1
|
Kortsinoglou AM, Wood MJ, Myridakis AI, Andrikopoulos M, Roussis A, Eastwood D, Butt T, Kouvelis VN. Comparative genomics of Metarhizium brunneum strains V275 and ARSEF 4556: unraveling intraspecies diversity. G3 (BETHESDA, MD.) 2024; 14:jkae190. [PMID: 39210673 PMCID: PMC11457142 DOI: 10.1093/g3journal/jkae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Entomopathogenic fungi belonging to the Order Hypocreales are renowned for their ability to infect and kill insect hosts, while their endophytic mode of life and the beneficial rhizosphere effects on plant hosts have only been recently recognized. Understanding the molecular mechanisms underlying their different lifestyles could optimize their potential as both biocontrol and biofertilizer agents, as well as the wider appreciation of niche plasticity in fungal ecology. This study describes the comprehensive whole genome sequencing and analysis of one of the most effective entomopathogenic and endophytic EPF strains, Metarhizium brunneum V275 (commercially known as Lalguard Met52), achieved through Nanopore and Illumina reads. Comparative genomics for exploring intraspecies variability and analyses of key gene sets were conducted with a second effective EPF strain, M. brunneum ARSEF 4556. The search for strain- or species-specific genes was extended to M. brunneum strain ARSEF 3297 and other species of genus Metarhizium, to identify molecular mechanisms and putative key genome adaptations associated with mode of life differences. Genome size differed significantly, with M. brunneum V275 having the largest genome amongst M. brunneum strains sequenced to date. Genome analyses revealed an abundance of plant-degrading enzymes, plant colonization-associated genes, and intriguing intraspecies variations regarding their predicted secondary metabolic compounds and the number and localization of Transposable Elements. The potential significance of the differences found between closely related endophytic and entomopathogenic fungi, regarding plant growth-promoting and entomopathogenic abilities, are discussed, enhancing our understanding of their diverse functionalities and putative applications in agriculture and ecology.
Collapse
Affiliation(s)
- Alexandra M Kortsinoglou
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martyn J Wood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Antonis I Myridakis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Marios Andrikopoulos
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Andreas Roussis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dan Eastwood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Tariq Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Vassili N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
2
|
Tamburrini KC, Kodama S, Grisel S, Haon M, Nishiuchi T, Bissaro B, Kubo Y, Longhi S, Berrin JG. The disordered C-terminal tail of fungal LPMOs from phytopathogens mediates protein dimerization and impacts plant penetration. Proc Natl Acad Sci U S A 2024; 121:e2319998121. [PMID: 38513096 PMCID: PMC10990093 DOI: 10.1073/pnas.2319998121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that oxidatively degrade various polysaccharides, such as cellulose. Despite extensive research on this class of enzymes, the role played by their C-terminal regions predicted to be intrinsically disordered (dCTR) has been overlooked. Here, we investigated the function of the dCTR of an LPMO, called CoAA9A, up-regulated during plant infection by Colletotrichum orbiculare, the causative agent of anthracnose. After recombinant production of the full-length protein, we found that the dCTR mediates CoAA9A dimerization in vitro, via a disulfide bridge, a hitherto-never-reported property that positively affects both binding and activity on cellulose. Using SAXS experiments, we show that the homodimer is in an extended conformation. In vivo, we demonstrate that gene deletion impairs formation of the infection-specialized cell called appressorium and delays penetration of the plant. Using immunochemistry, we show that the protein is a dimer not only in vitro but also in vivo when secreted by the appressorium. As these peculiar LPMOs are also found in other plant pathogens, our findings open up broad avenues for crop protection.
