1
|
Lv J, Wan H, Yu D, Zhou H, Wang W, Wan H. Alleviating penicillin-resistant Streptococcus pneumoniae‑induced lung epithelial cell injury: mechanistic insights into effects of the optimized combination of main components from Yinhuapinggan granules. BMC Infect Dis 2025; 25:565. [PMID: 40254610 PMCID: PMC12010621 DOI: 10.1186/s12879-025-10951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
OBJECTIVE Penicillin-resistant Streptococcus pneumoniae (PRSP), for which novel treatment medicines are required, has expanded extensively due to the overuse of antibiotics. This study aimed to detect the optimal ratio of the combination of the main components based on Yinhuapinggan granules (YHPG) to generate novel treatment concepts for PRSP-induced lung injury. METHODS Three representative main components: chlorogenic acid (C), amygdalin (A), and puerarin (P) were selected, and the optimal combination of these three components was determined by an orthogonal experiment. Investigations were conducted on the potential mechanisms underlying the protective effect of this optimized combination against PRSP-induced lung epithelial cell damage. Meanwhile, the bacteriostatic effect was further explored through the optimized combination of these natural products combined with penicillin G (PG). RESULTS The optimized combination CAP (C: 16 µg/mL, A: 24 µg/mL, P: 24 µg/mL) screened by the orthogonal experimental design reduced cell damage in a model of human lung epithelial cells infected by PRSP, and the combination of CAP and PG had a synergistic effect. At the cellular level, CAP attenuated lung epithelial cell injury by modulating the TLRs/MyD88 inflammatory pathway. At the bacterial level, CAP modulated the virulence and drug resistance of PRSP, resulting in enhanced bacterial inhibition by the combination of CAP and PG. CONCLUSION Taken together, our results suggest that CAP can modulate or synergize with PG to modulate the TLRs/MyD88 pathway and attenuate PRSP-induced lung injury, and can be used as a potential drug for treating PRSP infection.
Collapse
Affiliation(s)
- Jiangbo Lv
- College of Chinese Medicine for Cardiovascular-Cranial Disease, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, Hangzhou, China
| | - Haofang Wan
- College of Chinese Medicine for Cardiovascular-Cranial Disease, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, Hangzhou, China
| | - Daojun Yu
- Hangzhou First People's Hospital, Hangzhou, China.
| | - Huifen Zhou
- College of Chinese Medicine for Cardiovascular-Cranial Disease, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, Hangzhou, China
| | - Wenba Wang
- College of Chinese Medicine for Cardiovascular-Cranial Disease, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, Hangzhou, China
| | - Haitong Wan
- College of Chinese Medicine for Cardiovascular-Cranial Disease, Zhejiang Chinese Medical University, Hangzhou, China.
- Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, Hangzhou, China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, China.
| |
Collapse
|
2
|
Montgomery MT, Ortigoza M, Loomis C, Weiser JN. Neuraminidase-mediated enhancement of Streptococcus pneumoniae colonization is associated with altered mucus characteristics and distribution. mBio 2025; 16:e0257924. [PMID: 39660923 PMCID: PMC11708046 DOI: 10.1128/mbio.02579-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Upon entry into the upper respiratory tract (URT), Streptococcus pneumoniae (Spn) upregulates neuraminidases (NA) that cleave sialic acid (SA) from host glycans. Because sialylation is thought to contribute to the physical properties that determine mucus function, we posited that Spn directly alters host mucus through NA activity. By directly imaging the colonized URT, we demonstrated NA-mediated alterations to the characteristics and distribution of mucus along the respiratory epithelium, where colonizing bacteria are found. Mucus exposed to NA showed increased localization within goblet cells and lining the glycocalyx. By contrast, NA-naïve mucus was more likely to be observed sloughing away from the epithelial surface. We also visualized Spn in the URT and observed that NA promoted efficient bacterial localization to the firm mucus layer overlying the glycocalyx, whereas NA-deficient Spn was associated more with loose mucus. By facilitating tighter association with the glycocalyx, NA promoted increased Spn colonization density. The magnitude of the NA-mediated effect on colonization was widened during late colonization by increased evasion of host-mediated clearance mechanisms. Thus, Spn-encoded NAs directly modify the host environment by desialylating mucus, which allows close interaction with mucus at the epithelium, and this is associated with enhanced bacterial colonization. IMPORTANCE Although severe illness and death caused by Spn result from secondary invasive diseases including pneumonia, sepsis, and meningitis, stable colonization of the upper respiratory tract (URT) is a prerequisite to invasive disease. Therefore, understanding host-Spn dynamics during asymptomatic colonization of the URT is warranted with respect to the pathogenesis of Spn disease. In this study, we found that Spn NA activity directly alters mucus characteristics that result in increased density and duration of URT colonization. Therefore, targeting Spn NA activity during URT colonization may be a viable strategy to mitigate Spn infection.
Collapse
Affiliation(s)
- Matthew T. Montgomery
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Mila Ortigoza
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, USA
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Medley BJ, Low KE, Irungu JDW, Kipchumba L, Daneshgar P, Liu L, Garber JM, Klassen L, Inglis GD, Boons GJ, Zandberg WF, Abbott DW, Boraston AB. A "terminal" case of glycan catabolism: Structural and enzymatic characterization of the sialidases of Clostridium perfringens. J Biol Chem 2024; 300:107750. [PMID: 39251137 PMCID: PMC11525138 DOI: 10.1016/j.jbc.2024.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Sialic acids are commonly found on the terminal ends of biologically important carbohydrates, including intestinal mucin O-linked glycans. Pathogens such as Clostridium perfringens, the causative agent of necrotic enteritis in poultry and humans, have the ability to degrade host mucins and colonize the mucus layer, which involves removal of the terminal sialic acid by carbohydrate-active enzymes (CAZymes). Here, we present the structural and biochemical characterization of the GH33 catalytic domains of the three sialidases of C. perfringens and probe their substrate specificity. The catalytically active domains, which we refer to as NanHGH33, NanJGH33, and NanIGH33, displayed differential activity on various naturally occurring forms of sialic acid. We report the X-ray crystal structures of these domains in complex with relevant sialic acid variants revealing the molecular basis of how each catalytic domain accommodates different sialic acids. NanHGH33 displays a distinct preference for α-2,3-linked sialic acid, but can process α-2,6-linked sialic acid. NanJGH33 and NanIGH33 both exhibit the ability to process α-2,3- and α-2,6-linked sialic acid without any significant apparent preference. All three enzymes were sensitive to generic and commercially available sialidase inhibitors, which impeded sialidase activity in cultures as well as the growth of C. perfringens on sialylated glycans. The knowledge gained in these studies can be applied to in vivo models for C. perfringens growth and metabolism of mucin O-glycans, with a view toward future mitigation of bacterial colonization and infection of intestinal tissues.
