glycans from total human lungs, along with histological analyses of IAV binding. The N-glycome of human lung contains extremely large complex-type N-glycans with linear poly-N-acetyllactosamine (PL) [-3Galβ1-4GlcNAcβ1-]n extensions, which are predominantly terminated in α2,3-linked sialic acid. By contrast, smaller N-glycans lack PL and are enriched in α2,6-linked sialic acids. In addition, we observed large glycosphingolipid (GSL)-glycans, which also consists of linear PL, terminating in mainly α2,3-linked sialic acid. Histological staining revealed that IAV binds to sialylated and non-sialylated glycans and binding is not concordant with respect to binding by sialic acid-specific lectins. These results extend our understanding of the types of glycans that may serve as binding sites for human lung pathogens.
Collapse
Affiliation(s)
- Nan Jia
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Lauren Byrd-Leotis
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance, (CEIRS), Atlanta, GA, USA
| | - Yasuyuki Matsumoto
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
| | - Chao Gao
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance, (CEIRS), Atlanta, GA, USA
| | - Alexander N Wein
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jenna L Lobby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
- Emory-UGA Center of Excellence of Influenza Research and Surveillance, (CEIRS), Atlanta, GA, USA.
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA, USA.
- Emory-UGA Center of Excellence of Influenza Research and Surveillance, (CEIRS), Atlanta, GA, USA.
| |
Collapse
|
37
|
Andreassen PR, Trappetti C, Minhas V, Nielsen FD, Pakula K, Paton JC, Jørgensen MG. Host-glycan metabolism is regulated by a species-conserved two-component system in Streptococcus pneumoniae. PLoS Pathog 2020; 16:e1008332. [PMID: 32130269 PMCID: PMC7075642 DOI: 10.1371/journal.ppat.1008332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 03/16/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022] Open
Abstract
Pathogens of the Streptococcus genus inhabit many different environmental niches during the course of an infection in a human host and the bacteria must adjust their metabolism according to available nutrients. Despite their lack of the citric-acid cycle, some streptococci proliferate in niches devoid of a readily available carbohydrate source. Instead they rely on carbohydrate scavenging for energy acquisition, which are obtained from the host. Here we discover a two-component system (TCS07) of Streptococcus pneumoniae that responds to glycoconjugated structures on proteins present on the host cells. Using next-generation RNA sequencing we find that the uncharacterized TCS07 regulon encodes proteins important for host-glycan processing and transporters of the released glycans, as well as intracellular carbohydrate catabolizing enzymes. We find that a functional TCS07 allele is required for growth on the glycoconjugated model protein fetuin. Consistently, we see a TCS07-dependent activation of the glycan degradation pathway. Thus, we pinpoint the molecular constituents responsible for sensing host derived glycans and link this to the induction of the proteins necessary for glycan degradation. Furthermore, we connect the TCS07 regulon to virulence in a mouse model, thereby establishing that host-derived glycan-metabolism is important for infection in vivo. Finally, a comparative phylogenomic analysis of strains from the Streptococcus genus reveal that TCS07 and most of its regulon is specifically conserved in species that utilize host-glycans for growth. Worldwide, Streptococcus pneumoniae is the most common cause of community acquired pneumonia with high mortality rates. Interestingly, S. pneumoniae strictly relies on carbohydrate scavenging for energy acquisition, which are obtained from the host. This is a critical step in pathogenesis and a common mechanism among Streptococcal species. In this study, we discover an uncharacterized two-component system that responds to the carbohydrate structures present on the host cells. These are important findings as we describe the molecular mechanism responsible for sensing these host derived glycans, and how this mechanism is linked to virulence, thus highlighting that glycan metabolism is important for infection in vivo, thereby posing a novel target for intervention. Our phylogenetic analysis reveals that the two-component system and the genetic regulon co-occur and are specifically conserved among Streptococcal species capable of degrading host-glycans.