Collapse
Affiliation(s)
- Ketty C. Tamburrini
- CNRS Aix Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille13009, France
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
| | - Sayo Kodama
- Faculty of Agriculture, Setsunan University, Osaka573-0101, Japan
| | - Sacha Grisel
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Aix Marseille Université, 3PE Platform, Marseille13009, France
| | - Mireille Haon
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Aix Marseille Université, 3PE Platform, Marseille13009, France
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa920-1164, Japan
| | - Bastien Bissaro
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
| | - Yasuyuki Kubo
- Faculty of Agriculture, Setsunan University, Osaka573-0101, Japan
| | - Sonia Longhi
- CNRS Aix Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille13009, France
| | - Jean-Guy Berrin
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
| |
Collapse
|
3
|
Bissaro B, Kodama S, Nishiuchi T, Díaz-Rovira AM, Hage H, Ribeaucourt D, Haon M, Grisel S, Simaan AJ, Beisson F, Forget SM, Brumer H, Rosso MN, Guallar V, O’Connell R, Lafond M, Kubo Y, Berrin JG. Tandem metalloenzymes gate plant cell entry by pathogenic fungi. SCIENCE ADVANCES 2022; 8:eade9982. [PMID: 36542709 PMCID: PMC9770985 DOI: 10.1126/sciadv.ade9982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Global food security is endangered by fungal phytopathogens causing devastating crop production losses. Many of these pathogens use specialized appressoria cells to puncture plant cuticles. Here, we unveil a pair of alcohol oxidase-peroxidase enzymes to be essential for pathogenicity. Using Colletotrichum orbiculare, we show that the enzyme pair is cosecreted by the fungus early during plant penetration and that single and double mutants have impaired penetration ability. Molecular modeling, biochemical, and biophysical approaches revealed a fine-tuned interplay between these metalloenzymes, which oxidize plant cuticular long-chain alcohols into aldehydes. We show that the enzyme pair is involved in transcriptional regulation of genes necessary for host penetration. The identification of these infection-specific metalloenzymes opens new avenues on the role of wax-derived compounds and the design of oxidase-specific inhibitors for crop protection.
Collapse
Affiliation(s)
- Bastien Bissaro
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Sayo Kodama
- Faculty of Agriculture, Setsunan University, 573-0101 Osaka, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, 920-0934 Kanazawa, Japan
| | | | - Hayat Hage
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - David Ribeaucourt
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Mireille Haon
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Sacha Grisel
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - A. Jalila Simaan
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Fred Beisson
- CEA, CNRS, Aix Marseille Université, Institut de Biosciences et Biotechnologies d’Aix-Marseille (UMR7265), CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Stephanie M. Forget
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Marie-Noëlle Rosso
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Victor Guallar
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, E-08034 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| | - Richard O’Connell
- INRAE, UMR BIOGER, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Mickaël Lafond
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Yasuyuki Kubo
- Faculty of Agriculture, Setsunan University, 573-0101 Osaka, Japan
- Corresponding author. (Y.K.); (J.-G.B.)
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
- Corresponding author. (Y.K.); (J.-G.B.)
| |
Collapse
|
4
|
Niemann-Pick Type C Proteins Are Required for Sterol Transport and Appressorium-Mediated Plant Penetration of Colletotrichum orbiculare. mBio 2022; 13:e0223622. [PMID: 36154185 PMCID: PMC9600679 DOI: 10.1128/mbio.02236-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many biotrophic and hemibiotrophic fungal pathogens use appressoria to directly penetrate the host plant surface. In the cucumber anthracnose fungus Colletotrichum orbiculare, differentiation of appressoria requires a proper G1/S cell cycle progression, regulated by the GTPase-activating protein complex CoBub2-CoBfa1 and its downstream GTPase CoTem1. To explore the mechanisms by which the CoTem1 cascade regulates plant infection, we screened for CoTem1 interaction factors and identified a Niemann-Pick type C2 homolog (CoNpc2). Niemann-Pick type C proteins NPC1 and NPC2 are sterol-binding proteins required for sterol export from lysosomes (vacuoles) in humans and yeasts. We showed that CoNpc2 colocalized with CoNpc1 in late endosomes and vacuoles and that disruption of its gene resulted in aberrant sterol accumulation in vacuoles and loss of sterol membrane localization, indicating that NPC proteins are engaged in sterol transport in C. orbiculare. For appressorium infection, sterol transport and proper distribution mediated by CoNpc1 and CoNpc2 are critical for membrane integrity and membrane curvature with actin assembly, leading to penetration peg emergence and appressorial cone formation. Our results revealed a novel mechanism by which NPC proteins regulate appressorium-mediated plant infection.