Collapse
Affiliation(s)
- Brendon J Medley
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Kristin E Low
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Jackline D W Irungu
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Linus Kipchumba
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Parandis Daneshgar
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jolene M Garber
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada; Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Leeann Klassen
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - G Douglas Inglis
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
| | - Wesley F Zandberg
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada.
| | - D Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada.
| | - Alisdair B Boraston
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
4
|
Upmanyu K, Kumar R, Rizwanul Haque QM, Singh R. Exploring the evolutionary and pathogenic role of Acinetobacter baumannii biofilm-associated protein (Bap) through in silico structural modeling. Arch Microbiol 2024; 206:267. [PMID: 38762620 DOI: 10.1007/s00203-024-03992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Acinetobacter species encode for extracellularly secreted Biofilm-associated protein (Bap), a multi-domain protein with variable molecular weights reaching several hundred kilodaltons. Bap is crucial for the development of multi-dimensional structures of mature biofilms. In our investigation, we analyzed 7338 sequences of A. baumannii from the NCBI database and found that Bap or Bap-like protein (BLP) was present in 6422 (87.52%) isolates. Further classification revealed that 12.12% carried Type-1 Bap, 68.44% had Type-2, 6.91% had Type-3, 0.05% had Type-6 or SDF-Type, and 12.51% lacked Bap or BLP. The majority of isolates with Type-1, Type-2, and Type-3 Bap belonged to ST1, ST2, and ST25, respectively. Phylogenetic analysis suggested that Type-1 Bap is the most ancient, while Type-3 and SDF-Type have evolved recently. Studying the interaction of predicted Bap structures with human CEACAM-1 and PIgR showed that Bap with its BIg13 and BIg6 domains interact with the N-terminal domain of CEACAM-1, involving Arg43 and Glu40, involved in CEACAM-1 dimerization. Also, we found that recently evolved Type-3 and SDF-Type Bap showed greater interaction with CEACAM-1 and PIgR. It can be asserted that the evolution of Bap has conferred enhanced virulence characteristics to A. baumannii with increased interaction with CEACAM-1 and PIgR. Using in silico approaches, this study explores the evolutionary, physicochemical, and structural features of A. baumannii Bap and unravels its crucial role in mediating interaction with human CEACAM-1 and PIgR through detailed structure modelling. These findings advance our understanding of A. baumannii Bap and highlight its role in pathogenesis.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rakesh Kumar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | | | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
5
|
Sheng Q, Xu Q, Lan Z, Wu Z. Comparative Genome Analysis of Two Streptococcus suis Serotype 8 Strains Identifies Two New Virulence-Associated Genes. Animals (Basel) 2024; 14:572. [PMID: 38396540 PMCID: PMC10886379 DOI: 10.3390/ani14040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Streptococcus suis is an important zoonotic pathogen that can cause meningitis and septicemia in swine and humans. Among numerous pathogenic serotypes, S. suis serotype 8 has distinctive characteristics such as a high detection rate and causing multi-host infection. There is no complete genome of serotype 8 strains so far. In this study, the complete genome of two S. suis serotype 8 strains, virulent strain 2018WUSS151 and non-virulent strain WUSS030, were sequenced. Comparative genomic analysis showed that the homology of the two genomes reaches 99.68%, and the main difference is the distinctive prophages. There are 83 genes unique to virulent strain 2018WUSS151, including three putative virulence-associated genes (PVGs). Two PVGs, padR and marR, are passenger genes in ISSsu2 family transposons that are able to form circular DNA intermediates during transposition, indicating the possibility of horizontal transmission among S. suis strains. The deletion mutant of PVGs marR or atpase attenuated the virulence of serotype 2 virulent SC070731 in a mouse infection model, confirming their role in S. suis virulence. These findings contribute to clarifying the genomic characterization of S. suis serotype 8 and S. suis pathogenesis.
Collapse
Affiliation(s)
- Qi Sheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (Q.S.); (Q.X.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Qiuhua Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (Q.S.); (Q.X.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zouran Lan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (Q.S.); (Q.X.)
- Shandong Provincial Center for Animal Disease Control, Jinan 250100, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; (Q.S.); (Q.X.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-Breeding and Pig-Disease Prevention, Guangzhou 511400, China
| |
Collapse
|
6
|
Pn-AqpC-Mediated Fermentation Pattern Coordination with the Two-Component System 07 Regulates Host N-Glycan Degradation of Streptococcus pneumoniae. Microbiol Spectr 2022; 10:e0249622. [PMID: 36106896 PMCID: PMC9603416 DOI: 10.1128/spectrum.02496-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) is a human nasopharyngeal commensal, and host N-glycan metabolism promotes its colonization and invasion. It has been reported that glucose represses, while fetuin, a glycoconjugated model protein, induces, the genes involved in N-glycan degradation through the two-component system TCS07. However, the mechanisms of glucose repression and TCS07 induction remain unknown. Previously, we found that the pneumococcal aquaglyceroporin Pn-AqpC facilitates oxygen uptake, thereby contributing to the antioxidant potential and virulence. In this study, through Tandem Mass Tag (TMT) quantitative proteomics, we found that the deletion of Pn-aqpC caused a marked upregulation of 11 proteins involved in N-glycan degradation in glucose-grown pneumococcus R6. Both quantitative RT-PCR and GFP fluorescence reporters revealed that the upregulation of N-glycan genes was completely dependent on response regulator (RR) 07, but not on the histidine kinase HK07 of TCS07 or the phosphoryl-receiving aspartate residue of RR07 in ΔPn-aqpC, indicating that RR07 was activated in an HK07-independent manner when Pn-AqpC was absent. The deletion of Pn-aqpC also enhanced the expression of pyruvate formate lyase and increased formate production, probably due to reduced cellular oxygen content, indicating that a shunt of glucose catabolism to mixed acid fermentation occurs. Notably, formate induced the N-glycan degradation genes in glucose-grown R6, but the deletion of rr07 abolished this induction, indicating that formate activates RR07. However, the induction of N-glycan degradation proteins reduced the intraspecies competition of R6 in glucose. Therefore, although N-glycan degradation promotes pneumococcal pathogenesis, the glucose metabolites-based RR07 regulation reported here is of importance for balancing growth fitness and the pathogenicity of pneumococcus. IMPORTANCE Pneumococcus, a human opportunistic pathogen, is capable of metabolizing host complex N-glycans. N-glycan degradation promotes pneumococcus colonization in the nasopharynx as well as invasion into deeper tissues, thus significantly contributing to pathogenesis. It is known that the two-component system 07 induces the N-glycan metabolizing genes; however, how TCS07 is activated remains unknown. This study reveals that formate, the anaerobic fermentation metabolite of pneumococcus, is a novel activator of the response regulator (RR) 07. Although the high expression of N-glycan degradation genes promotes pneumococcal colonization in the nasopharynx and pathogenesis, this reduces pneumococcal growth fitness in glucose as indicated in this work. Notably, the presence of Pn-AqpC, an oxygen-transporting aquaglyceroporin, enables pneumococcus to maintain glucose homolactic acid fermentation, thus reducing formate production, maintaining RR07 inactivation, and controlling N-glycan degrading genes at a non-induced status. Thus, this study highlights a novel fermentation metabolism pattern linking TCS-regulated carbohydrate utilization strategies as a trade-off between the fitness and the pathogenicity of pneumococcus.
Collapse
|
7
|
Yokoi T, Nishiyama K, Kushida Y, Uribayashi K, Kunihara T, Fujimoto R, Yamamoto Y, Ito M, Miki T, Haneda T, Mukai T, Okada N. O-acetylesterase activity of Bifidobacterium bifidum sialidase facilities the liberation of sialic acid and encourages the proliferation of sialic acid scavenging Bifidobacterium breve. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:637-645. [PMID: 35581157 DOI: 10.1111/1758-2229.13083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Bifidobacterium bifidum possesses two extracellular sialidases (SiaBb1 and SiaBb2) that release free sialic acid from mucin sialoglycans, which can be utilized via cross-feeding by Bifidobacterium breve that, otherwise, is prevented from utilizing this nutrient source. Modification of sialic acids with O-acetyl esters is known to protect mucin glycans from degradation by bacterial sialidases. Compared to SiaBb2, SiaBb1 has an additional O-acetylesterase (Est) domain. We aimed to elucidate the role of the SiaBb1 Est domain from B. bifidum in sialic acid cross-feeding within Bifidobacterium. Pre-treatment of mucin secreted from bovine submaxillary glands (BSM) using His6 -tagged-Est and -SiaBb2 released a higher amount of sialic acid compared to the pre-treatment by His6 -SiaBb2. Growth of B. breve increased with an increase in nanE expression when supplemented with both His6 -Est- and His6 -SiaBb2-treated BSM. These results indicate that the esterase activity of the SiaBb1 Est domain enhances the efficiency of SiaBb2 to cleave sialic acid from mucin. This free sialic acid can be utilized by coexisting sialic acid scavenging B. breve via cross-feeding. Here, we provide the molecular mechanism underlying the unique sialoglycan degradation property of B. bifidum which is mediated by the complementary activities of SiaBb1 and SiaBb2 in the context of sialic acid cross-feeding.
