1
|
Wagner A, Trombley R, Podgurski M, Ruberto AA, Cui M, Cooper CA, Long WE, Nguyen GB, Marin AA, Mai SL, Lombardo F, Maher SP, Kyle DE, Manetsch R. Discovery and optimization of a novel carboxamide scaffold with selective antimalarial activity. Eur J Med Chem 2025; 291:117572. [PMID: 40199028 DOI: 10.1016/j.ejmech.2025.117572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Artemisinin combination therapies (ACTs) are critical components of malaria control worldwide. Alarmingly, ACTs have begun to fail, owing to the rise in artemisinin resistance. Thus, there is an urgent need for an expanded set of novel antimalarials to generate new combination therapies. Herein, we have identified a 1,2,4-triazole-containing carboxamide scaffold that, through scaffold hopping efforts, resulted in a nanomolar potent deuterated picolinamide (110). The lead compound of this class (110) displays moderate aqueous solubility (13.4 μM) and metabolic stability (CLintapp HLM 17.3 μL/min/mg) in vitro, as well as moderate oral bioavailability (%F 16.2) in invivo pharmacokinetic studies. Compound 110 also displayed activity against various P. falciparum isolates with different genetic backgrounds and a slow-to-moderate rate of killing (average parasite reduction ratio 2.4), making the series appealing for further development.
Collapse
Affiliation(s)
- Alicia Wagner
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, 02115, Massachusetts, USA
| | - Roger Trombley
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, 02115, Massachusetts, USA
| | - Maris Podgurski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, 02115, Massachusetts, USA
| | - Anthony A Ruberto
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr Ste 370, Athens, 30602, Georgia, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, 02115, Massachusetts, USA
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr Ste 370, Athens, 30602, Georgia, USA
| | - William E Long
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr Ste 370, Athens, 30602, Georgia, USA
| | - Gia-Bao Nguyen
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr Ste 370, Athens, 30602, Georgia, USA
| | - Adriana A Marin
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr Ste 370, Athens, 30602, Georgia, USA
| | - Sarah Lee Mai
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr Ste 370, Athens, 30602, Georgia, USA
| | - Franco Lombardo
- CmaxDMPK LLC, P.O. Box 505549, Chelsea, 02150, Massachusetts, USA
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr Ste 370, Athens, 30602, Georgia, USA
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr Ste 370, Athens, 30602, Georgia, USA
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, 02115, Massachusetts, USA; Department of Pharmaceutical Sciences, Northeastern University, Boston, 02115, Massachusetts, USA; Center for Drug Discovery and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, 02115, Massachusetts, USA.
| |
Collapse
|
2
|
Barman K, Goswami P. Recent Advances in Diagnostics and Therapeutic Interventions for Drug-Resistant Malaria. ACS Infect Dis 2025. [PMID: 40326084 DOI: 10.1021/acsinfecdis.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The emergence of drug-resistant malarial parasites has been a growing challenge to medical science to safeguard public health in the malaria-endemic regions of the globe. With time, the parasite develops newer resistance mechanisms to defunct the drug's action one after another. Genetic mutation is the prime weapon parasites rely upon to initiate the resistance mechanism in a case-specific manner, following various strategies such as structural changes in the target protein, metabolic alterations, and tweaking the drug-transported channels. In order to combat these resistances, different approaches have evolved among these developing inhibitors against critical parasite enzymes and metabolic pathways, combinatorial/hybrid drug therapies, exploring new drug targets and analogues of existing drugs, use of resistance-reversal agents, drug-repurposing, gene blocking/altering using RNA interference and CRISPR/Cas systems are prominent. However, the effectiveness of these approaches needs to be earnestly monitored for better management of the disease, which demands the development of a reliable diagnosis technique. Several methodologies have been investigated in search of a suitable diagnosis technique, such as in vivo, in vitro, ex vivo drug efficacy studies, and molecular techniques. A parallel effort to transform the efficient method into an inexpensive and portable diagnosis tool for rapid screening of drug resistance malaria among masses in the societal landscape is advocated. This review gives an insight into the historical perspectives of drug-resistant malaria and the recent developments in malaria diagnosis and antimalarial drug discovery. Efforts have been made to update recent strategies formulated to combat and diagnose drug-resistant malaria. Finally, a concluding remark with a future perspective on the subject has been forwarded.
Collapse
Affiliation(s)
- Kangkana Barman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Tiedjens F, Menzel M, Stahnke P, Grotewold H, Uzun C, Yildirim D, Beitz E. A Yeast-Based Assay for Inhibitors of l-Lactate Transport Utilizing Fluorescent Biosensors. ChemMedChem 2025; 20:e202400918. [PMID: 39671273 PMCID: PMC11961148 DOI: 10.1002/cmdc.202400918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
Inhibitors of ʟ-lactate transport are in development as a novel mode of action in antitumor therapy and malaria. Previously, we used radiolabeled ʟ-lactate to assay transport via the human monocarboxylate transporter 1, MCT1, and the structurally unrelated malaria parasite's transporter, PfFNT. We encountered a sensitivity limit at IC50 around 100 nM possibly resulting from the required high cell number per sample. Here, we describe a sensitive background-free high-throughput assay in yeast based on fluorescent iLACCO biosensors. We used iLACCO for co-expression and fusions with the transporter protein. Uptake of ʟ-lactate produced strong intensiometric fluorescent responses that could be monitored in cell suspensions using a fluorometer and in individual cells by fluorescence microscopy. The signal decreased dose-dependently in the presence of specific MCT1 and PfFNT inhibitors. Re-evaluation of 36 PfFNT inhibitors yielded IC50 values below 100 nM now matching previous data on Ki compound affinity to isolated transporter protein.
Collapse
Affiliation(s)
- Finn Tiedjens
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Maike Menzel
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Pauline Stahnke
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Hanna Grotewold
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Cane Uzun
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Derya Yildirim
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| |
Collapse
|
4
|
Nerlich C, Tiedjens F, Hertel R, Henke B, Häuer S, Panitzsch LS, Hansen K, Franck O, Mete A, Leroy D, Schade D, Peifer C, Hannus S, Becker F, Wittlin S, Spielmann T, Beitz E. Addressing the Intracellular Vestibule of the Plasmodial Lactate Transporter PfFNT by p-Substituted Inhibitors Amplifies In Vitro Activity. J Med Chem 2024; 67:18368-18383. [PMID: 39361938 PMCID: PMC11513924 DOI: 10.1021/acs.jmedchem.4c01674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Inhibition of the lactate transporter PfFNT is a valid novel mode of action against malaria parasites. Current pyridine-substituted pentafluoro-3-hydroxy-pent-2-en-1-ones act as substrate analogs with submicromolar EC50 in vitro, and >99.7% activity in mice. The recently solved structure of a PfFNT-inhibitor complex visualized the binding mode. Here, we extended the inhibitor layout by series of amine- and anilide-linked pyridine p-substituents to generate additional interactions in the cytoplasmic vestibule. Virtual docking indicated hydrogen bonding to Tyr31 and Ser102. Fluorescence cross-correlation spectroscopy yielded respectively enhanced target affinity. Strikingly, the in vitro activity increased by 1 order of magnitude to 14.8 nM at negligible cytotoxicity. While p-amine substitutions were rapidly metabolized, the more stable p-acetanilide cleared 99.7% of parasites at 4 × 50 mg kg-1 in a mouse malaria model. Future stabilization of the p-substitution against metabolism may translate the gain in in vitro potency to the in vivo situation.