Collapse
|
5
|
Jiang L, Zhang S, Su J, Peck SC, Luo L. Protein Kinase Signaling Pathways in Plant- Colletotrichum Interaction. FRONTIERS IN PLANT SCIENCE 2022; 12:829645. [PMID: 35126439 PMCID: PMC8811371 DOI: 10.3389/fpls.2021.829645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Anthracnose is a fungal disease caused by members of Colletotrichum that affect a wide range of crop plants. Strategies to improve crop resistance are needed to reduce the yield losses; and one strategy is to manipulate protein kinases that catalyze reversible phosphorylation of proteins regulating both plant immune responses and fungal pathogenesis. Hence, in this review, we present a summary of the current knowledge of protein kinase signaling pathways in plant-Colletotrichum interaction as well as the relation to a more general understanding of protein kinases that contribute to plant immunity and pathogen virulence. We highlight the potential of combining genomic resources and phosphoproteomics research to unravel the key molecular components of plant-Colletotrichum interactions. Understanding the molecular interactions between plants and Colletotrichum would not only facilitate molecular breeding of resistant cultivars but also help the development of novel strategies for controlling the anthracnose disease.
Collapse
Affiliation(s)
- Lingyan Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Shizi Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Jianbin Su
- Division of Plant Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Scott C. Peck
- Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
6
|
Liu N, Wang J, Yun Y, Wang J, Xu C, Wu S, Xu L, Li B, Kolodkin-Gal I, Dawood DH, Zhao Y, Ma Z, Chen Y. The NDR kinase-MOB complex FgCot1-Mob2 regulates polarity and lipid metabolism in Fusarium graminearum. Environ Microbiol 2021; 23:5505-5524. [PMID: 34347361 DOI: 10.1111/1462-2920.15698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023]
Abstract
Members of the NDR (nuclear Dbf2-related) protein-kinase family are essential for cell differentiation and polarized morphogenesis. However, their functions in plant pathogenic fungi are not well understood. Here, we characterized the NDR kinase FgCot1 and its activator FgMob2 in Fusarium graminearum, a major pathogen causing Fusarium head blight (FHB) in wheat. FgCot1 and FgMob2 formed a NDR kinase-MOB protein complex. Localization assays using FgCot1-GFP or FgMob2-RFP constructs showed diverse subcellular localizations, including cytoplasm, septum, nucleus and hyphal tip. ΔFgcot1 and ΔFgmob2 exhibited serious defects in hyphal growth, polarity, fungal development and cell wall integrity as well as reduced virulence in planta. In contrast, lipid droplet accumulation was significantly increased in these two mutants. Phosphorylation of FgCot1 at two highly conserved residues (S462 and T630) as well as five new sites synergistically contributed its role in various cellular processes. In addition, non-synonymous mutations in two MAPK (mitogen-activated protein kinase) proteins, FgSte11 and FgGpmk1, partially rescued the growth defect of ΔFgmob2, indicating a functional link between the FgCot1-Mob2 complex and the FgGpmk1 signalling pathway in regulating filamentous fungal growth. These results indicated that the FgCot1-Mob2 complex is critical for polarity, fungal development, cell wall organization, lipid metabolism and virulence in F. graminearum.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China.,College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yingzi Yun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jinli Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Chaoyun Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Siqi Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Luona Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Baohua Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dawood H Dawood
- Department of Agriculture Chemistry, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Harata K, Shinonaga H, Nishiyama Y, Okuno T. CoGRIM19 is required for invasive hyphal growth of Colletotrichum orbiculare inside epidermal cells of cucumber cotyledons. Microb Pathog 2021; 154:104847. [PMID: 33713749 DOI: 10.1016/j.micpath.2021.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
Colletotrichum orbiculare, an anthracnose disease fungus of cucurbit plants, extends penetration hyphae inside the epidermal cells of host plants. Unlike vegetative hyphae formed on a nutrient rich medium, this pathogen initially develops biotrophic penetration hyphae, which acquire nutrient resources from living host cells and secret effector proteins to suppress host defense responses. Subsequently, the nature of penetration hyphae changes from biotrophy to necrotrophy in response to the interaction with a host plant. Hence, controlling the extension of penetration hyphae is crucial for C. orbiculare infection. Here, we identified CoGRIM19 encoding Nadh-ubiquinone oxidoreductase subunit as a pathogenicity gene. Pathogenicity assays showed that the cogrim19 mutant caused no visible symptoms on cucumber cotyledons. Microscopic observations revealed that the cogrim19 mutant developed an appressorium and penetration hyphae under artificial conditions such as on coverslips or cellulose membranes, but the penetration hyphae of the mutant were retarded in the cucumber cotyledons. Microscopic observations of biotrophy-specific expression fluorescent signals revealed that the biotrophic stage was maintained in the retarded penetration hyphae of the cogrim19 mutant as the penetration of the wild type. In addition to cytological observations, pathogenicity assays using wounded leaves showed that the cogrim19 mutant had an attenuated pathogenesis. Taking our results together, CoGRIM19 is required for invasive hyphal growth inside the epidermal cells of cucumber cotyledons in C. orbiculare.