Collapse
Affiliation(s)
- Tatsunari Yokoi
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Keita Nishiyama
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Kushida
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kazuya Uribayashi
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takahiro Kunihara
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Rika Fujimoto
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuji Yamamoto
- Laboratory of Biomolecular Science, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takao Mukai
- Laboratory of Biomolecular Science, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
8
|
Abdullah IT, Ulijasz AT, Girija UV, Tam S, Andrew P, Hiller NL, Wallis R, Yesilkaya H. Structure‐function analysis for development of peptide inhibitors for a Gram positive quorum sensing system. Mol Microbiol 2022; 117:1464-1478. [PMID: 35575437 PMCID: PMC9233744 DOI: 10.1111/mmi.14921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
The Streptococcus pneumoniae Rgg144/SHP144 regulator‐peptide quorum sensing (QS) system is critical for nutrient utilization, oxidative stress response, and virulence. Here, we characterized this system by assessing the importance of each residue within the active short hydrophobic peptide (SHP) by alanine‐scanning mutagenesis and testing the resulting peptides for receptor binding and activation of the receptor. Interestingly, several of the mutations had little effect on binding to Rgg144 but reduced transcriptional activation appreciably. In particular, a proline substitution (P21A) reduced transcriptional activation by 29‐fold but bound with a 3‐fold higher affinity than the wild‐type SHP. Consistent with the function of Rgg144, the mutant peptide led to decreased utilization of mannose and increased susceptibility to superoxide generator paraquat. Pangenome comparison showed full conservation of P21 across SHP144 allelic variants. Crystallization of Rgg144 in the absence of peptide revealed a comparable structure to the DNA bound and free forms of its homologs suggesting similar mechanisms of activation. Together, these analyses identify key interactions in a critical pneumococcal QS system. Further manipulation of the SHP has the potential to facilitate the development of inhibitors that are functional across strains. The approach described here is likely to be effective across QS systems in multiple species.
Collapse
Affiliation(s)
- Iman Tajer Abdullah
- Department of Respiratory Sciences University of Leicester Leicester United Kingdom
- Department of Biology, College of Science University of Kirkuk Iraq
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology Loyola University Chicago Maywood IL USA
| | | | - Sien Tam
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Peter Andrew
- Department of Respiratory Sciences University of Leicester Leicester United Kingdom
| | - N. Luisa Hiller
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Russell Wallis
- Department of Respiratory Sciences University of Leicester Leicester United Kingdom
| | - Hasan Yesilkaya
- Department of Respiratory Sciences University of Leicester Leicester United Kingdom
| |
Collapse
|
9
|
Scott H, Davies GJ, Armstrong Z. The structure of Phocaeicola vulgatus sialic acid acetylesterase. Acta Crystallogr D Struct Biol 2022; 78:647-657. [PMID: 35503212 PMCID: PMC9063846 DOI: 10.1107/s2059798322003357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sialic acids terminate many N- and O-glycans and are widely distributed on cell surfaces. There are a diverse range of enzymes which interact with these sugars throughout the tree of life. They can act as receptors for influenza and specific betacoronaviruses in viral binding and their cleavage is important in virion release. Sialic acids are also exploited by both commensal and pathogenic bacteria for nutrient acquisition. A common modification of sialic acid is 9-O-acetylation, which can limit the action of sialidases. Some bacteria, including human endosymbionts, employ esterases to overcome this modification. However, few bacterial sialic acid 9-O-acetylesterases (9-O-SAEs) have been structurally characterized. Here, the crystal structure of a 9-O-SAE from Phocaeicola vulgatus (PvSAE) is reported. The structure of PvSAE was determined to resolutions of 1.44 and 2.06 Å using crystals from two different crystallization conditions. Structural characterization revealed PvSAE to be a dimer with an SGNH fold, named after the conserved sequence motif of this family, and a Ser-His-Asp catalytic triad. These structures also reveal flexibility in the most N-terminal α-helix, which provides a barrier to active-site accessibility. Biochemical assays also show that PvSAE deacetylates both mucin and the acetylated chromophore para-nitrophenyl acetate. This structural and biochemical characterization of PvSAE furthers the understanding of 9-O-SAEs and may aid in the discovery of small molecules targeting this class of enzyme.
Collapse
Affiliation(s)
- Hannah Scott
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Gideon J. Davies
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Zachary Armstrong
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
- Department of Bioorganic Synthesis, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
10
|
Vo LK, Tran NT, Kubo Y, Sahashi D, Komatsu M, Shiozaki K. Enhancement of Edwardsiella piscicida infection, biofilm formation, and motility caused by N-acetylneuraminate lyase. Glycoconj J 2022; 39:429-442. [PMID: 35192095 DOI: 10.1007/s10719-022-10045-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023]
Abstract
Sialic acid and its catabolism are involved in bacterial pathogenicity. N-acetylneuraminate lyase (NAL), which catalyzes the reversible aldol cleavage of sialic acid to form N-acetyl-D-mannosamine in the first step of sialic acid degradation, has been recently investigated to elucidate whether NAL enhances bacterial virulence; however, the role of NAL in bacterial pathogenicity remains unclear. In the present study, we demonstrated that the existence of two enzymes in Edwardsiella piscicida, referred to as dihydrodipicolinate synthase (DHDPS) and NAL, induced the cleavage/condensation activity toward sialic acids such as N-acetylneuraminic acid, N-glycolylneuraminic acid and 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid. NAL enhanced cellular infection in vitro and suppressed the survival rate in zebrafish larvae in bath-infection in vivo, whereas DHDPS did not. Furthermore, NAL strongly activated the expression of E. piscicida phenotypes such as biofilm formation and motility, whereas DHDPS did not. Besides, the gene expression level of nanK, nanE, and glmU were up-regulated in the NAL-overexpressing strain, along with an increase in the total amount of N-acetylglucosamine.