Collapse
Affiliation(s)
- Cornelius Nerlich
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Finn Tiedjens
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Robin Hertel
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Björn Henke
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Susan Häuer
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Lea S. Panitzsch
- Bernhard-Nocht-Institute
for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Kerrin Hansen
- Intana
Bioscience GmbH, Lochhamer
Str. 29a, 82152 Planegg, Germany
| | - Ole Franck
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Antonio Mete
- Medsyndesign
Ltd, ATIC, 5 Oakwood
Drive, LE11 3QF Loughborough, U.K.
| | - Didier Leroy
- R&D
Department/Drug Discovery, ICC, Medicines
for Malaria Venture (MMV), 20 Route de Pré Bois, 1215 Geneva 15, Switzerland
| | - Dennis Schade
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Christian Peifer
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Stefan Hannus
- Intana
Bioscience GmbH, Lochhamer
Str. 29a, 82152 Planegg, Germany
| | - Frank Becker
- Intana
Bioscience GmbH, Lochhamer
Str. 29a, 82152 Planegg, Germany
| | - Sergio Wittlin
- Swiss
Tropical
and Public Health Institute, Kreuzstr. 2, 4123 Allschwil, Switzerland
- University
of Basel, 4003 Basel, Switzerland
| | - Tobias Spielmann
- Bernhard-Nocht-Institute
for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Eric Beitz
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| |
Collapse
|
5
|
Redway A, Spry C, Brown A, Wiedemann U, Fathoni I, Garnie LF, Qiu D, Egan TJ, Lehane AM, Jackson Y, Saliba KJ, Downer-Riley N. Discovery of antiplasmodial pyridine carboxamides and thiocarboxamides. Int J Parasitol Drugs Drug Resist 2024; 25:100536. [PMID: 38663046 PMCID: PMC11068522 DOI: 10.1016/j.ijpddr.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Malaria continues to be a significant burden, particularly in Africa, which accounts for 95% of malaria deaths worldwide. Despite advances in malaria treatments, malaria eradication is hampered by insecticide and antimalarial drug resistance. Consequently, the need to discover new antimalarial lead compounds remains urgent. To help address this need, we evaluated the antiplasmodial activity of twenty-two amides and thioamides with pyridine cores and their non-pyridine analogues. Twelve of these compounds showed in vitro anti-proliferative activity against the intraerythrocytic stage of Plasmodium falciparum, the most virulent species of Plasmodium infecting humans. Thiopicolinamide 13i was found to possess submicromolar activity (IC50 = 142 nM) and was >88-fold less active against a human cell line. The compound was equally effective against chloroquine-sensitive and -resistant parasites and did not inhibit β-hematin formation, pH regulation or PfATP4. Compound 13i may therefore possess a novel mechanism of action.
Collapse
Affiliation(s)
- Alexa Redway
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica; Chemistry Divison, University of Technology, 237 Old Hope Road, Kingston 6, Jamaica
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ainka Brown
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Ursula Wiedemann
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Imam Fathoni
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Larnelle F Garnie
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Deyun Qiu
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| | - Adele M Lehane
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Yvette Jackson
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Kevin J Saliba
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nadale Downer-Riley
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
6
|
Lindblom JR, Zhang X, Lehane AM. A pH Fingerprint Assay to Identify Inhibitors of Multiple Validated and Potential Antimalarial Drug Targets. ACS Infect Dis 2024; 10:1185-1200. [PMID: 38499199 PMCID: PMC11019546 DOI: 10.1021/acsinfecdis.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.
Collapse
Affiliation(s)
| | | | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australian Capital
Territory 2600, Australia
| |
Collapse
|
7
|
Cheuka PM, Njaria P, Mayoka G, Funjika E. Emerging Drug Targets for Antimalarial Drug Discovery: Validation and Insights into Molecular Mechanisms of Function. J Med Chem 2024; 67:838-863. [PMID: 38198596 DOI: 10.1021/acs.jmedchem.3c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Approximately 619,000 malaria deaths were reported in 2021, and resistance to recommended drugs, including artemisinin-combination therapies (ACTs), threatens malaria control. Treatment failure with ACTs has been found to be as high as 93% in northeastern Thailand, and parasite mutations responsible for artemisinin resistance have already been reported in some African countries. Therefore, there is an urgent need to identify alternative treatments with novel targets. In this Perspective, we discuss some promising antimalarial drug targets, including enzymes involved in proteolysis, DNA and RNA metabolism, protein synthesis, and isoprenoid metabolism. Other targets discussed are transporters, Plasmodium falciparum acetyl-coenzyme A synthetase, N-myristoyltransferase, and the cyclic guanosine monophosphate-dependent protein kinase G. We have outlined mechanistic details, where these are understood, underpinning the biological roles and hence druggability of such targets. We believe that having a clear understanding of the underlying chemical interactions is valuable to medicinal chemists in their quest to design appropriate inhibitors.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Paul Njaria
- Department of Pharmacognosy and Pharmaceutical Chemistry, Kenyatta University, P.O. Box 14548-00400, Nairobi 00100, Kenya
| | - Godfrey Mayoka
- Department of Pharmacology and Pharmacognosy, School of Pharmacy, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi 00100, Kenya
| | - Evelyn Funjika
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| |
Collapse
|
8
|
Pradhan D, Biswasroy P, Kulkarni S, Taliyan R, Pradhan DK, Bhola RK, Mahapatra S, Ghosh G, Rath G. Identification of starvation-mimetic bioactive phytocomponent from Withania somnifera using in-silico molecular modelling and flow cytometry-based analysis for the management of malaria. J Biomol Struct Dyn 2024; 42:528-549. [PMID: 37087726 DOI: 10.1080/07391102.2023.2201855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 04/24/2023]
Abstract
Multidrug resistance episodes in malaria increased from 3.9% to 20% from 2015 to 2019. Synchronizing the clinical manifestation in chronological sequence led to a unique impression on glucose demand (increased up to 100-fold) by the parasite-infected RBCs. Hence, restriction in the glucose uptake to parasite-infected RBCs could be an alternative approach to conquer the global burden of malaria to a greater extent. A C28 steroidal lactone Withaferin A (WS-3) isolated from Withania somnifera leave extract shows better thermodynamically stable interactions with the glucose transporters (GLUT-1 and PfHT) to standard drugs metformin and lopinavir. MD simulations for a trajectory period of 100 ns reflect stable interactions with the interactive amino acid residues such as Pro141, Gln161, Gln282, Gln283, Trp388, Phe389, and Phe40, Asn48, Phe85, His168, Gln169, Asn311 which potentiating inhibitory activity of WS-3 against GLUT-1 and PfHT respectively. WS-3 was non-hemotoxic (%hemolysis <5%) for a high concentration of up to 1 mg/ml in the physiological milieu. However, the %hemolysis significantly increased up to 30.55 ± 0.929% in a parasitophorous simulated environment (pH 5.0). Increased hemolysis of WS-3 could be due to the production of ROS in an acidic environment. Further, the inhibitory activity of WS-3 against both glucose transporters was supported with flow cytometry-based analysis of parasite-infected RBCs. Results show that WS-3 has low mean fluorescence intensities for both target proteins compared to conventional drugs, suggesting a potential sugar transporter inhibitor against GLUT-1 and PfHT for managing malaria. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepak Pradhan
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
- R and D Division, Ixoreal Biomed. Pvt. Ltd, Hyderabad, Telangana, India
| | - Prativa Biswasroy
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | | | - Rajiv Taliyan
- Department of Pharmacy, BITS Pilani, Pilani, Rajasthan, India
| | - Dilip Kumar Pradhan
- Department of Medicine, Pandit Raghunath Murmu Medical College & Hospital, Baripada, Odisha, India
| | - Rajesh Kumar Bhola
- Department of Hematology, Institute of Medical Sciences and Sum Hospital, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sonali Mahapatra
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Goutam Ghosh
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
Henshall IG, Spielmann T. Critical interdependencies between Plasmodium nutrient flux and drugs. Trends Parasitol 2023; 39:936-944. [PMID: 37716852 PMCID: PMC10580322 DOI: 10.1016/j.pt.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Nutrient import and waste efflux are critical dependencies for intracellular Plasmodium falciparum parasites. Nutrient transport proteins are often lineage specific and can provide unique targets for antimalarial drug development. P. falciparum nutrient transport pathways can be a double-edged sword for the parasite, not only mediating the import of nutrients and excretion of waste products but also providing an access route for drugs. Here we briefly summarise the nutrient acquisition pathways of intracellular P. falciparum blood-stage parasites and then highlight how these pathways influence many aspects relevant to antimalarial drugs, resulting in complex and often underappreciated interdependencies.