Collapse
Affiliation(s)
| | - Claudia Trappetti
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Vikrant Minhas
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | | | - Kevin Pakula
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - James C. Paton
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
38
|
Unique Microbial Catabolic Pathway for the Human Core N-Glycan Constituent Fucosyl-α-1,6- N-Acetylglucosamine-Asparagine. mBio 2020; 11:mBio.02804-19. [PMID: 31937642 PMCID: PMC6960285 DOI: 10.1128/mbio.02804-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The gastrointestinal tract accommodates more than 1014 microorganisms that have an enormous impact on human health. The mechanisms enabling commensal bacteria and administered probiotics to colonize the gut remain largely unknown. The ability to utilize host-derived carbon and energy resources available at the mucosal surfaces may provide these bacteria with a competitive advantage in the gut. Here, we have identified in the commensal species Lactobacillus casei a novel metabolic pathway for the utilization of the glycoamino acid fucosyl-α-1,6-N-GlcNAc-Asn, which is present in the core-fucosylated N-glycoproteins from mammalians. These results give insight into the molecular interactions between the host and commensal/probiotic bacteria and may help to devise new strategies to restore gut microbiota homeostasis in diseases associated with dysbiotic microbiota. The survival of commensal bacteria in the human gut partially depends on their ability to metabolize host-derived molecules. The use of the glycosidic moiety of N-glycoproteins by bacteria has been reported, but the role of N-glycopeptides or glycoamino acids as the substrates for bacterial growth has not been evaluated. We have identified in Lactobacillus casei strain BL23 a gene cluster (alf-2) involved in the catabolism of the glycoamino acid fucosyl-α-1,6-N-GlcNAc-Asn (6′FN-Asn), a constituent of the core-fucosylated structures of mammalian N-glycoproteins. The cluster consists of the genes alfHC, encoding a major facilitator superfamily (MFS) permease and the α-l-fucosidase AlfC, and the divergently oriented asdA (aspartate 4-decarboxylase), alfR2 (transcriptional regulator), pepV (peptidase), asnA2 (glycosyl-asparaginase), and sugK (sugar kinase) genes. Knockout mutants showed that alfH, alfC, asdA, asnA2, and sugK are necessary for efficient 6′FN-Asn utilization. The alf-2 genes are induced by 6′FN-Asn, but not by its glycan moiety, via the AlfR2 regulator. The constitutive expression of alf-2 genes in an alfR2 strain allowed the metabolism of a variety of 6′-fucosyl-glycans. However, GlcNAc-Asn did not support growth in this mutant background, indicating that the presence of a 6′-fucose moiety is crucial for substrate transport via AlfH. Within bacteria, 6′FN-Asn is defucosylated by AlfC, generating GlcNAc-Asn. This glycoamino acid is processed by the glycosylasparaginase AsnA2. GlcNAc-Asn hydrolysis generates aspartate and GlcNAc, which is used as a fermentable source by L.casei. These data establish the existence in a commensal bacterial species of an exclusive metabolic pathway likely to scavenge human milk and mucosal fucosylated N-glycopeptides in the gastrointestinal tract.
Collapse
|
39
|
Erban T, Zitek J, Bodrinova M, Talacko P, Bartos M, Hrabak J. Comprehensive proteomic analysis of exoproteins expressed by ERIC I, II, III and IV Paenibacillus larvae genotypes reveals a wide range of virulence factors. Virulence 2019; 10:363-375. [PMID: 30957692 PMCID: PMC6527061 DOI: 10.1080/21505594.2019.1603133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 11/12/2022] Open
Abstract
American foulbrood is a quarantine disease of the honeybee Apis mellifera L. in many countries and contributes greatly to colony losses. We performed a label-free proteomics study of exoprotein fractions produced in vitro by Paenibacillus larvae reference strains of the ERIC I-IV genotypes. A quantitative comparison was performed of previous studied protein-based virulence factors and many newly identified putative virulence factors. Among the multiple proteases identified, key virulence factors included the microbial collagenase ColA and immune inhibitor A (InhA, an analog of the Bacillus thuringiensis protein InhA). Both of these virulence factors were detected in ERICs II-IV but were absent from ERIC I. Furthermore, the different S-layer proteins and polysaccharide deacetylases prevailed in ERICs II-IV. Thus, the expression patterns of these virulence factors corresponded with the different speeds at which honeybee larvae are known to be killed by ERICs II-IV compared to ERIC I. In addition, putative novel toxin-like proteins were identified, including vegetative insecticidal protein Vip1, a mosquitocidal toxin, and epsilon-toxin type B, which exhibit similarity to homologs present in Bacillus thuringiensis or Lysinibacillus sphaericus. Furthermore, a putative bacteriocin similar to Lactococcin 972 was identified in all assayed genotypes. It appears that P. larvae shares virulence factors similar to those of the Bacillus cereus group. Overall, the results provide novel information regarding P. larvae virulence potential, and a comprehensive exoprotein comparison of all four ERICs was performed for the first time. The identification of novel virulence factors can explain differences in the virulence of isolates.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Justyna Zitek