Collapse
Affiliation(s)
- Linh Khanh Vo
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Nhung Thi Tran
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Yurina Kubo
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Daichi Sahashi
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Masaharu Komatsu
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.,Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan. .,Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
11
|
Alghofaili F, Najmuldeen H, Kareem BO, Shlla B, Fernandes VE, Danielsen M, Ketley JM, Freestone P, Yesilkaya H. Host Stress Signals Stimulate Pneumococcal Transition from Colonization to Dissemination into the Lungs. mBio 2021; 12:e0256921. [PMID: 34696596 PMCID: PMC8546540 DOI: 10.1128/mbio.02569-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is an asymptomatic colonizer of the nasopharynx, but it is also one of the most important bacterial pathogens of humans, causing a wide range of mild to life-threatening diseases. The basis of the pneumococcal transition from a commensal to a parasitic lifestyle is not fully understood. We hypothesize that exposure to host catecholamine stress hormones is important for this transition. In this study, we demonstrated that pneumococci preexposed to a hormone released during stress, norepinephrine (NE), have an increased capacity to translocate from the nasopharynx into the lungs compared to untreated pneumococci. Examination of NE-treated pneumococci revealed major alterations in metabolic profiles, cell associations, capsule synthesis, and cell size. By systemically mutating all 12 two-component and 1 orphan regulatory systems, we also identified a unique genetic regulatory circuit involved in pneumococcal recognition and responsiveness to human stress hormones. IMPORTANCE Microbes acquire unique lifestyles under different environmental conditions. Although this is a widespread occurrence, our knowledge of the importance of various host signals and their impact on microbial behavior is not clear despite the therapeutic value of this knowledge. We discovered that catecholamine stress hormones are the host signals that trigger the passage of Streptococcus pneumoniae from a commensal to a parasitic state. We identify that stress hormone treatment of this microbe leads to reductions in cell size and capsule synthesis and renders it more able to migrate from the nasopharynx into the lungs in a mouse model of infection. The microbe requires the TCS09 protein for the recognition and processing of stress hormone signals. Our work has particular clinical significance as catecholamines are abundant in upper respiratory fluids as well as being administered therapeutically to reduce inflammation in ventilated patients, which may explain why intubation in the critically ill is a recognized risk factor for the development of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Fayez Alghofaili
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
- Department of Biology, College of Science, Majmaah University, Majmaah, Saudi Arabia
| | - Hastyar Najmuldeen
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
- Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah, Iraq
| | - Banaz O. Kareem
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Bushra Shlla
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
- Department of Biology, College of Science, University of Mosul, Mosul, Iraq
| | - Vitor E. Fernandes
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Julian M. Ketley
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Primrose Freestone
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
12
|
González-Silvera D, Cuesta A, Esteban MÁ. Immune defence mechanisms presented in liver homogenates and bile of gilthead seabream (Sparus aurata). JOURNAL OF FISH BIOLOGY 2021; 99:1958-1967. [PMID: 34486119 DOI: 10.1111/jfb.14901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Because the role of the liver of fishes in providing possible immunity remains largely unknown, the aim of this work was to identify and characterize different humoral defence mechanisms in the liver homogenates and bile of gilthead seabream (Sparus aurata) for the first time. Total protein levels and several immune parameters (complement activity, lysozyme and immunoglobulin M level) were studied. Furthermore, the activity of some lytic (proteases, antiproteases, esterase, alkaline phosphatase) and antioxidant (superoxide dismutase, catalase and peroxidase) enzymes was determined. Finally, bacteriostatic activity on three opportunist fish pathogens (Vibrio harveyi, Vibrio angillarum and Photobacterium damselae) was measured. Lysozyme and antiprotease activity were undetected in liver and bile, while natural haemolytic complement activity was only detected in bile, and immunoglobulin M was detected in both samples. The levels of proteases, esterase and antioxidant enzymes were greater in bile than in liver homogenates, while the level of alkaline phosphatase was very low in both samples. In addition, while no bacteriostatic activity was detected on liver homogenates, the bile revealed a very potent bacteriostatic activity against all the tested pathogenic bacteria. These results corroborate that fish liver - especially fish bile - contains many factors involved in innate immunity that could be useful for better understanding the role of the liver as an organ involved in fish immune functions as well as the possible contribution of bile to gut mucosal immunity.
Collapse
Affiliation(s)
- Daniel González-Silvera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Maria Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
13
|
Gazioglu O, Kareem BO, Afzal M, Shafeeq S, Kuipers OP, Ulijasz AT, Andrew PW, Yesilkaya H. Glutamate Dehydrogenase (GdhA) of Streptococcus pneumoniae Is Required for High Temperature Adaptation. Infect Immun 2021; 89:e0040021. [PMID: 34491792 PMCID: PMC8594611 DOI: 10.1128/iai.00400-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022] Open
Abstract
During its progression from the nasopharynx to other sterile and nonsterile niches of its human host, Streptococcus pneumoniae must cope with changes in temperature. We hypothesized that the temperature adaptation is an important facet of pneumococcal survival in the host. Here, we evaluated the effect of temperature on pneumococcus and studied the role of glutamate dehydrogenase (GdhA) in thermal adaptation associated with virulence and survival. Microarray analysis revealed a significant transcriptional response to changes in temperature, affecting the expression of 252 genes in total at 34°C and 40°C relative to at 37°C. One of the differentially regulated genes was gdhA, which is upregulated at 40°C and downregulated at 34°C relative to 37°C. Deletion of gdhA attenuated the growth, cell size, biofilm formation, pH survival, and biosynthesis of proteins associated with virulence in a temperature-dependent manner. Moreover, deletion of gdhA stimulated formate production irrespective of temperature fluctuation. Finally, ΔgdhA grown at 40°C was less virulent than other temperatures or the wild type at the same temperature in a Galleria mellonella infection model, suggesting that GdhA is required for pneumococcal virulence at elevated temperature.
Collapse
Affiliation(s)
- Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Banaz O. Kareem
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
- Department of Medical Laboratory Science, College of Medicals and Applied Sciences, University of Charmo, Chamchamal, Iraq
| | - Muhammad Afzal
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Sulman Shafeeq
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Oscar P. Kuipers
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Peter W. Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
14
|
Shlla B, Gazioglu O, Shafeeq S, Manzoor I, Kuipers OP, Ulijasz A, Hiller NL, Andrew PW, Yesilkaya H. The Rgg1518 transcriptional regulator is a necessary facet of sugar metabolism and virulence in Streptococcus pneumoniae. Mol Microbiol 2021; 116:996-1008. [PMID: 34328238 PMCID: PMC8460608 DOI: 10.1111/mmi.14788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Rggs are a group of transcriptional regulators with diverse roles in metabolism and virulence. Here, we present work on the Rgg1518/SHP1518 quorum sensing system of Streptococcus pneumoniae. The activity of Rgg1518 is induced by its cognate peptide, SHP1518. In vitro analysis showed that the Rgg1518 system is active in conditions rich in galactose and mannose, key nutrients during nasopharyngeal colonization. Rgg1518 expression is highly induced in the presence of these sugars and its isogenic mutant is attenuated in growth on galactose and mannose. When compared with other Rgg systems, Rgg1518 has the largest regulon on galactose. On galactose it controls up- or downregulation of a functionally diverse set of genes involved in galactose metabolism, capsule biosynthesis, iron metabolism, protein translation, as well as other metabolic functions, acting mainly as a repressor of gene expression. Rgg1518 is a repressor of capsule biosynthesis, and binds directly to the capsule regulatory region. Comparison with other Rggs revealed inter-regulatory interactions among Rggs. Finally, the rgg1518 mutant is attenuated in colonization and virulence in a mouse model of colonization and pneumonia. We conclude that Rgg1518 is a virulence determinant that contributes to a regulatory network composed of multiple Rgg systems.
Collapse
Affiliation(s)
- Bushra Shlla
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Department of Biology, College of Science, University of Mosul, Mosul, Iraq
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Sulman Shafeeq
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Irfan Manzoor
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Andrew Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Peter W Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
15
|
Ling AJW, Chang LS, Babji AS, Latip J, Koketsu M, Lim SJ. Review of sialic acid's biochemistry, sources, extraction and functions with special reference to edible bird's nest. Food Chem 2021; 367:130755. [PMID: 34390910 DOI: 10.1016/j.foodchem.2021.130755] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Sialic acids are a group of nine-carbon α-keto acids. Sialic acid exists in more than 50 forms, with the natural types discovered as N-acetylneuraminic acid (Neu5Ac), deaminoneuraminic acid (2-keto-3-deoxy-nonulononic acid or Kdn), and N-glycolylneuraminic acid (Neu5Gc). Sialic acid level varies depending on the source, where edible bird's nest (EBN), predominantly Neu5Ac, is among the major sources of sialic acid. Due to its high nutritive value and complexity, sialic acid has been studied extensively through acid, aqueous, and enzymatic extraction. Although detection by chromatographic methods or mass spectrometry is common, the isolation and recovery work remained limited. Sialic acid is well-recognised for its bioactivities, including brain and cognition development, immune-enhancing, anti-hypertensive, anticancer, and skin whitening properties. Therefore, sialic acid can be used as a functional ingredient in the various industries. This paper reviews the current trend in the biochemistry, sources, extraction, and functions of sialic acids with special reference to EBN.