Collapse
Affiliation(s)
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
10
|
Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 2023; 22:807-826. [PMID: 37652975 PMCID: PMC10543600 DOI: 10.1038/s41573-023-00772-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.
Collapse
Affiliation(s)
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | | | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
11
|
Davies H, Bergmann B, Walloch P, Nerlich C, Hansen C, Wittlin S, Spielmann T, Treeck M, Beitz E. The Plasmodium Lactate/H + Transporter PfFNT Is Essential and Druggable In Vivo. Antimicrob Agents Chemother 2023; 67:e0035623. [PMID: 37428074 PMCID: PMC10433847 DOI: 10.1128/aac.00356-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Malaria parasites in the blood stage express a single transmembrane transport protein for the release of the glycolytic end product l-lactate/H+ from the cell. This transporter is a member of the strictly microbial formate-nitrite transporter (FNT) family and a novel putative drug target. Small, drug-like FNT inhibitors potently block lactate transport and kill Plasmodium falciparum parasites in culture. The protein structure of Plasmodium falciparum FNT (PfFNT) in complex with the inhibitor has been resolved and confirms its previously predicted binding site and its mode of action as a substrate analog. Here, we investigated the mutational plasticity and essentiality of the PfFNT target on a genetic level, and established its in vivo druggability using mouse malaria models. We found that, besides a previously identified PfFNT G107S resistance mutation, selection of parasites at 3 × IC50 (50% inhibitory concentration) gave rise to two new point mutations affecting inhibitor binding: G21E and V196L. Conditional knockout and mutation of the PfFNT gene showed essentiality in the blood stage, whereas no phenotypic defects in sexual development were observed. PfFNT inhibitors mainly targeted the trophozoite stage and exhibited high potency in P. berghei- and P. falciparum-infected mice. Their in vivo activity profiles were comparable to that of artesunate, demonstrating strong potential for the further development of PfFNT inhibitors as novel antimalarials.
Collapse
Affiliation(s)
- Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Bärbel Bergmann
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Philipp Walloch
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Cornelius Nerlich
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Hansen
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Tobias Spielmann
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
12
|
Jiang X. An overview of the Plasmodium falciparum hexose transporter and its therapeutic interventions. Proteins 2022; 90:1766-1778. [PMID: 35445447 PMCID: PMC9790349 DOI: 10.1002/prot.26351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
Abstract
Despite intense elimination efforts, human malaria, caused by the infection of five Plasmodium species, remains the deadliest parasitic disease in the world. Even worse, with the emergence and spreading of the first-line drug-resistant Plasmodium parasites, therapeutic interventions based on novel plasmodial drug targets are more necessary than ever. Given that the blood-stage parasites primarily rely on glycolysis for their energy supply, blocking glucose uptake, the rate-limiting step of ATP generation, was considered a promising approach to kill these parasites. To achieve this goal, characterization of the plasmodial hexose transporter and development of selective inhibitors have been pursued for decades. Here, we review the identification and characterization of the Plasmodium falciparum hexose transporter (PfHT1) and summarize current advances in its inhibitor development.
Collapse
Affiliation(s)
- Xin Jiang
- School of Biotechnology and Biomolecular Sciencesthe University of New South WalesSydneyNew South Wales
| |
Collapse
|
13
|
Looker O, Dans MG, Bullen HE, Sleebs BE, Crabb BS, Gilson PR. The Medicines for Malaria Venture Malaria Box contains inhibitors of protein secretion in
Plasmodium falciparum
blood stage parasites. Traffic 2022; 23:442-461. [PMID: 36040075 PMCID: PMC9543830 DOI: 10.1111/tra.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum parasites which cause malaria, traffic hundreds of proteins into the red blood cells (RBCs) they infect. These exported proteins remodel their RBCs enabling host immune evasion through processes such as cytoadherence that greatly assist parasite survival. As resistance to all current antimalarial compounds is rising new compounds need to be identified and those that could inhibit parasite protein secretion and export would both rapidly reduce parasite virulence and ultimately lead to parasite death. To identify compounds that inhibit protein export we used transgenic parasites expressing an exported nanoluciferase reporter to screen the Medicines for Malaria Venture Malaria Box of 400 antimalarial compounds with mostly unknown targets. The most potent inhibitor identified in this screen was MMV396797 whose application led to export inhibition of both the reporter and endogenous exported proteins. MMV396797 mediated blockage of protein export and slowed the rigidification and cytoadherence of infected RBCs—modifications which are both mediated by parasite‐derived exported proteins. Overall, we have identified a new protein export inhibitor in P. falciparum whose target though unknown, could be developed into a future antimalarial that rapidly inhibits parasite virulence before eliminating parasites from the host.
Collapse
Affiliation(s)
| | - Madeline G. Dans
- Burnet Institute Melbourne Australia
- School of Medicine Deakin University Geelong Australia
| | - Hayley E. Bullen
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology The University of Melbourne Parkville Victoria Australia
| | - Brendan S. Crabb
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
- Department of Immunology and Pathology Monash University Melbourne Australia
| | - Paul R. Gilson
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
| |
Collapse
|
14
|
Nerlich C, Epalle NH, Seick P, Beitz E. Discovery and Development of Inhibitors of the Plasmodial FNT-Type Lactate Transporter as Novel Antimalarials. Pharmaceuticals (Basel) 2021; 14:1191. [PMID: 34832972 PMCID: PMC8624176 DOI: 10.3390/ph14111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Plasmodium spp. malaria parasites in the blood stage draw energy from anaerobic glycolysis when multiplying in erythrocytes. They tap the ample glucose supply of the infected host using the erythrocyte glucose transporter 1, GLUT1, and a hexose transporter, HT, of the parasite's plasma membrane. Per glucose molecule, two lactate anions and two protons are generated as waste that need to be released rapidly from the parasite to prevent blockage of the energy metabolism and acidification of the cytoplasm. Recently, the missing Plasmodium lactate/H+ cotransporter was identified as a member of the exclusively microbial formate-nitrite transporter family, FNT. Screening of an antimalarial compound selection with unknown targets led to the discovery of specific and potent FNT-inhibitors, i.e., pentafluoro-3-hydroxy-pent-2-en-1-ones. Here, we summarize the discovery and further development of this novel class of antimalarials, their modes of binding and action, circumvention of a putative resistance mutation of the FNT target protein, and suitability for in vivo studies using animal malaria models.