Collapse
Affiliation(s)
- Ken Harata
- Department of Plant Life Science, Ryukoku University, Seta, Shiga, 520-2194, Japan.
| | - Hayato Shinonaga
- Department of Plant Life Science, Ryukoku University, Seta, Shiga, 520-2194, Japan
| | - Yuudai Nishiyama
- Department of Plant Life Science, Ryukoku University, Seta, Shiga, 520-2194, Japan
| | - Tetsuro Okuno
- Department of Plant Life Science, Ryukoku University, Seta, Shiga, 520-2194, Japan
| |
Collapse
|
8
|
Commer B, Schultzhaus Z, Shaw BD. Localization of NPFxD motif-containing proteins in Aspergillus nidulans. Fungal Genet Biol 2020; 141:103412. [PMID: 32445863 DOI: 10.1016/j.fgb.2020.103412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
During growth, filamentous fungi produce polarized cells called hyphae. It is generally presumed that polarization of hyphae is dependent upon secretion through the Spitzenkörper, as well as a mechanism called apical recycling, which maintains a balance between the tightly coupled processes of endocytosis and exocytosis. Endocytosis predominates in an annular domain called the sub-apical endocytic collar, which is located in the region of plasma membrane 1-5 μm distal to the Spitzenkörper. It has previously been proposed that one function of the sub-apical endocytic collar is to maintain the apical localization of polarization proteins. These proteins mark areas of polarization at the apices of hyphae. However, as hyphae grow, these proteins are displaced along the membrane and some must then be removed at the sub-apical endocytic collar in order to maintain the hyphoid shape. While endocytosis is fairly well characterized in yeast, comparatively little is known about the process in filamentous fungi. Here, a bioinformatics approach was utilized to identify 39 Aspergillus nidulans proteins that are predicted to be cargo of endocytosis based on the presence of an NPFxD peptide motif. This motif is a necessary endocytic signal sequence first established in Saccharomyces cerevisiae, where it marks proteins for endocytosis through an interaction with the adapter protein Sla1p. It is hypothesized that some proteins that contain this NPFxD peptide sequence in A. nidulans will be potential targets for endocytosis, and therefore will localize either to the endocytic collar or to more proximal polarized regions of the cell, e.g. the apical dome or the Spitzenkörper. To test this, a subset of the motif-containing proteins in A. nidulans was tagged with GFP and the dynamic localization was evaluated. The documented localization patterns support the hypothesis that the motif marks proteins for localization to the polarized cell apex in growing hyphae.
Collapse
Affiliation(s)
- Blake Commer
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA.
| | - Zachary Schultzhaus
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA.