Collapse
Affiliation(s)
- Alvin Jin Wei Ling
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Lee Sin Chang
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Abdul Salam Babji
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Centre for Innovation and Technology Transfer (INOVASI@UKM), Chancellery, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Jalifah Latip
- Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
16
|
Visser EA, Moons SJ, Timmermans SBPE, de Jong H, Boltje TJ, Büll C. Sialic acid O-acetylation: From biosynthesis to roles in health and disease. J Biol Chem 2021; 297:100906. [PMID: 34157283 PMCID: PMC8319020 DOI: 10.1016/j.jbc.2021.100906] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Sialic acids are nine-carbon sugars that frequently cap glycans at the cell surface in cells of vertebrates as well as cells of certain types of invertebrates and bacteria. The nine-carbon backbone of sialic acids can undergo extensive enzymatic modification in nature and O-acetylation at the C-4/7/8/9 position in particular is widely observed. In recent years, the detection and analysis of O-acetylated sialic acids have advanced, and sialic acid-specific O-acetyltransferases (SOATs) and O-acetylesterases (SIAEs) that add and remove O-acetyl groups, respectively, have been identified and characterized in mammalian cells, invertebrates, bacteria, and viruses. These advances now allow us to draw a more complete picture of the biosynthetic pathway of the diverse O-acetylated sialic acids to drive the generation of genetically and biochemically engineered model cell lines and organisms with altered expression of O-acetylated sialic acids for dissection of their roles in glycoprotein stability, development, and immune recognition, as well as discovery of novel functions. Furthermore, a growing number of studies associate sialic acid O-acetylation with cancer, autoimmunity, and infection, providing rationale for the development of selective probes and inhibitors of SOATs and SIAEs. Here, we discuss the current insights into the biosynthesis and biological functions of O-acetylated sialic acids and review the evidence linking this modification to disease. Furthermore, we discuss emerging strategies for the design, synthesis, and potential application of unnatural O-acetylated sialic acids and inhibitors of SOATs and SIAEs that may enable therapeutic targeting of this versatile sialic acid modification.
Collapse
Affiliation(s)
- Eline A Visser
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sam J Moons
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Suzanne B P E Timmermans
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Heleen de Jong
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Hubrecht Institute, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Hammond AJ, Binsker U, Aggarwal SD, Ortigoza MB, Loomis C, Weiser JN. Neuraminidase B controls neuraminidase A-dependent mucus production and evasion. PLoS Pathog 2021; 17:e1009158. [PMID: 33819312 PMCID: PMC8049478 DOI: 10.1371/journal.ppat.1009158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/15/2021] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Binding of Streptococcus pneumoniae (Spn) to nasal mucus leads to entrapment and clearance via mucociliary activity during colonization. To identify Spn factors allowing for evasion of mucus binding, we used a solid-phase adherence assay with immobilized mucus of human and murine origin. Spn bound large mucus particles through interactions with carbohydrate moieties. Mutants lacking neuraminidase A (nanA) or neuraminidase B (nanB) showed increased mucus binding that correlated with diminished removal of terminal sialic acid residues on bound mucus. The non-additive activity of the two enzymes raised the question why Spn expresses two neuraminidases and suggested they function in the same pathway. Transcriptional analysis demonstrated expression of nanA depends on the enzymatic function of NanB. As transcription of nanA is increased in the presence of sialic acid, our findings suggest that sialic acid liberated from host glycoconjugates by the secreted enzyme NanB induces the expression of the cell-associated enzyme NanA. The absence of detectable mucus desialylation in the nanA mutant, in which NanB is still expressed, suggests that NanA is responsible for the bulk of the modification of host glycoconjugates. Thus, our studies describe a functional role for NanB in sialic acid sensing in the host. The contribution of the neuraminidases in vivo was then assessed in a murine model of colonization. Although mucus-binding mutants showed an early advantage, this was only observed in a competitive infection, suggesting a complex role of neuraminidases. Histologic examination of the upper respiratory tract demonstrated that Spn stimulates mucus production in a neuraminidase-dependent manner. Thus, an increase production of mucus containing secretions appears to be balanced, in vivo, by decreased mucus binding. We postulate that through the combined activity of its neuraminidases, Spn evades mucus binding and mucociliary clearance, which is needed to counter neuraminidase-mediated stimulation of mucus secretions.
Collapse
Affiliation(s)
- Alexandria J. Hammond
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Ulrike Binsker
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Surya D. Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Mila Brum Ortigoza
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, United States of America
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
18
|
Jung DH, Yong JH, Hwang W, Yoon MY, Yoon SS. An efficient system for intestinal on-site butyrate production using novel microbiome-derived esterases. J Biol Eng 2021; 15:9. [PMID: 33676548 PMCID: PMC7936488 DOI: 10.1186/s13036-021-00259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
Short-chain fatty acids, especially butyrate, play beneficial roles in sustaining gastrointestinal health. However, due to limitations associated with direct consumption of butyrate, there has been interest in using prodrugs of butyrate. Tributyrin (TB), a triglyceride composed of three butyrate molecules and a glycerol, is a well-studied precursor of butyrate. We screened a metagenome library consisting of 5760 bacterial artificial chromosome clones, with DNA inserts originating from mouse microbiomes, and identified two clones that efficiently hydrolyse TB into butyrate. Nucleotide sequence analysis indicated that inserts in these two clones are derived from unknown microbes. BLASTp analysis, however, revealed that each insert contains a gene homologous to acetylesterase or esterase genes, from Clostridium spp. and Bacteroides spp., respectively. Predicted structures of these two proteins both contain serine-histidine-aspartate catalytic triad, highly conserved in the family of esterases. Escherichia coli host expressing each of the two candidate genes invariably produced greater amounts of butyrate in the presence of TB. Importantly, administration of TB together with cloned E. coli cells alleviated inflammatory symptoms in a mouse model of acute colitis. Based on these results, we established an efficient on-site and real-time butyrate production system that releases butyrate in a controlled manner inside the intestine.
Collapse
Affiliation(s)
- Dah Hyun Jung
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Yong
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wontae Hwang
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Young Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Minhas V, Paton JC, Trappetti C. Sickly Sweet - How Sugar Utilization Impacts Pneumococcal Disease Progression. Trends Microbiol 2021; 29:768-771. [PMID: 33612397 DOI: 10.1016/j.tim.2021.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen that can spread to multiple sites in the body. However, the mechanisms dictating disease spread are not well understood. Here we highlight the importance of carbohydrate utilization systems on pneumococcal disease, offering insight into how this pathogen causes a spectrum of disease.
Collapse
Affiliation(s)
- Vikrant Minhas
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia.
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
20
|
Green SI, Gu Liu C, Yu X, Gibson S, Salmen W, Rajan A, Carter HE, Clark JR, Song X, Ramig RF, Trautner BW, Kaplan HB, Maresso AW. Targeting of Mammalian Glycans Enhances Phage Predation in the Gastrointestinal Tract. mBio 2021; 12:e03474-20. [PMID: 33563833 PMCID: PMC7885116 DOI: 10.1128/mbio.03474-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
The human gastrointestinal mucosal surface consists of a eukaryotic epithelium, a prokaryotic microbiota, and a carbohydrate-rich interface that separates them. In the gastrointestinal tract, the interaction of bacteriophages (phages) and their prokaryotic hosts influences the health of the mammalian host, especially colonization with invasive pathobionts. Antibiotics may be used, but they also kill protective commensals. Here, we report a novel phage whose lytic cycle is enhanced in intestinal environments. The tail fiber gene, whose protein product binds human heparan sulfated proteoglycans and localizes the phage to the epithelial cell surface, positions it near its bacterial host, a type of locational targeting mechanism. This finding offers the prospect of developing mucosal targeting phage to selectively remove invasive pathobiont species from mucosal surfaces.IMPORTANCE Invasive pathobionts or microbes capable of causing disease can reside deep within the mucosal epithelium of our gastrointestinal tract. Targeted effective antibacterial therapies are needed to combat these disease-causing organisms, many of which may be multidrug resistant. Here, we isolated a lytic bacteriophage (phage) that can localize to the epithelial surface by binding heparan sulfated glycans, positioning it near its host, Escherichia coli This targeted therapy can be used to selectively remove invasive pathobionts from the gastrointestinal tract, preventing the development of disease.