Collapse
Affiliation(s)
| | | | | | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany; (C.N.); (N.H.E.); (P.S.)
| |
Collapse
|
15
|
Llibre A, Grudzinska FS, O'Shea MK, Duffy D, Thickett DR, Mauro C, Scott A. Lactate cross-talk in host-pathogen interactions. Biochem J 2021; 478:3157-3178. [PMID: 34492096 PMCID: PMC8454702 DOI: 10.1042/bcj20210263] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Lactate is the main product generated at the end of anaerobic glycolysis or during the Warburg effect and its role as an active signalling molecule is increasingly recognised. Lactate can be released and used by host cells, by pathogens and commensal organisms, thus being essential for the homeostasis of host-microbe interactions. Infection can alter this intricate balance, and the presence of lactate transporters in most human cells including immune cells, as well as in a variety of pathogens (including bacteria, fungi and complex parasites) demonstrates the importance of this metabolite in regulating host-pathogen interactions. This review will cover lactate secretion and sensing in humans and microbes, and will discuss the existing evidence supporting a role for lactate in pathogen growth and persistence, together with lactate's ability to impact the orchestration of effective immune responses. The ubiquitous presence of lactate in the context of infection and the ability of both host cells and pathogens to sense and respond to it, makes manipulation of lactate a potential novel therapeutic strategy. Here, we will discuss the preliminary research that has been carried out in the context of cancer, autoimmunity and inflammation.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - Frances S Grudzinska
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Matthew K O'Shea
- Department of Infection, University Hospitals Birmingham NHS Foundation Trust, Birmingham, U.K
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, U.K
| | - Darragh Duffy
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - David R Thickett
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Aaron Scott
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
16
|
Structural characterization of the Plasmodium falciparum lactate transporter PfFNT alone and in complex with antimalarial compound MMV007839 reveals its inhibition mechanism. PLoS Biol 2021; 19:e3001386. [PMID: 34499638 PMCID: PMC8428694 DOI: 10.1371/journal.pbio.3001386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
Plasmodium falciparum, the deadliest causal agent of malaria, caused more than half of the 229 million malaria cases worldwide in 2019. The emergence and spreading of frontline drug-resistant Plasmodium strains are challenging to overcome in the battle against malaria and raise urgent demands for novel antimalarial agents. The P. falciparum formate-nitrite transporter (PfFNT) is a potential drug target due to its housekeeping role in lactate efflux during the intraerythrocytic stage. Targeting PfFNT, MMV007839 was identified as a lead compound that kills parasites at submicromolar concentrations. Here, we present 2 cryogenic-electron microscopy (cryo-EM) structures of PfFNT, one with the protein in its apo form and one with it in complex with MMV007839, both at 2.3 Å resolution. Benefiting from the high-resolution structures, our study provides the molecular basis for both the lactate transport of PfFNT and the inhibition mechanism of MMV007839, which facilitates further antimalarial drug design.
Collapse
|
17
|
Jakobowska I, Becker F, Minguzzi S, Hansen K, Henke B, Epalle NH, Beitz E, Hannus S. Fluorescence Cross-Correlation Spectroscopy Yields True Affinity and Binding Kinetics of Plasmodium Lactate Transport Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14080757. [PMID: 34451854 PMCID: PMC8399565 DOI: 10.3390/ph14080757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023] Open
Abstract
Blocking lactate export in the parasitic protozoan Plasmodium falciparum is a novel strategy to combat malaria. We discovered small drug-like molecules that inhibit the sole plasmodial lactate transporter, PfFNT, and kill parasites in culture. The pentafluoro-3-hydroxy-pent-2-en-1-one BH296 blocks PfFNT with nanomolar efficiency but an in vitro selected PfFNT G107S mutation confers resistance against the drug. We circumvented the mutation by introducing a nitrogen atom as a hydrogen bond acceptor site into the aromatic ring of the inhibitor yielding BH267.meta. The current PfFNT inhibitor efficiency values were derived from yeast-based lactate transport assays, yet direct affinity and binding kinetics data are missing. Here, we expressed PfFNT fused with a green fluorescent protein in human embryonic kidney cells and generated fluorescent derivatives of the inhibitors, BH296 and BH267.meta. Using confocal imaging, we confirmed the location of the proposed binding site at the cytosolic transporter entry site. We then carried out fluorescence cross-correlation spectroscopy measurements to assign true Ki-values, as well as kon and koff rate constants for inhibitor binding to PfFNT wildtype and the G107S mutant. BH296 and BH267.meta gave similar rate constants for binding to PfFNT wildtype. BH296 was inactive on PfFNT G107S, whereas BH267.meta bound the mutant protein albeit with weaker affinity than to PfFNT wildtype. Eventually, using a set of PfFNT inhibitor compounds, we found a robust correlation of the results from the biophysical FCCS binding assay to inhibition data of the functional transport assay.
Collapse
Affiliation(s)
- Iga Jakobowska
- Intana Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Germany; (I.J.); (F.B.); (S.M.); (K.H.)
| | - Frank Becker
- Intana Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Germany; (I.J.); (F.B.); (S.M.); (K.H.)
| | - Stefano Minguzzi
- Intana Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Germany; (I.J.); (F.B.); (S.M.); (K.H.)
| | - Kerrin Hansen
- Intana Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Germany; (I.J.); (F.B.); (S.M.); (K.H.)
| | - Björn Henke
- Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany; (B.H.); (N.H.E.)
| | - Nathan Hugo Epalle
- Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany; (B.H.); (N.H.E.)
| | - Eric Beitz
- Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany; (B.H.); (N.H.E.)
- Correspondence: (E.B.); (S.H.)
| | - Stefan Hannus
- Intana Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Germany; (I.J.); (F.B.); (S.M.); (K.H.)
- Correspondence: (E.B.); (S.H.)
| |
Collapse
|
18
|
Uth JF, Börgel F, Lehmkuhl K, Schepmann D, Kaiser M, Jabor VAP, Nonato MC, Krauth-Siegel RL, Schmidt TJ, Wünsch B. Synthesis and Biological Evaluation of Natural-Product-Inspired, Aminoalkyl-Substituted 1-Benzopyrans as Novel Antiplasmodial Agents. J Med Chem 2021; 64:6397-6409. [PMID: 33901399 DOI: 10.1021/acs.jmedchem.1c00483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, relationships between the structures of 1-aminoethyl-substituted chromenes and their antimalarial activities were thoroughly investigated. At first, the methyl moiety in the side chain was removed to eliminate chirality. The hydrogenation state of the benzopyran system, the position of the phenolic OH moiety, and the distance of the basic amino moiety toward both aromatic rings were varied systematically. 1-Benzopyran-5-ol 8b (IC50 = 10 nM), 1-benzopyran-7-ol 9c (IC50 = 38 nM), and the aminoalcohol 19c (IC50 = 17 nM) displayed antiplasmodial activity with IC50 values below 50 nM. To identify the mechanism of action, inhibition of three key enzymes by 9c was investigated. 9c was not able to reduce the number of Plasmodia in erythrocytes of mice. This low in vivo activity was explained by fast clearance from blood plasma combined with rapid biotransformation of 9c. Three main metabolites of 9c were identified by liquid chromatography-mass spectrometry (LC-MS) methods.
Collapse
Affiliation(s)
- Jan-Frederik Uth
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Frederik Börgel
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Kirstin Lehmkuhl
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute (Swiss TPH), Socinstraße 57, CH-4002 Basel, Switzerland
| | - Valquiria A P Jabor
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - R Luise Krauth-Siegel
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Thomas J Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
19
|
Identifying the major lactate transporter of Toxoplasma gondii tachyzoites. Sci Rep 2021; 11:6787. [PMID: 33762657 PMCID: PMC7991638 DOI: 10.1038/s41598-021-86204-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/10/2021] [Indexed: 11/09/2022] Open
Abstract
Toxoplasma gondii and Plasmodium falciparum parasites both extrude l-lactate, a byproduct of glycolysis. The P. falciparum Formate Nitrite Transporter, PfFNT, mediates l-lactate transport across the plasma membrane of P. falciparum parasites and has been validated as a drug target. The T. gondii genome encodes three FNTs that have been shown to transport l-lactate, and which are proposed to be the targets of several inhibitors of T. gondii proliferation. Here, we show that each of the TgFNTs localize to the T. gondii plasma membrane and are capable of transporting l-lactate across it, with TgFNT1 making the primary contribution to l-lactate transport during the disease-causing lytic cycle of the parasite. We use the Xenopus oocyte expression system to provide direct measurements of l-lactate transport via TgFNT1. We undertake a genetic analysis of the importance of the tgfnt genes for parasite proliferation, and demonstrate that all three tgfnt genes can be disrupted individually and together without affecting the lytic cycle under in vitro culture conditions. Together, our experiments identify the major lactate transporter in the disease causing stage of T. gondii, and reveal that this transporter is not required for parasite proliferation, indicating that TgFNTs are unlikely to be targets for anti-Toxoplasma drugs.