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
9
|
Threonine synthase CoTHR4 is involved in infection-related morphogenesis during the pre-penetration stage in Colletotrichum orbiculare. Microb Pathog 2019; 137:103746. [DOI: 10.1016/j.micpath.2019.103746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
|
10
|
Fukada F, Kodama S, Nishiuchi T, Kajikawa N, Kubo Y. Plant pathogenic fungi Colletotrichum and Magnaporthe share a common G 1 phase monitoring strategy for proper appressorium development. THE NEW PHYTOLOGIST 2019; 222:1909-1923. [PMID: 30715740 DOI: 10.1111/nph.15728] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
To breach the plant cuticle, many plant pathogenic fungi differentiate specialized infection structures (appressoria). In Colletotrichum orbiculare (cucumber anthracnose fungus), this differentiation requires unique proper G1 /S phase progression, regulated by two-component GTPase activating protein CoBub2/CoBfa1 and GTPase CoTem1. Since their homologues regulate mitotic exit, cytokinesis, or septum formation from yeasts to mammals, we asked whether the BUB2 function in G1 /S progression is specific to plant pathogenic fungi. Colletotrichum higginsianum and Magnaporthe oryzae were genetically analyzed to investigate conservation of BUB2 roles in cell cycle regulation, septum formation, and virulence. Expression profile of cobub2Δ was analyzed using a custom microarray. In bub2 mutants of both fungi, S phase initiation was earlier, and septum formation coordinated with a septation initiation network protein and contractile actin ring was impaired. Earlier G1 /S transition in cobub2Δ results in especially high expression of DNA replication genes and differing regulation of virulence-associated genes that encode proteins such as carbohydrate-active enzymes and small secreted proteins. The virulence of chbub2Δ and mobub2Δ was significantly reduced. Our evidence shows that BUB2 regulation of G1 /S transition and septum formation supports its specific requirement for appressorium development in plant pathogenic fungi.
Collapse
Affiliation(s)
- Fumi Fukada
- Laboratory of Plant Pathology, Life and Environmental Sciences, Graduate School of Kyoto Prefectural University, Sakyo, Kyoto, 606-8522, Japan
| | - Sayo Kodama
- Laboratory of Plant Pathology, Life and Environmental Sciences, Graduate School of Kyoto Prefectural University, Sakyo, Kyoto, 606-8522, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, Kanazawa, 920-0934, Japan
| | - Naoki Kajikawa
- Laboratory of Plant Pathology, Life and Environmental Sciences, Graduate School of Kyoto Prefectural University, Sakyo, Kyoto, 606-8522, Japan
| | - Yasuyuki Kubo
- Laboratory of Plant Pathology, Life and Environmental Sciences, Graduate School of Kyoto Prefectural University, Sakyo, Kyoto, 606-8522, Japan
| |
Collapse
|
11
|
Kodama S, Nishiuchi T, Kubo Y. Colletotrichum orbiculare MTF4 Is a Key Transcription Factor Downstream of MOR Essential for Plant Signal-Dependent Appressorium Development and Pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:313-324. [PMID: 30398907 DOI: 10.1094/mpmi-05-18-0118-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cucumber anthracnose fungus Colletotrichum orbiculare forms a specialized infection structure, called an appressorium. Appressorium differentiation relies on fungal perception of physical and biochemical signals at the plant surface. Our previous report showed that the morphogenesis-related NDR (nuclear Dbf2-related) kinase pathway (MOR) is crucial for translating plant-derived signals for appressorium development. Here, we focused on identifying transcriptional regulators downstream of MOR that are involved in plant signal sensing and transduction for appressorium development. Based on whole-genome transcript profiling, we identified a Zn(II)2Cys6 transcription factor, CoMTF4, as a potential downstream factor of MOR. CoMTF4 was expressed in planta rather than in vitro under the control of the NDR kinase CoCbk1. Phenotypes of comtf4 mutants, strains with constitutively active CoCbk1 and strains with constitutive overexpression of CoMTF4 suggested that CoMtf4 acts downstream of MOR. Furthermore, nuclear localization of CoMtf4 was dependent on the MOR and responsive to plant-derived signals that lead to appressorium morphogenesis. Thus, we conclude that CoMtf4 is a transcription factor downstream of MOR that is essential for appressorium morphogenesis and pathogenesis and is regulated in response to plant-derived signals. This study provides insights into fungal sensing of plant signals and subsequent responses critical for appressorium formation.