Collapse
Affiliation(s)
- Sabrina I Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xue Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shelley Gibson
- Department of Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Wilhem Salmen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah E Carter
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara W Trautner
- Michael E. Debakey Veterans Affairs Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Heidi B Kaplan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
21
|
Hansen AL, Reily C, Novak J, Renfrow MB. Immunoglobulin A Glycosylation and Its Role in Disease. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:433-477. [PMID: 34687019 DOI: 10.1007/978-3-030-76912-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human IgA is comprised of two subclasses, IgA1 and IgA2. Monomeric IgA (mIgA), polymeric IgA (pIgA), and secretory IgA (SIgA) are the main molecular forms of IgA. The production of IgA rivals all other immunoglobulin isotypes. The large quantities of IgA reflect the fundamental roles it plays in immune defense, protecting vulnerable mucosal surfaces against invading pathogens. SIgA dominates mucosal surfaces, whereas IgA in circulation is predominately monomeric. All forms of IgA are glycosylated, and the glycans significantly influence its various roles, including antigen binding and the antibody effector functions, mediated by the Fab and Fc portions, respectively. In contrast to its protective role, the aberrant glycosylation of IgA1 has been implicated in the pathogenesis of autoimmune diseases, such as IgA nephropathy (IgAN) and IgA vasculitis with nephritis (IgAVN). Furthermore, detailed characterization of IgA glycosylation, including its diverse range of heterogeneity, is of emerging interest. We provide an overview of the glycosylation observed for each subclass and molecular form of IgA as well as the range of heterogeneity for each site of glycosylation. In many ways, the role of IgA glycosylation is in its early stages of being elucidated. This chapter provides an overview of the current knowledge and research directions.
Collapse
Affiliation(s)
- Alyssa L Hansen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Colin Reily
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
22
|
Su A, Tong J, Fu Y, Müller S, Weldearegay YB, Becher P, Valentin-Weigand P, Meens J, Herrler G. Infection of bovine well-differentiated airway epithelial cells by Pasteurella multocida: actions and counteractions in the bacteria-host interactions. Vet Res 2020; 51:140. [PMID: 33225994 PMCID: PMC7681981 DOI: 10.1186/s13567-020-00861-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
Pasteurella (P.) multocida is a zoonotic pathogen, which is able to cause respiratory disorder in different hosts. In cattle, P. multocida is an important microorganism involved in the bovine respiratory disease complex (BRDC) with a huge economic impact. We applied air–liquid interface (ALI) cultures of well-differentiated bovine airway epithelial cells to analyze the interaction of P. multocida with its host target cells. The bacterial pathogen grew readily on the ALI cultures. Infection resulted in a substantial loss of ciliated cells. Nevertheless, the epithelial cell layer maintained its barrier function as indicated by the transepithelial electrical resistance and the inability of dextran to get from the apical to the basolateral compartment via the paracellular route. Analysis by confocal immunofluorescence microscopy confirmed the intactness of the epithelial cell layer though it was not as thick as the uninfected control cells. Finally, we chose the bacterial neuraminidase to show that our infection model is a sustainable tool to analyze virulence factors of P. multocida. Furthermore, we provide an explanation, why this microorganism usually is a commensal and becomes pathogenic only in combination with other factors such as co-infecting microorganisms.
Collapse
Affiliation(s)
- Ang Su
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Jie Tong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yuguang Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Sandy Müller
- Institute of Microbiology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | | | - Paul Becher
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute of Microbiology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Jochen Meens
- Institute of Microbiology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany.
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany.
| |
Collapse
|
23
|
Fellner M, Lentz CS, Jamieson SA, Brewster JL, Chen L, Bogyo M, Mace PD. Structural Basis for the Inhibitor and Substrate Specificity of the Unique Fph Serine Hydrolases of Staphylococcus aureus. ACS Infect Dis 2020; 6:2771-2782. [PMID: 32865965 DOI: 10.1021/acsinfecdis.0c00503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Staphylococcus aureus is a prevalent bacterial pathogen in both community and hospital settings, and its treatment is made particularly difficult by resilience within biofilms. Within this niche, serine hydrolase enzymes play a key role in generating and maintaining the biofilm matrix. Activity-based profiling has previously identified a family of serine hydrolases, designated fluorophosphonate-binding hydrolases (Fph's), some of which contribute to the virulence of S. aureus in vivo. These 10 Fph proteins have limited annotation and have few, if any, characterized bacterial or mammalian homologues. This suggests unique hydrolase functions even within bacterial species. Here we report structures of one of the most abundant Fph family members, FphF. Our structures capture FphF alone, covalently bound to a substrate analogue and bound to small molecule inhibitors that occupy the hydrophobic substrate-binding pocket. In line with these findings, we show that FphF has promiscuous esterase activity toward hydrophobic lipid substrates. We present docking studies that characterize interactions of inhibitors and substrates within the active site environment, which can be extended to other Fph family members. Comparison of FphF to other esterases and the wider Fph protein family suggest that FphF forms a new esterase subfamily. Our data suggest that other Fph enzymes, including the virulence factor FphB, are likely to have more restricted substrate profiles than FphF. This work demonstrates a clear molecular rationale for the specificity of fluorophosphonate probes that target FphF and provides a structural template for the design of enhanced probes and inhibitors of the Fph family of serine hydrolases.
Collapse
Affiliation(s)
- Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Christian S. Lentz
- Pathology, Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT − The Arctic University of Norway, Tromsø N-9037, Norway
| | - Sam A. Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Jodi L. Brewster
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Linhai Chen
- Pathology, Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Matthew Bogyo
- Pathology, Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Peter D. Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
24
|
Echlin H, Frank M, Rock C, Rosch JW. Role of the pyruvate metabolic network on carbohydrate metabolism and virulence in Streptococcus pneumoniae. Mol Microbiol 2020; 114:536-552. [PMID: 32495474 DOI: 10.1111/mmi.14557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen that must adapt to unique nutritional environments in several host niches. The pneumococcus can metabolize a range of carbohydrates that feed into glycolysis ending in pyruvate, which is catabolized by several enzymes. We investigated how the pneumococcus utilizes these enzymes to metabolize different carbohydrates and how this impacts survival in the host. Loss of ldh decreased bacterial burden in the nasopharynx and enhanced bacteremia in mice. Loss of spxB, pdhC or pfl2 decreased bacteremia and increased host survival. In glucose or galactose, loss of ldh increased capsule production, whereas loss of spxB and pdhC reduced capsule production. The pfl2 mutant exhibited reduced capsule production only in galactose. In glucose, pyruvate was metabolized primarily by LDH to generate lactate and NAD+ and by SpxB and PDHc to generate acetyl-CoA. In galactose, pyruvate metabolism was shunted toward acetyl-CoA production. The majority of acetyl-CoA generated by PFL was used to regenerate NAD+ with a subset used in capsule production, while the acetyl-CoA generated by SpxB and PDHc was utilized primarily for capsule biosynthesis. These data suggest that the pneumococcus can alter flux of pyruvate metabolism dependent on the carbohydrate present to succeed in distinct host niches.