Collapse
|
20
|
Lyu M, Su CC, Kazura JW, Yu EW. Structural basis of transport and inhibition of the Plasmodium falciparum transporter PfFNT. EMBO Rep 2021; 22:e51628. [PMID: 33471955 DOI: 10.15252/embr.202051628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
The intra-erythrocyte stage of P. falciparum relies primarily on glycolysis to generate adenosine triphosphate (ATP) and the energy required to support growth and reproduction. Lactic acid, a metabolic byproduct of glycolysis, is potentially toxic as it lowers the pH inside the parasite. Plasmodium falciparum formate-nitrite transporter (PfFNT), a 34-kDa transmembrane protein, has been identified as a novel drug target as it exports lactate from inside the parasite to the surrounding parasitophorous vacuole within the erythrocyte cytosol. The structure and detailed molecular mechanism of this membrane protein are not yet available. Here we present structures of PfFNT in the absence and presence of the functional inhibitor MMV007839 at resolutions of 2.56 Å and 2.78 Å using single-particle cryo-electron microscopy. Genetic analysis and transport assay indicate that PfFNT is able to transfer lactate across the membrane. Combined, our data suggest a stepwise displacement mechanism for substrate transport. The PfFNT membrane protein is capable of picking up lactate ions from the parasite's cytosol, converting them to lactic acids and then exporting these acids into the extracellular space.
Collapse
Affiliation(s)
- Meinan Lyu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James W Kazura
- Center for Global Health & Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
21
|
The Key Glycolytic Enzyme Phosphofructokinase Is Involved in Resistance to Antiplasmodial Glycosides. mBio 2020; 11:mBio.02842-20. [PMID: 33293381 PMCID: PMC7733947 DOI: 10.1128/mbio.02842-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Malaria, caused by Plasmodium parasites, continues to be a devastating global health issue, causing 405,000 deaths and 228 million cases in 2018. Understanding key metabolic processes in malaria parasites is critical to the development of new drugs to combat this major infectious disease. The Plasmodium glycolytic pathway is essential to the malaria parasite, providing energy for growth and replication and supplying important biomolecules for other essential Plasmodium anabolic pathways. Despite this overreliance on glycolysis, no current drugs target glycolysis, and there is a paucity of information on critical glycolysis targets. Our work addresses this unmet need, providing new mechanistic insights into this key pathway. Plasmodium parasites rely heavily on glycolysis for ATP production and for precursors for essential anabolic pathways, such as the methylerythritol phosphate (MEP) pathway. Here, we show that mutations in the Plasmodium falciparum glycolytic enzyme, phosphofructokinase (PfPFK9), are associated with in vitro resistance to a primary sulfonamide glycoside (PS-3). Flux through the upper glycolysis pathway was significantly reduced in PS-3-resistant parasites, which was associated with reduced ATP levels but increased flux into the pentose phosphate pathway. PS-3 may directly or indirectly target enzymes in these pathways, as PS-3-treated parasites had elevated levels of glycolytic and tricarboxylic acid (TCA) cycle intermediates. PS-3 resistance also led to reduced MEP pathway intermediates, and PS-3-resistant parasites were hypersensitive to the MEP pathway inhibitor, fosmidomycin. Overall, this study suggests that PS-3 disrupts core pathways in central carbon metabolism, which is compensated for by mutations in PfPFK9, highlighting a novel metabolic drug resistance mechanism in P. falciparum.
Collapse
|
22
|
Kammel M, Hunger D, Sawers RG. The soluble cytoplasmic N-terminal domain of the FocA channel gates bidirectional formate translocation. Mol Microbiol 2020; 115:758-773. [PMID: 33169422 DOI: 10.1111/mmi.14641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/05/2020] [Indexed: 11/28/2022]
Abstract
FocA belongs to the pentameric FNT (formate-nitrite transporter) superfamily of anion channels, translocating formate bidirectionally across the cytoplasmic membrane of Escherichia coli and other microorganisms. While the membrane-integral core of FocA shares considerable amino acid sequence conservation with other FNT family members, the soluble cytoplasmic N-terminal domain does not. To analyze the potential biochemical function of FocA's N-terminal domain in vivo, we constructed truncation derivatives and amino acid-exchange variants, and determined their ability to translocate formate across the membrane of E. coli cells by monitoring intracellular formate levels using a formate-sensitive reporter system. Analysis of strains synthesizing these FocA variants provided insights into formate efflux. Strains lacking the ability to generate formate intracellularly allowed us to determine whether these variants could import formate or its toxic chemical analog hypophosphite. Our findings reveal that the N-terminal domain of FocA is crucial for bidirectional FocA-dependent permeation of formate across the membrane. Moreover, we show that an amino acid sequence motif and secondary structural features of the flexible N-terminal domain are important for formate translocation, and efflux/influx is influenced by pyruvate formate-lyase. The soluble N-terminal domain is, therefore, essential for bidirectional formate translocation by FocA, suggesting a "gate-keeper" function controlling anion accessibility.
Collapse
Affiliation(s)
- Michelle Kammel
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Doreen Hunger
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Robert Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
23
|
Veni A, Lokeswari TS, Krishna Kumari GN, Gayathri D, Sudandiradoss C. Bioactivity of melianone against Salmonella and in silico prediction of a membrane protein target. 3 Biotech 2020; 10:460. [PMID: 33088657 DOI: 10.1007/s13205-020-02441-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/15/2020] [Indexed: 11/30/2022] Open
Abstract
Melianone, the protolimonoid (24, 25-epoxyflindissone), was isolated from the medicinal tree species, Swietenia mahagoni (L.) JACQ (Meliaceae). The compound isolated from petroleum ether leaf extracts (5.39%) was quantified using high-performance thin-layer chromatography (HPTLC) method. In antimicrobial assays melianone inhibited Salmonella ser. Typhi with an MIC of 0.053 µM. Induced Fit Docking (IFD) of the ligand, melianone, with proteins involved in anaerobic virulence of the pathogen, revealed that it binds with FocA (a transport protein of formate ions) at its "periplasmic opening" with a glide energy of - 51.8576 kcal mol-1. Melianone altered the overall conformation of the protein (protomer A) by 0.347 Å RMSD. It induced a notable protein topology (Ω loop region) shift in the channel from an intermediate-open to a closed-state conformation and was supported by molecular dynamic simulations performed. FocA, a protein that contributes to its survival under anaerobic conditions, was further evaluated experimentally, after exposure of Salmonella ser. Typhi to melianone, resulting in the altered homeostasis of formate.