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Prague 2, Czechia
| | - Miroslava Bodrinova
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Milan Bartos
- BioVendor – Laboratorni medicina a.s., Brno, Czechia
| | - Jaroslav Hrabak
- Laboratory of Antibiotic Resistance and Applications of Mass Spectrometry in Microbiology, Biomedical Center and Institute of Microbiology, Faculty of Medicine in Plzen, Charles University, Plzen, Czechia
| |
Collapse
|
40
|
Hobbs JK, Meier EPW, Pluvinage B, Mey MA, Boraston AB. Molecular analysis of an enigmatic Streptococcus pneumoniae virulence factor: The raffinose-family oligosaccharide utilization system. J Biol Chem 2019; 294:17197-17208. [PMID: 31591266 PMCID: PMC6873169 DOI: 10.1074/jbc.ra119.010280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/02/2019] [Indexed: 01/07/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic respiratory pathogen that can spread to other body sites, including the ears, brain, and blood. The ability of this bacterium to break down, import, and metabolize a wide range of glycans is key to its virulence. Intriguingly, S. pneumoniae can utilize several plant oligosaccharides for growth in vitro, including raffinose-family oligosaccharides (RFOs, which are α-(1→6)-galactosyl extensions of sucrose). An RFO utilization locus has been identified in the pneumococcal genome; however, none of the proteins encoded by this locus have been biochemically characterized. The enigmatic ability of S. pneumoniae to utilize RFOs has recently received attention because mutations in two of the RFO locus genes have been linked to the tissue tropism of clinical pneumococcal isolates. Here, we use functional studies combined with X-ray crystallography to show that although the pneumococcal RFO locus encodes for all the machinery required for uptake and degradation of RFOs, the individual pathway components are biochemically inefficient. We also demonstrate that the initiating enzyme in this pathway, the α-galactosidase Aga (a family 36 glycoside hydrolase), can cleave α-(1→3)-linked galactose units from a linear blood group antigen. We propose that the pneumococcal RFO pathway is an evolutionary relic that is not utilized in this streptococcal species and, as such, is under no selection pressure to maintain binding affinity and/or catalytic efficiency. We speculate that the apparent contribution of RFO utilization to pneumococcal tissue tropism may, in fact, be due to the essential role the ATPase RafK plays in the transport of other carbohydrates.
Collapse
Affiliation(s)
- Joanne K. Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Edward P. W. Meier
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mackenzie A. Mey
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada, To whom correspondence should be addressed:
Dept. of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada. Tel.:
250-472-4168; Fax:
250-721-8855; E-mail:
| |
Collapse
|
41
|
Li Y, Li R, Yu H, Sheng X, Wang J, Fisher AJ, Chen X. Enterococcus faecalis α1-2-mannosidase (EfMan-I): an efficient catalyst for glycoprotein N-glycan modification. FEBS Lett 2019; 594:439-451. [PMID: 31552675 DOI: 10.1002/1873-3468.13618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023]
Abstract
While multiple α 1-2-mannosidases are necessary for glycoprotein N-glycan maturation in vertebrates, a single bacterial α1-2-mannosidase can be sufficient to cleave all α1-2-linked mannose residues in host glycoprotein N-glycans. We report here the characterization and crystal structure of a new α1-2-mannosidase (EfMan-I) from Enterococcus faecalis, a Gram-positive opportunistic human pathogen. EfMan-I catalyzes the cleavage of α1-2-mannose from not only oligomannoses but also high-mannose-type N-glycans on glycoproteins. Its 2.15 Å resolution crystal structure reveals a two-domain enzyme fold similar to other CAZy GH92 mannosidases. An unexpected potassium ion was observed bridging two domains near the active site. These findings support EfMan-I as an effective catalyst for in vitro N-glycan modification of glycoproteins with high-mannose-type N-glycans.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Chemistry, University of California, Davis, CA, USA
| | - Riyao Li
- Department of Chemistry, University of California, Davis, CA, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA, USA
| | - Xue Sheng
- Department of Chemistry, University of California, Davis, CA, USA
| | - Jing Wang
- Department of Chemistry, University of California, Davis, CA, USA.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, CA, USA.,Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA, USA