Collapse
Affiliation(s)
- Sayo Kodama
- 1 Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Takumi Nishiuchi
- 2 Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
| | - Yasuyuki Kubo
- 1 Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| |
Collapse
|
12
|
Herold I, Kowbel D, Delgado-Álvarez DL, Garduño-Rosales M, Mouriño-Pérez RR, Yarden O. Transcriptional profiling and localization of GUL-1, a COT-1 pathway component, in Neurospora crassa. Fungal Genet Biol 2019; 126:1-11. [PMID: 30731203 DOI: 10.1016/j.fgb.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/19/2023]
Abstract
Impairment of theNeurospora crassaCOT-1 kinase results in defects in hyphal polarity. Some of these effects are partially suppressed by inactivation of gul-1 (encoding an mRNA-binding protein involved in translational regulation). Here, we report on the transcriptional profiling of cot-1 inactivation and demonstrate that gul-1 affects transcript abundance of multiple genes in the COT-1 pathway, including processes such as cell wall remodeling, nitrogen and amino acid metabolism. The GUL-1 protein itself was found to be distributed within the entire hyphal cell, along with a clear presence of aggregates that traffic within the cytoplasm. Live imaging of GUL-1-GFP demonstrated that GUL-1 transport is microtubule-dependent. Cellular stress, as imposed by the presence of the cell wall biosynthesis inhibitor Nikkomycin Z or by nitrogen limitation, resulted in a 2-3-fold increase of GUL-1 aggregate association with nuclei. Taken together, this study demonstrates that GUL-1 affects multiple processes, its function is stress-related and linked with cellular traffic and nuclear association.
Collapse
Affiliation(s)
- Inbal Herold
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - David Kowbel
- Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720-3102, USA
| | - Diego L Delgado-Álvarez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico
| | - Marisela Garduño-Rosales
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico
| | - Rosa R Mouriño-Pérez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| |
Collapse
|
13
|
Aharoni-Kats L, Zelinger E, Chen S, Yarden O. Altering Neurospora crassa MOB2A exposes its functions in development and affects its interaction with the NDR kinase COT1. Mol Microbiol 2018; 108:641-660. [PMID: 29600559 DOI: 10.1111/mmi.13954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2018] [Indexed: 12/30/2022]
Abstract
The Neurospora crassa Mps One Binder (MOB) proteins MOB2A and MOB2B physically interact with the Nuclear Dbf2 Related (NDR) kinase COT1 and have been shown to have overlapping functions in various aspects of asexual development. Here, we identified two N. crassa MOB2A residues, Tyr117 and Tyr119, which are potentially phosphorylated. Using phosphomimetic mob-2a mutants we have been able to establish that apart from their previously described roles, MOB2A/B are involved in additional developmental processes. Enhanced conidial germination, accompanied by conidial agglutination, in the phosphomimetic mutants indicated that MOB2A is a negative regulator of germination. Thick-section imaging of perithecia revealed slow maturation and a lack of asci alignment in the mutant strains demonstrating a role for MOB2A in sexual development. We demonstrate that even though MOB2A and MOB2B have some overlapping functions, MOB2B cannot compensate for the roles MOB2A has in conidiation and germination. Altering Tyr residues 117 and 119 impaired the physical interactions between MOB2A and COT1, most likely contributing to some of the observed effects. As cot-1 and the phosphomimetic mutants share an extragenic suppressor (gul-1), we concluded that at least some of the effects imposed by altering Tyr117 and Tyr119 are mediated by the NDR kinase.
Collapse
Affiliation(s)
- Liran Aharoni-Kats
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Einat Zelinger
- Centre for Scientific Imaging, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - She Chen
- Proteomics Centre, The National Institute of Biological Sciences, Beijing 102206, China
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| |
Collapse
|
14
|
Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 2017; 4:6. [PMID: 28955474 PMCID: PMC5615635 DOI: 10.1186/s40694-017-0035-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Timothy C. Cairns
- Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Candace E. Elliott
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Junhyun Jeon
- College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|