Collapse
Affiliation(s)
- A Veni
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (Deemed To Be University), Porur, 600116 India
| | - T S Lokeswari
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (Deemed To Be University), Porur, 600116 India
| | - G N Krishna Kumari
- Former Department of Medicinal Chemistry, Sri Ramachandra Institute of Higher Education and Research (Deemed To Be University), Porur, 600116 India
| | - D Gayathri
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025 India
| | - C Sudandiradoss
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology (VIT) University, Vellore, 632014 India
| |
Collapse
|
24
|
Kloehn J, Oppenheim RD, Siddiqui G, De Bock PJ, Kumar Dogga S, Coute Y, Hakimi MA, Creek DJ, Soldati-Favre D. Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii. BMC Biol 2020; 18:67. [PMID: 32546260 PMCID: PMC7296777 DOI: 10.1186/s12915-020-00791-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/08/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Acetyl-CoA is a key molecule in all organisms, implicated in several metabolic pathways as well as in transcriptional regulation and post-translational modification. The human pathogen Toxoplasma gondii possesses at least four enzymes which generate acetyl-CoA in the nucleo-cytosol (acetyl-CoA synthetase (ACS); ATP citrate lyase (ACL)), mitochondrion (branched-chain α-keto acid dehydrogenase-complex (BCKDH)) and apicoplast (pyruvate dehydrogenase complex (PDH)). Given the diverse functions of acetyl-CoA, we know very little about the role of sub-cellular acetyl-CoA pools in parasite physiology. RESULTS To assess the importance and functions of sub-cellular acetyl-CoA-pools, we measured the acetylome, transcriptome, proteome and metabolome of parasites lacking ACL/ACS or BCKDH. We demonstrate that ACL/ACS constitute a synthetic lethal pair. Loss of both enzymes causes a halt in fatty acid elongation, hypo-acetylation of nucleo-cytosolic and secretory proteins and broad changes in gene expression. In contrast, loss of BCKDH results in an altered TCA cycle, hypo-acetylation of mitochondrial proteins and few specific changes in gene expression. We provide evidence that changes in the acetylome, transcriptome and proteome of cells lacking BCKDH enable the metabolic adaptations and thus the survival of these parasites. CONCLUSIONS Using multi-omics and molecular tools, we obtain a global and integrative picture of the role of distinct acetyl-CoA pools in T. gondii physiology. Cytosolic acetyl-CoA is essential and is required for the synthesis of parasite-specific fatty acids. In contrast, loss of mitochondrial acetyl-CoA can be compensated for through metabolic adaptations implemented at the transcriptional, translational and post-translational level.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Rebecca D Oppenheim
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville campus, Parkville, VIC, 3052, Australia
| | - Pieter-Jan De Bock
- University Grenoble Alpes, CEA, INSERM, IRIG, BGE, F-38000, Grenoble, France
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Yohann Coute
- University Grenoble Alpes, CEA, INSERM, IRIG, BGE, F-38000, Grenoble, France
| | - Mohamed-Ali Hakimi
- Epigenetic and Parasites Team, UMR5163/LAPM, Domaine de la Merci, Jean Roget Institute, 38700, La Tronche, France
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville campus, Parkville, VIC, 3052, Australia
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
25
|
Abstract
The uptake of host-derived nutrients is key to the growth and survival of Toxoplasma gondii parasites. Nutrients are acquired via solute transporters that localize to the plasma membrane of the parasites. In this chapter, we describe methodology by which the uptake of solutes via plasma membrane transporters may be monitored and characterized. These assays, used here to investigate the uptake of amino acids into parasites, have broad applicability in measuring the uptake of a diverse range of solutes.
Collapse
Affiliation(s)
- Esther Rajendran
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Acton, ACT, Australia.
| |
Collapse
|
26
|
Martin RE. The transportome of the malaria parasite. Biol Rev Camb Philos Soc 2019; 95:305-332. [PMID: 31701663 DOI: 10.1111/brv.12565] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Membrane transport proteins, also known as transporters, control the movement of ions, nutrients, metabolites, and waste products across the membranes of a cell and are central to its biology. Proteins of this type also serve as drug targets and are key players in the phenomenon of drug resistance. The malaria parasite has a relatively reduced transportome, with only approximately 2.5% of its genes encoding transporters. Even so, assigning functions and physiological roles to these proteins, and ascertaining their contributions to drug action and drug resistance, has been very challenging. This review presents a detailed critique and synthesis of the disruption phenotypes, protein subcellular localisations, protein functions (observed or predicted), and links to antimalarial drug resistance for each of the parasite's transporter genes. The breadth and depth of the gene disruption data are particularly impressive, with at least one phenotype determined in the parasite's asexual blood stage for each transporter gene, and multiple phenotypes available for 76% of the genes. Analysis of the curated data set revealed there to be relatively little redundancy in the Plasmodium transportome; almost two-thirds of the parasite's transporter genes are essential or required for normal growth in the asexual blood stage of the parasite, and this proportion increased to 78% when the disruption phenotypes available for the other parasite life stages were included in the analysis. These observations, together with the finding that 22% of the transportome is implicated in the parasite's resistance to existing antimalarials and/or drugs within the development pipeline, indicate that transporters are likely to serve, or are already serving, as drug targets. Integration of the different biological and bioinformatic data sets also enabled the selection of candidates for transport processes known to be essential for parasite survival, but for which the underlying proteins have thus far remained undiscovered. These include potential transporters of pantothenate, isoleucine, or isopentenyl diphosphate, as well as putative anion-selective channels that may serve as the pore component of the parasite's 'new permeation pathways'. Other novel insights into the parasite's biology included the identification of transporters for the potential development of antimalarial treatments, transmission-blocking drugs, prophylactics, and genetically attenuated vaccines. The syntheses presented herein set a foundation for elucidating the functions and physiological roles of key members of the Plasmodium transportome and, ultimately, to explore and realise their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
27
|
Cobbold SA, McConville MJ. Determining the Mode of Action of Antimalarial Drugs Using Time-Resolved LC-MS-Based Metabolite Profiling. Methods Mol Biol 2019; 1859:225-239. [PMID: 30421232 DOI: 10.1007/978-1-4939-8757-3_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Methods for assessing the mode of action of new antimalarial compounds identified in high throughput phenotypic screens are needed to triage and facilitate lead compound development and to anticipate potential resistance mechanisms that might emerge. Here we describe a mass spectrometry-based approach for detecting metabolic changes in asexual erythrocytic stages of Plasmodium falciparum induced by antimalarial compounds. Time-resolved or concentration-resolved measurements are used to discriminate between putative targets of the compound and nonspecific and/or downstream secondary metabolic effects. These protocols can also be coupled with 13C-stable-isotope tracing experiments under nonequilibrative (or nonstationary) conditions to measure metabolic dynamics following drug exposure. Time-resolved 13C-labeling studies greatly increase confidence in target assignment and provide a more comprehensive understanding of the metabolic perturbations induced by small molecule inhibitors. The protocol provides details on the experimental design, Plasmodium falciparum culture, sample preparation, analytical approaches, and data analysis used in either targeted (pathway focused) or untargeted (all detected metabolites) analysis of drug-induced metabolic perturbations.
Collapse
Affiliation(s)
- Simon A Cobbold
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
28
|
Helmstetter F, Arnold P, Höger B, Petersen LM, Beitz E. Formate-nitrite transporters carrying nonprotonatable amide amino acids instead of a central histidine maintain pH-dependent transport. J Biol Chem 2018; 294:623-631. [PMID: 30455351 DOI: 10.1074/jbc.ra118.006340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/09/2018] [Indexed: 01/25/2023] Open
Abstract
Microbial formate-nitrite transporter-type proteins (FNT) exhibit dual transport functionality. At neutral pH, electrogenic anion currents are detectable, whereas upon acidification transport of the neutral, protonated monoacid predominates. Physiologically, FNT-mediated proton co-transport is vital when monocarboxylic acid products of the energy metabolism, such as l-lactate, are released from the cell. Accordingly, Plasmodium falciparum malaria parasites can be killed by small-molecule inhibitors of PfFNT. Two opposing hypotheses on the site of substrate protonation are plausible. The proton relay mechanism postulates proton transfer from a highly conserved histidine centrally positioned in the transport path. The dielectric slide mechanism assumes decreasing acidity of substrates entering the lipophilic vestibules and protonation via the bulk water. Here, we defined the transport mechanism of the FNT from the amoebiasis parasite Entamoeba histolytica, EhFNT, and also show that BtFdhC from Bacillus thuringiensis is a functional formate transporter. Both FNTs carry a nonprotonatable amide amino acid, asparagine or glutamine, respectively, at the central histidine position. Despite having a nonprotonatable residue, EhFNT displayed the same substrate selectivity for larger monocarboxylates including l-lactate, a low substrate affinity as is typical for FNTs, and, strikingly, proton motive force-dependent transport as observed for PfFNT harboring a central histidine. These results argue against a proton relay mechanism, indicating that substrate protonation must occur outside of the central histidine region, most likely in the vestibules. Furthermore, EhFNT is the sole annotated FNT in the Entamoeba genome suggesting that it could be a putative new drug target with similar utility as that of the malarial PfFNT.