Collapse
Affiliation(s)
- Haley Echlin
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
25
|
Liu Y, Gong Q, Qian X, Li D, Zeng H, Li Y, Xue F, Ren J, Zhu Ge X, Tang F, Dai J. Prophage phiv205-1 facilitates biofilm formation and pathogenicity of avian pathogenic Escherichia coli strain DE205B. Vet Microbiol 2020; 247:108752. [PMID: 32768206 DOI: 10.1016/j.vetmic.2020.108752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022]
Abstract
Avian colibacillosis caused by avian pathogenic Escherichia coli (APEC) causes significant economic losses to the poultry industry worldwide and is also a leading potential threat to human health. Bacteriophages integrate into the host bacterial chromosome, and are an important source of genetic variation and have a major impact on bacterial evolution. Previously, we predicted prophage phiv205-1 in APEC strain DE205B. Here, to determine the function of prophage phiv205-1, we constructed the prophage deletion mutant DE205BΔphiv205-1. Compared with the wild-type (WT) APEC strain DE205B, the adherence and invasive abilities of DE205BΔphiv205-1 were reduced by 41.88 %(P < 0.05). Further, the mutant strain had 52.38 % reduced biofilm formation compared with the WT strain (P < 0.001). Chick challenge showed that the median lethal dose (LD50) of the mutant strain and WT strain was 3.13 × 105 colony-forming units (CFU) and 3.86 × 104 CFU, respectively, indicating that the mutant strain had decreased virulence compared with the WT strain. Furthermore, in vivo studies showed that, compared with the WT strain, DE205BΔphiv205-1 bacterial loads were reduced by 1.6-fold (P < 0.05) and 4.8-fold (P < 0.001) in the lungs and brains, respectively, of the infected chicks. In conclusion, the prophage phiv205-1 contributes to the virulence of APEC strain DE205B by facilitating the adherence, biofilm formation, and colonization abilities of its host strain.
Collapse
Affiliation(s)
- Yun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College ofVeterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qianwen Gong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College ofVeterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinjie Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College ofVeterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dezhi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College ofVeterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hang Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College ofVeterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College ofVeterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College ofVeterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College ofVeterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangkai Zhu Ge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College ofVeterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College ofVeterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College ofVeterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Andreassen PR, Trappetti C, Minhas V, Nielsen FD, Pakula K, Paton JC, Jørgensen MG. Host-glycan metabolism is regulated by a species-conserved two-component system in Streptococcus pneumoniae. PLoS Pathog 2020; 16:e1008332. [PMID: 32130269 PMCID: PMC7075642 DOI: 10.1371/journal.ppat.1008332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 03/16/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022] Open
Abstract
Pathogens of the Streptococcus genus inhabit many different environmental niches during the course of an infection in a human host and the bacteria must adjust their metabolism according to available nutrients. Despite their lack of the citric-acid cycle, some streptococci proliferate in niches devoid of a readily available carbohydrate source. Instead they rely on carbohydrate scavenging for energy acquisition, which are obtained from the host. Here we discover a two-component system (TCS07) of Streptococcus pneumoniae that responds to glycoconjugated structures on proteins present on the host cells. Using next-generation RNA sequencing we find that the uncharacterized TCS07 regulon encodes proteins important for host-glycan processing and transporters of the released glycans, as well as intracellular carbohydrate catabolizing enzymes. We find that a functional TCS07 allele is required for growth on the glycoconjugated model protein fetuin. Consistently, we see a TCS07-dependent activation of the glycan degradation pathway. Thus, we pinpoint the molecular constituents responsible for sensing host derived glycans and link this to the induction of the proteins necessary for glycan degradation. Furthermore, we connect the TCS07 regulon to virulence in a mouse model, thereby establishing that host-derived glycan-metabolism is important for infection in vivo. Finally, a comparative phylogenomic analysis of strains from the Streptococcus genus reveal that TCS07 and most of its regulon is specifically conserved in species that utilize host-glycans for growth. Worldwide, Streptococcus pneumoniae is the most common cause of community acquired pneumonia with high mortality rates. Interestingly, S. pneumoniae strictly relies on carbohydrate scavenging for energy acquisition, which are obtained from the host. This is a critical step in pathogenesis and a common mechanism among Streptococcal species. In this study, we discover an uncharacterized two-component system that responds to the carbohydrate structures present on the host cells. These are important findings as we describe the molecular mechanism responsible for sensing these host derived glycans, and how this mechanism is linked to virulence, thus highlighting that glycan metabolism is important for infection in vivo, thereby posing a novel target for intervention. Our phylogenetic analysis reveals that the two-component system and the genetic regulon co-occur and are specifically conserved among Streptococcal species capable of degrading host-glycans.
Collapse
Affiliation(s)
| | - Claudia Trappetti
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Vikrant Minhas
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | | | - Kevin Pakula
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - James C. Paton
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
27
|
Kida Y, Yamamoto T, Kuwano K. SdsA1, a secreted sulfatase, contributes to the in vivo virulence of Pseudomonas aeruginosa in mice. Microbiol Immunol 2020; 64:280-295. [PMID: 31907968 DOI: 10.1111/1348-0421.12772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/10/2019] [Accepted: 01/05/2020] [Indexed: 01/08/2023]
Abstract
Mucin is a glycoprotein that is the primary component of the mucus overlaying the epithelial tissues. Because mucin functions as a first line of the innate immune system, Pseudomonas aeruginosa appears to require interaction with mucin to establish infection in the host. However, the interactions between P. aeruginosa and mucin have been poorly understood. In this study, using in vivo expression technology (IVET), we attempted to identify mucin-inducible promoters that are likely to be involved in the establishment of P. aeruginosa infection. The IVET analysis revealed that the genes encoding glycosidases, sulfatases, and peptidases that are thought to be required for the utilization of mucin as a nutrient are present in 13 genes downstream of the identified promoters. Our results indicated that, among them, sdsA1 encoding a secreted sulfatase plays a central role in the degradation of mucin. It was then demonstrated that disruption of sdsA1 leads to a decreased release of sulfate from mucin and sulfated sugars. Furthermore, the sdsA1 mutant showed a reduction in the ability of mucin gel penetration and an attenuation of virulence in leukopenic mice compared with the wild-type strain. Collectively, these results suggest that SdsA1 plays an important role as a virulence factor of P. aeruginosa.
Collapse
Affiliation(s)
- Yutaka Kida
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Takeshi Yamamoto
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Koichi Kuwano
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| |
Collapse
|
28
|
MacMillan JL, Vicaretti SD, Noyovitz B, Xing X, Low KE, Inglis GD, Zaytsoff SJ, Boraston AB, Smith SP, Uwiera RR, Selinger LB, Zandberg WF, Abbott DW. Structural analysis of broiler chicken small intestinal mucin O-glycan modification by Clostridium perfringens. Poult Sci 2019; 98:5074-5088. [DOI: 10.3382/ps/pez297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
|
29
|
Identification of Pneumococcal Factors Affecting Pneumococcal Shedding Shows that the dlt Locus Promotes Inflammation and Transmission. mBio 2019; 10:mBio.01032-19. [PMID: 31213554 PMCID: PMC6581856 DOI: 10.1128/mbio.01032-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a common cause of respiratory tract and invasive infection. The overall effectiveness of immunization with the organism’s capsular polysaccharide depends on its ability to block colonization of the upper respiratory tract and thereby prevent host-to-host transmission. Because of the limited coverage of current pneumococcal vaccines, we carried out an unbiased in vivo transposon mutagenesis screen to identify pneumococcal factors other than its capsular polysaccharide that affect transmission. One such candidate was expressed by the dlt locus, previously shown to add d-alanine onto the pneumococcal lipoteichoic acid present on the bacterial cell surface. This modification protects against host antimicrobials and augments host inflammatory responses. The latter increases secretions and bacterial shedding from the upper respiratory tract to allow for transmission. Thus, this study provides insight into a mechanism employed by the pneumococcus to successfully transit from one host to another. Host-to-host transmission is a necessary but poorly understood aspect of microbial pathogenesis. Herein, we screened a genomic library of mutants of the leading respiratory pathogen Streptococcus pneumoniae generated by mariner transposon mutagenesis (Tn-Seq) to identify genes contributing to its exit or shedding from the upper respiratory tract (URT), the limiting step in the organism’s transmission in an infant mouse model. Our analysis focused on genes affecting the bacterial surface that directly impact interactions with the host. Among the multiple factors identified was the dlt locus, which adds d-alanine onto lipoteichoic acids (LTA) and thereby increases Toll-like receptor 2-mediated inflammation and resistance to antimicrobial peptides. The more robust proinflammatory response in the presence of d-alanylation promotes secretions that facilitate pneumococcal shedding and allows for transmission. Expression of the dlt locus is controlled by the CiaRH system, which senses cell wall stress in response to antimicrobial activity, including in response to lysozyme, the most abundant antimicrobial along the URT mucosa. Accordingly, in a lysM−/− host, there was no longer an effect of the dlt locus on pneumococcal shedding. Thus, our findings demonstrate how a pathogen senses the URT milieu and then modifies its surface characteristics to take advantage of the host response for transit to another host.