| |
Collapse
|
42
|
Donczo B, Kiraly G, Guttman A. Effect of the elapsed time between sampling and formalin fixation on the
N
‐glycosylation profile of mouse tissue specimens. Electrophoresis 2019; 40:3057-3061. [DOI: 10.1002/elps.201900109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/22/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Boglarka Donczo
- Horváth Csaba Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of MedicineUniversity of Debrecen Debrecen Hungary
| | - Gabor Kiraly
- Department of Biotechnology and MicrobiologyUniversity of Debrecen Hungary
| | - Andras Guttman
- Horváth Csaba Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of MedicineUniversity of Debrecen Debrecen Hungary
- MTA‐PE Translational Glycomics Research Group, Research Institute for Biomolecular and Chemical EngineeringUniversity of Pannonia Veszprem Hungary
| |
Collapse
|
43
|
Briliūtė J, Urbanowicz PA, Luis AS, Baslé A, Paterson N, Rebello O, Hendel J, Ndeh DA, Lowe EC, Martens EC, Spencer DIR, Bolam DN, Crouch LI. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat Microbiol 2019; 4:1571-1581. [PMID: 31160824 PMCID: PMC7617214 DOI: 10.1038/s41564-019-0466-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
Glycans are the major carbon sources available to the human colonic microbiota. Numerous N-glycosylated proteins are found in the human gut, from both dietary and host sources, including immunoglobulins such as IgA that are secreted into the intestine at high levels. Here, we show that many mutualistic gut Bacteroides spp. have the capacity to utilize complex N-glycans (CNGs) as nutrients, including those from immunoglobulins. Detailed mechanistic studies using transcriptomic, biochemical, structural and genetic techniques reveal the pathway employed by Bacteroides thetaiotaomicron (Bt) for CNG degradation. The breakdown process involves an extensive enzymatic apparatus encoded by multiple non-adjacent loci and comprises 19 different carbohydrate-active enzymes from different families, including a CNG-specific endo-glycosidase activity. Furthermore, CNG degradation involves the activity of carbohydrate-active enzymes that have previously been implicated in the degradation of other classes of glycan. This complex and diverse apparatus provides Bt with the capacity to access the myriad different structural variants of CNGs likely to be found in the intestinal niche.
Collapse
Affiliation(s)
- Justina Briliūtė
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Ana S Luis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | - Didier A Ndeh
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elisabeth C Lowe
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - David N Bolam
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Lucy I Crouch
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
44
|
Hobbs JK, Pluvinage B, Robb M, Smith SP, Boraston AB. Two complementary α-fucosidases from Streptococcus pneumoniae promote complete degradation of host-derived carbohydrate antigens. J Biol Chem 2019; 294:12670-12682. [PMID: 31266803 DOI: 10.1074/jbc.ra119.009368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/24/2019] [Indexed: 12/13/2022] Open
Abstract
An important aspect of the interaction between the opportunistic bacterial pathogen Streptococcus pneumoniae and its human host is its ability to harvest host glycans. The pneumococcus can degrade a variety of complex glycans, including N- and O-linked glycans, glycosaminoglycans, and carbohydrate antigens, an ability that is tightly linked to the virulence of S. pneumoniae Although S. pneumoniae is known to use a sophisticated enzyme machinery to attack the human glycome, how it copes with fucosylated glycans, which are primarily histo-blood group antigens, is largely unknown. Here, we identified two pneumococcal enzymes, SpGH29C and SpGH95C, that target α-(1→3/4) and α-(1→2) fucosidic linkages, respectively. X-ray crystallography studies combined with functional assays revealed that SpGH29C is specific for the LewisA and LewisX antigen motifs and that SpGH95C is specific for the H(O)-antigen motif. Together, these enzymes could defucosylate LewisY and LewisB antigens in a complementary fashion. In vitro reconstruction of glycan degradation cascades disclosed that the individual or combined activities of these enzymes expose the underlying glycan structure, promoting the complete deconstruction of a glycan that would otherwise be resistant to pneumococcal enzymes. These experiments expand our understanding of the extensive capacity of S. pneumoniae to process host glycans and the likely roles of α-fucosidases in this. Overall, given the importance of enzymes that initiate glycan breakdown in pneumococcal virulence, such as the neuraminidase NanA and the mannosidase SpGH92, we anticipate that the α-fucosidases identified here will be important factors in developing more refined models of the S. pneumoniae-host interaction.