Collapse
Affiliation(s)
| | - Philipp Arnold
- the Anatomical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Bastian Höger
- From the Department of Pharmaceutical and Medicinal Chemistry, and
| | | | - Eric Beitz
- From the Department of Pharmaceutical and Medicinal Chemistry, and
| |
Collapse
|
29
|
Rosling JEO, Ridgway MC, Summers RL, Kirk K, Lehane AM. Biochemical characterization and chemical inhibition of PfATP4-associated Na +-ATPase activity in Plasmodium falciparum membranes. J Biol Chem 2018; 293:13327-13337. [PMID: 29986883 DOI: 10.1074/jbc.ra118.003640] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
The antimalarial activity of chemically diverse compounds, including the clinical candidate cipargamin, has been linked to the ATPase PfATP4 in the malaria-causing parasite Plasmodium falciparum The characterization of PfATP4 has been hampered by the inability thus far to achieve its functional expression in a heterologous system. Here, we optimized a membrane ATPase assay to probe the function of PfATP4 and its chemical sensitivity. We found that cipargamin inhibited the Na+-dependent ATPase activity present in P. falciparum membranes from WT parasites and that its potency was reduced in cipargamin-resistant PfATP4-mutant parasites. The cipargamin-sensitive fraction of membrane ATPase activity was inhibited by all 28 of the compounds in the "Malaria Box" shown previously to disrupt ion regulation in P. falciparum in a cipargamin-like manner. This is consistent with PfATP4 being the direct target of these compounds. Characterization of the cipargamin-sensitive ATPase activity yielded data consistent with PfATP4 being a Na+ transporter that is sensitive to physiologically relevant perturbations of pH, but not of [K+] or [Ca2+]. With an apparent Km for ATP of 0.2 mm and an apparent Km for Na+ of 16-17 mm, the protein is predicted to operate at below its half-maximal rate under normal physiological conditions, allowing the rate of Na+ efflux to increase in response to an increase in cytosolic [Na+]. In membranes from a cipargamin-resistant PfATP4-mutant line, the apparent Km for Na+ is slightly elevated. Our study provides new insights into the biochemical properties and chemical sensitivity of an important new antimalarial drug target.
Collapse
Affiliation(s)
- James E O Rosling
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Melanie C Ridgway
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Robert L Summers
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kiaran Kirk
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Adele M Lehane
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
30
|
Dennis ASM, Rosling JEO, Lehane AM, Kirk K. Diverse antimalarials from whole-cell phenotypic screens disrupt malaria parasite ion and volume homeostasis. Sci Rep 2018; 8:8795. [PMID: 29892073 PMCID: PMC5995868 DOI: 10.1038/s41598-018-26819-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/14/2018] [Indexed: 11/17/2022] Open
Abstract
Four hundred structurally diverse drug-like compounds comprising the Medicines for Malaria Venture's 'Pathogen Box' were screened for their effect on a range of physiological parameters in asexual blood-stage malaria (Plasmodium falciparum) parasites. Eleven of these compounds were found to perturb parasite Na+, pH and volume in a manner consistent with inhibition of the putative Na+ efflux P-type ATPase PfATP4. All eleven compounds fell within the subset of 125 compounds included in the Pathogen Box on the basis of their having been identified as potent inhibitors of the growth of asexual blood-stage P. falciparum parasites. All eleven compounds inhibited the Na+-dependent ATPase activity of parasite membranes and showed reduced efficacy against parasites carrying mutations in PfATP4. This study increases the number of chemically diverse structures known to show a 'PfATP4-associated' phenotype, and adds to emerging evidence that a high proportion (7-9%) of the structurally diverse antimalarial compounds identified in whole cell phenotypic screens share the same mechanism of action, exerting their antimalarial effect via an interaction with PfATP4.
Collapse
Affiliation(s)
- Adelaide S M Dennis
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - James E O Rosling
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
31
|
Cell Swelling Induced by the Antimalarial KAE609 (Cipargamin) and Other PfATP4-Associated Antimalarials. Antimicrob Agents Chemother 2018; 62:AAC.00087-18. [PMID: 29555632 DOI: 10.1128/aac.00087-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/18/2018] [Indexed: 12/15/2022] Open
Abstract
For an increasing number of antimalarial agents identified in high-throughput phenotypic screens, there is evidence that they target PfATP4, a putative Na+ efflux transporter on the plasma membrane of the human malaria parasite Plasmodium falciparum For several such "PfATP4-associated" compounds, it has been noted that their addition to parasitized erythrocytes results in cell swelling. Here we show that six structurally diverse PfATP4-associated compounds, including the clinical candidate KAE609 (cipargamin), induce swelling of both isolated blood-stage parasites and intact parasitized erythrocytes. The swelling of isolated parasites is dependent on the presence of Na+ in the external environment and may be attributed to the osmotic consequences of Na+ uptake. The swelling of the parasitized erythrocyte results in an increase in its osmotic fragility. Countering cell swelling by increasing the osmolarity of the extracellular medium reduces the antiplasmodial efficacy of PfATP4-associated compounds, consistent with cell swelling playing a role in the antimalarial activity of this class of compounds.
Collapse
|
32
|
In Silico Knockout Screening of Plasmodium falciparum Reactions and Prediction of Novel Essential Reactions by Analysing the Metabolic Network. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8985718. [PMID: 29789805 PMCID: PMC5896307 DOI: 10.1155/2018/8985718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/04/2018] [Accepted: 02/19/2018] [Indexed: 01/18/2023]
Abstract
Malaria is an infectious disease that affects close to half a million individuals every year and Plasmodium falciparum is a major cause of malaria. The treatment of this disease could be done effectively if the essential enzymes of this parasite are specifically targeted. Nevertheless, the development of the parasite in resisting existing drugs now makes discovering new drugs a core responsibility. In this study, a novel computational model that makes the prediction of new and validated antimalarial drug target cheaper, easier, and faster has been developed. We have identified new essential reactions as potential targets for drugs in the metabolic network of the parasite. Among the top seven (7) predicted essential reactions, four (4) have been previously identified in earlier studies with biological evidence and one (1) has been with computational evidence. The results from our study were compared with an extensive list of seventy-seven (77) essential reactions with biological evidence from a previous study. We present a list of thirty-one (31) potential candidates for drug targets in Plasmodium falciparum which includes twenty-four (24) new potential candidates for drug targets.
Collapse
|
33
|
Meier A, Erler H, Beitz E. Targeting Channels and Transporters in Protozoan Parasite Infections. Front Chem 2018; 6:88. [PMID: 29637069 PMCID: PMC5881087 DOI: 10.3389/fchem.2018.00088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e., channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease), and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).