Collapse
Affiliation(s)
- Joanne K Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Melissa Robb
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
45
|
Fermaintt CS, Sano K, Liu Z, Ishii N, Seino J, Dobbs N, Suzuki T, Fu YX, Lehrman MA, Matsuo I, Yan N. A bioactive mammalian disaccharide associated with autoimmunity activates STING-TBK1-dependent immune response. Nat Commun 2019; 10:2377. [PMID: 31147550 PMCID: PMC6542856 DOI: 10.1038/s41467-019-10319-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/25/2019] [Indexed: 01/07/2023] Open
Abstract
Glycans from microbial pathogens are well known pathogen-associated molecular patterns that are recognized by the host immunity; however, little is known about whether and how mammalian self-glycans activate the host immune response, especially in the context of autoimmune disease. Using biochemical fractionation and two-dimensional HPLC, we identify an abundant and bioactive free glycan, the Manβ1-4GlcNAc disaccharide in TREX1-associated autoimmune diseases. We report that both monosaccharide residues and the β1-4 linkage are critical for bioactivity of this disaccharide. We also show that Manβ1-4GlcNAc is produced by oligosaccharyltransferase hydrolysis of lipid-linked oligosaccharides in the ER lumen, followed by ENGase and mannosidase processing in the cytosol and lysosomes. Furthermore, synthetic Manβ1-4GlcNAc disaccharide stimulates a broad immune response in vitro, which is in part dependent on the STING-TBK1 pathway, and enhances antibody response in vivo. Together, our data identify Manβ1-4GlcNAc as a novel innate immune modulator associated with chronic autoimmune diseases.
Collapse
Affiliation(s)
- Charles S Fermaintt
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kanae Sano
- Division of Molecular Science, Gunma University, Maebashi, 371-8510, Japan
| | - Zhida Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nozomi Ishii
- Division of Molecular Science, Gunma University, Maebashi, 371-8510, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Nicole Dobbs
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mark A Lehrman
- Department of Pharmacology, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ichiro Matsuo
- Division of Molecular Science, Gunma University, Maebashi, 371-8510, Japan
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
46
|
Liu H, Cheng M, Zhao S, Lin C, Song J, Yang Q. ATP-Binding Cassette Transporter Regulates N,N'-diacetylchitobiose Transportation and Chitinase Production in Trichoderma asperellum T4. Int J Mol Sci 2019; 20:ijms20102412. [PMID: 31096671 PMCID: PMC6566805 DOI: 10.3390/ijms20102412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/14/2023] Open
Abstract
ATP-binding cassette (ABC) transporters are a superfamily of proteins that transport nutrient substances and secondary metabolites through cell membranes. They also act as an uptake system for N,N′-diacetylchitobiose (GlcNAc)2 in Streptomyces coelicolor. (GlcNAc)2 is an important inducer of chitinase. However, whether the ABC transporter in Trichoderma spp. is also responsible for (GlcNAc)2 uptake and chitinase induction has not yet been confirmed. In this study, we applied RNA interference and overexpression technologies to alter the expression level of the ABC-B transporter in order to detect changes in its transportation ability and the expression level of inducible endo-chitinase ECH42—an important biocontrol enzyme in Trichoderma asperellum. The results revealed that, after interference with the expression of the ABC-B transporter, T. asperellum T4 was only able to grow normally when glucose was the only carbon source. Compared with the wild-type, the efficiency of (GlcNAc)2 by the overexpression strain evidently increased, along with the activity level of ECH42. In conclusion, one of the functions of the ABC-B transporter in T.asperellum is the uptake and transport of (GlcNAc)2 into cells, and chitobiose is a strong inducer of ECH42 in T. asperellum T4.
Collapse
Affiliation(s)
- He Liu
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Ming Cheng
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Shanshan Zhao
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Congyu Lin
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Jinzhu Song
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| | - Qian Yang
- School of Life Science and Technology 150080, Harbin Institute of Technology, Harbin 150000, China.