Collapse
Affiliation(s)
- Anna Meier
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Holger Erler
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
34
|
Transmembrane solute transport in the apicomplexan parasite Plasmodium. Emerg Top Life Sci 2017; 1:553-561. [PMID: 33525850 DOI: 10.1042/etls20170097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
Abstract
Apicomplexa are a large group of eukaryotic, single-celled parasites, with complex life cycles that occur within a wide range of different microenvironments. They include important human pathogens such as Plasmodium, the causal agent of malaria, and Toxoplasma, which causes toxoplasmosis most often in immunocompromised individuals. Despite environmental differences in their life cycles, these parasites retain the ability to obtain nutrients, remove waste products, and control ion balances. They achieve this flexibility by relying on proteins that can deliver and remove solutes. This reliance on transport proteins for essential functions makes these pathways excellent potential targets for drug development programmes. Transport proteins are frequently key mediators of drug resistance by their ability to remove drugs from their sites of action. The study of transport processes mediated by integral membrane proteins and, in particular, identification of their physiological functions and localisation, and differentiation from host orthologues has already established new validated drug targets. Our understanding of how apicomplexan parasites have adapted to changing environmental challenges has also increased through the study of their transporters. This brief introduction to membrane transporters of apicomplexans highlights recent discoveries focusing on Plasmodium and emphasises future directions.
Collapse
|
35
|
Voorberg-van der Wel A, Roma G, Gupta DK, Schuierer S, Nigsch F, Carbone W, Zeeman AM, Lee BH, Hofman SO, Faber BW, Knehr J, Pasini E, Kinzel B, Bifani P, Bonamy GMC, Bouwmeester T, Kocken CHM, Diagana TT. A comparative transcriptomic analysis of replicating and dormant liver stages of the relapsing malaria parasite Plasmodium cynomolgi. eLife 2017; 6:29605. [PMID: 29215331 PMCID: PMC5758109 DOI: 10.7554/elife.29605] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
Plasmodium liver hypnozoites, which cause disease relapse, are widely considered to be the last barrier towards malaria eradication. The biology of this quiescent form of the parasite is poorly understood which hinders drug discovery. We report a comparative transcriptomic dataset of replicating liver schizonts and dormant hypnozoites of the relapsing parasite Plasmodium cynomolgi. Hypnozoites express only 34% of Plasmodium physiological pathways, while 91% are expressed in replicating schizonts. Few known malaria drug targets are expressed in quiescent parasites, but pathways involved in microbial dormancy, maintenance of genome integrity and ATP homeostasis were robustly expressed. Several transcripts encoding heavy metal transporters were expressed in hypnozoites and the copper chelator neocuproine was cidal to all liver stage parasites. This transcriptomic dataset is a valuable resource for the discovery of vaccines and effective treatments to combat vivax malaria.
Collapse
Affiliation(s)
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Sven Schuierer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Walter Carbone
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Boon Heng Lee
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | - Sam O Hofman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Judith Knehr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Erica Pasini
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Bernd Kinzel
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Pablo Bifani
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | | | | | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | |
Collapse
|
36
|
Atkovska K, Hub JS. Energetics and mechanism of anion permeation across formate-nitrite transporters. Sci Rep 2017; 7:12027. [PMID: 28931899 PMCID: PMC5607303 DOI: 10.1038/s41598-017-11437-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/24/2017] [Indexed: 01/13/2023] Open
Abstract
Formate-nitrite transporters (FNTs) facilitate the translocation of monovalent polyatomic anions, such as formate and nitrite, across biological membranes. FNTs are widely distributed among pathogenic bacteria and eukaryotic parasites, but they lack human homologues, making them attractive drug targets. The mechanisms and energetics involved in anion permeation across the FNTs have remained largely unclear. Both, channel and transporter mode of function have been proposed, with strong indication of proton coupling to the permeation process. We combine molecular dynamics simulations, quantum mechanical calculations, and pK a calculations, to compute the energetics of the complete permeation cycle of an FNT. We find that anions as such, are not able to traverse the FNT pore. Instead, anion binding into the pore is energetically coupled to protonation of a centrally located histidine. In turn, the histidine can protonate the permeating anion, thereby enabling its release. Such mechanism can accommodate the functional diversity among the FNTs, as it may facilitate both, export and import of substrates, with or without proton co-transport. The mechanism excludes proton leakage via the Grotthuss mechanism, and it rationalises the selectivity for weak acids.
Collapse
Affiliation(s)
- Kalina Atkovska
- University of Goettingen, Institute for Microbiology and Genetics, Goettingen, 37077, Germany.,University of Goettingen, Göttingen Center for Molecular Biosciences, Goettingen, 37077, Germany
| | - Jochen S Hub
- University of Goettingen, Institute for Microbiology and Genetics, Goettingen, 37077, Germany. .,University of Goettingen, Göttingen Center for Molecular Biosciences, Goettingen, 37077, Germany.
| |
Collapse
|
37
|
Hunger D, Röcker M, Falke D, Lilie H, Sawers RG. The C-terminal Six Amino Acids of the FNT Channel FocA Are Required for Formate Translocation But Not Homopentamer Integrity. Front Microbiol 2017; 8:1616. [PMID: 28878762 PMCID: PMC5572259 DOI: 10.3389/fmicb.2017.01616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/08/2017] [Indexed: 01/27/2023] Open
Abstract
FocA is the archetype of the pentameric formate-nitrite transporter (FNT) superfamily of channels, members of which translocate small organic and inorganic anions across the cytoplasmic membrane of microorganisms. The N- and C-termini of each protomer are cytoplasmically oriented. A Y-L-R motif is found immediately after transmembrane helix 6 at the C-terminus of FNT proteins related to FocA, or those with a role in formate translocation. Previous in vivo studies had revealed that formate translocation through FocA was controlled by interaction with the formate-producing glycyl-radical enzyme pyruvate formate-lyase (PflB) or its structural and functional homolog, TdcE. In this study we analyzed the effect on in vivo formate export and import, as well as on the stability of the homopentamer in the membrane, of successively removing amino acid residues from the C-terminus of FocA. Removal of up to five amino acids was without consequence for either formate translocation or oligomer stability. Removal of a sixth residue (R280) prevented formate uptake by FocA in a strain lacking PflB and significantly reduced, but did not prevent, formate export. Sensitivity to the toxic formate analog hypophosphite, which is also transported into the cell by FocA, was also relieved. Circular dichroism spectroscopy and blue-native PAGE analysis revealed, however, that this variant had near identical secondary and quaternary structural properties to those of native FocA. Interaction with the glycyl radical enzyme, TdcE, was also unaffected by removal of the C-terminal 6 amino acid residues, indicating that impaired interaction with TdcE was not the reason for impaired formate translocation. Removal of a further residue (L279) severely restricted formate export, the stability of the protein and its ability to form homopentamers. Together, these studies revealed that the Y278-L279-R280 motif at the C-terminus is essential for bidirectional formate translocation by FocA, but that L279 is both necessary and sufficient for homopentamer integrity.
Collapse
Affiliation(s)
- Doreen Hunger
- Institute of Microbiology, Martin-Luther University Halle-WittenbergHalle, Germany
| | - Marie Röcker
- Institute of Microbiology, Martin-Luther University Halle-WittenbergHalle, Germany
| | - Dörte Falke
- Institute of Microbiology, Martin-Luther University Halle-WittenbergHalle, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-WittenbergHalle, Germany
| | - R Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-WittenbergHalle, Germany
| |
Collapse
|
38
|
Wiechert M, Beitz E. Formate-nitrite transporters: Monoacids ride the dielectric slide. Channels (Austin) 2017; 11:365-367. [PMID: 28494190 DOI: 10.1080/19336950.2017.1329999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Marie Wiechert
- a Department of Pharmaceutical and Medicinal Chemistry , Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Eric Beitz
- a Department of Pharmaceutical and Medicinal Chemistry , Christian-Albrechts-University of Kiel , Kiel , Germany
| |
Collapse
|