| |
Collapse
|
47
|
Bhat AH, Maity S, Giri K, Ambatipudi K. Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit Rev Microbiol 2019; 45:82-102. [PMID: 30632429 DOI: 10.1080/1040841x.2018.1547681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein glycosylation systems in many bacteria are often associated with crucial biological processes like pathogenicity, immune evasion and host-pathogen interactions, implying the significance of protein-glycan linkage. Similarly, host protein glycosylation has been implicated in antimicrobial activity as well as in promoting growth of beneficial strains. In fact, few pathogens notably modulate host glycosylation machineries to facilitate their survival. To date, diverse chemical and biological strategies have been developed for conjugate vaccine production for disease control. Bioconjugate vaccines, largely being produced by glycoengineering using PglB (the N-oligosaccharyltransferase from Campylobacter jejuni) in suitable bacterial hosts, have been highly promising with respect to their effectiveness in providing protective immunity and ease of production. Recently, a novel method of glycoconjugate vaccine production involving an O-oligosaccharyltransferase, PglL from Neisseria meningitidis, has been optimized. Nevertheless, many questions on defining antigenic determinants, glycosylation markers, species-specific differences in glycosylation machineries, etc. still remain unanswered, necessitating further exploration of the glycosylation systems of important pathogens. Hence, in this review, we will discuss the impact of bacterial protein glycosylation on its pathogenesis and the interaction of pathogens with host protein glycosylation, followed by a discussion on strategies used for bioconjugate vaccine development.
Collapse
Affiliation(s)
- Aadil Hussain Bhat
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Sudipa Maity
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kuldeep Giri
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kiran Ambatipudi
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
48
|
Reichenbach T, Kalyani D, Gandini R, Svartström O, Aspeborg H, Divne C. Structural and biochemical characterization of the Cutibacterium acnes exo-β-1,4-mannosidase that targets the N-glycan core of host glycoproteins. PLoS One 2018; 13:e0204703. [PMID: 30261037 PMCID: PMC6160142 DOI: 10.1371/journal.pone.0204703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Commensal and pathogenic bacteria have evolved efficient enzymatic pathways to feed on host carbohydrates, including protein-linked glycans. Most proteins of the human innate and adaptive immune system are glycoproteins where the glycan is critical for structural and functional integrity. Besides enabling nutrition, the degradation of host N-glycans serves as a means for bacteria to modulate the host's immune system by for instance removing N-glycans on immunoglobulin G. The commensal bacterium Cutibacterium acnes is a gram-positive natural bacterial species of the human skin microbiota. Under certain circumstances, C. acnes can cause pathogenic conditions, acne vulgaris, which typically affects 80% of adolescents, and can become critical for immunosuppressed transplant patients. Others have shown that C. acnes can degrade certain host O-glycans, however, no degradation pathway for host N-glycans has been proposed. To investigate this, we scanned the C. acnes genome and were able to identify a set of gene candidates consistent with a cytoplasmic N-glycan-degradation pathway of the canonical eukaryotic N-glycan core. We also found additional gene sequences containing secretion signals that are possible candidates for initial trimming on the extracellular side. Furthermore, one of the identified gene products of the cytoplasmic pathway, AEE72695, was produced and characterized, and found to be a functional, dimeric exo-β-1,4-mannosidase with activity on the β-1,4 glycosidic bond between the second N-acetylglucosamine and the first mannose residue in the canonical eukaryotic N-glycan core. These findings corroborate our model of the cytoplasmic part of a C. acnes N-glycan degradation pathway.
Collapse
Affiliation(s)
- Tom Reichenbach
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Dayanand Kalyani
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rosaria Gandini
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Olov Svartström
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Henrik Aspeborg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christina Divne
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
49
|
Bartual SG, Alcorlo M, Martínez-Caballero S, Molina R, Hermoso JA. Three-dimensional structures of Lipoproteins from Streptococcus pneumoniae and Staphylococcus aureus. Int J Med Microbiol 2018; 308:692-704. [DOI: 10.1016/j.ijmm.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/21/2017] [Indexed: 01/01/2023] Open
|
50
|
Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 2018; 16:355-367. [PMID: 29599457 PMCID: PMC5949087 DOI: 10.1038/s41579-018-0001-8] [Citation(s) in RCA: 660] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Streptococcus pneumoniae has a complex relationship with its obligate human host. On the one hand, the pneumococci are highly adapted commensals, and their main reservoir on the mucosal surface of the upper airways of carriers enables transmission. On the other hand, they can cause severe disease when bacterial and host factors allow them to invade essentially sterile sites, such as the middle ear spaces, lungs, bloodstream and meninges. Transmission, colonization and invasion depend on the remarkable ability of S. pneumoniae to evade or take advantage of the host inflammatory and immune responses. The different stages of pneumococcal carriage and disease have been investigated in detail in animal models and, more recently, in experimental human infection. Furthermore, widespread vaccination and the resulting immune pressure have shed light on pneumococcal population dynamics and pathogenesis. Here, we review the mechanistic insights provided by these studies on the multiple and varied interactions of the pneumococcus and its host.
Collapse
|