Collapse
|
30
|
Janesch P, Rouha H, Badarau A, Stulik L, Mirkina I, Caccamo M, Havlicek K, Maierhofer B, Weber S, Groß K, Steinhäuser J, Zerbs M, Varga C, Dolezilkova I, Maier S, Zauner G, Nielson N, Power CA, Nagy E. Assessing the function of pneumococcal neuraminidases NanA, NanB and NanC in in vitro and in vivo lung infection models using monoclonal antibodies. Virulence 2019; 9:1521-1538. [PMID: 30289054 PMCID: PMC6177239 DOI: 10.1080/21505594.2018.1520545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Streptococcus pneumoniae isolates express up to three neuraminidases (sialidases), NanA, NanB and NanC, all of which cleave the terminal sialic acid of glycan-structures that decorate host cell surfaces. Most research has focused on the role of NanA with limited investigations evaluating the roles of all three neuraminidases in host-pathogen interactions. We generated two highly potent monoclonal antibodies (mAbs), one that blocks the enzymatic activity of NanA and one cross-neutralizing NanB and NanC. Total neuraminidase activity of clinical S. pneumoniae isolates could be inhibited by this mAb combination in enzymatic assays. To detect desialylation of cell surfaces by pneumococcal neuraminidases, primary human tracheal/bronchial mucocilial epithelial tissues were infected with S. pneumoniae and stained with peanut lectin. Simultaneous targeting of the neuraminidases was required to prevent desialylation, suggesting that inhibition of NanA alone is not sufficient to preserve terminal lung glycans. Importantly, we also found that all three neuraminidases increased the interaction of S. pneumoniae with human airway epithelial cells. Lectin-staining of lung tissues of mice pre-treated with mAbs before intranasal challenge with S. pneumoniae confirmed that both anti-NanA and anti-NanBC mAbs were required to effectively block desialylation of the respiratory epithelium in vivo. Despite this, no effect on survival, reduction in pulmonary bacterial load, or significant changes in cytokine responses were observed. This suggests that neuraminidases have no pivotal role in this murine pneumonia model that is induced by high bacterial challenge inocula and does not progress from colonization as it happens in the human host.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Karin Groß
- a Arsanis Biosciences , Vienna , Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Loughran AJ, Orihuela CJ, Tuomanen EI. Streptococcus pneumoniae: Invasion and Inflammation. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0004-2018. [PMID: 30873934 PMCID: PMC6422050 DOI: 10.1128/microbiolspec.gpp3-0004-2018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus pneumoniae (the pneumoccus) is the leading cause of otitis media, community-acquired pneumonia, and bacterial meningitis. The success of the pneumococcus stems from its ability to persist in the population as a commensal and avoid killing by immune system. This chapter first reviews the molecular mechanisms that allow the pneumococcus to colonize and spread from one anatomical site to the next. Then, it discusses the mechanisms of inflammation and cytotoxicity during emerging and classical pneumococcal infections.
Collapse
Affiliation(s)
- Allister J Loughran
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Carlos J Orihuela
- Department of Microbiology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| | - Elaine I Tuomanen
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
32
|
Function of BriC peptide in the pneumococcal competence and virulence portfolio. PLoS Pathog 2018; 14:e1007328. [PMID: 30308062 PMCID: PMC6181422 DOI: 10.1371/journal.ppat.1007328] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is an opportunistic pathogen that causes otitis media, sinusitis, pneumonia, meningitis and sepsis. The progression to this pathogenic lifestyle is preceded by asymptomatic colonization of the nasopharynx. This colonization is associated with biofilm formation; the competence pathway influences the structure and stability of biofilms. However, the molecules that link the competence pathway to biofilm formation are unknown. Here, we describe a new competence-induced gene, called briC, and demonstrate that its product promotes biofilm development and stimulates colonization in a murine model. We show that expression of briC is induced by the master regulator of competence, ComE. Whereas briC does not substantially influence early biofilm development on abiotic surfaces, it significantly impacts later stages of biofilm development. Specifically, briC expression leads to increases in biofilm biomass and thickness at 72h. Consistent with the role of biofilms in colonization, briC promotes nasopharyngeal colonization in the murine model. The function of BriC appears to be conserved across pneumococci, as comparative genomics reveal that briC is widespread across isolates. Surprisingly, many isolates, including strains from clinically important PMEN1 and PMEN14 lineages, which are widely associated with colonization, encode a long briC promoter. This long form captures an instance of genomic plasticity and functions as a competence-independent expression enhancer that may serve as a precocious point of entry into this otherwise competence-regulated pathway. Moreover, overexpression of briC by the long promoter fully rescues the comE-deletion induced biofilm defect in vitro, and partially in vivo. These findings indicate that BriC may bypass the influence of competence in biofilm development and that such a pathway may be active in a subset of pneumococcal lineages. In conclusion, BriC is a part of the complex molecular network that connects signaling of the competence pathway to biofilm development and colonization. Pneumococcal biofilms occur in chronic otitis media, chronic rhinosinusitis, and nasopharyngeal colonization. These biofilms are an important component of pneumococcal epidemiology, particularly in influencing transmission, maintenance of asymptomatic colonization, and development of disease. The transcriptional program initiated via signaling of the competence pathway is critical for productive biofilm formation and is a strong contributor of pneumococcal infection and adaptation. In this study, we have identified BriC, a previously uncharacterized peptide that serves as a bridge between the competence pathway and biofilm development. We show that briC is induced by ComE, the master regulator of competence, and promotes biofilm development. Moreover, our studies in the murine model demonstrate that BriC is a novel colonization enhancer. Our studies of briC regulation capture an instance of genomic plasticity, where natural variation in the briC promoter sequence reveals the existence of an additional competence-independent regulatory unit. This natural variation may be able to modify the extent to which competence contributes to biofilm development and to nasopharyngeal colonization across different pneumococcal lineages. In summary, this study introduces a colonization factor and reveals a molecular link between competence and biofilm development.
Collapse
|
33
|
Growth advantage of Escherichia coli O104:H4 strains on 5- N -acetyl-9- O -acetyl neuraminic acid as a carbon source is dependent on heterogeneous phage-Borne nanS-p esterases. Int J Med Microbiol 2018; 308:459-468. [DOI: 10.1016/j.ijmm.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/10/2023] Open
|
34
|
Glanville DG, Han L, Maule AF, Woodacre A, Thanki D, Abdullah IT, Morrissey JA, Clarke TB, Yesilkaya H, Silvaggi NR, Ulijasz AT. RitR is an archetype for a novel family of redox sensors in the streptococci that has evolved from two-component response regulators and is required for pneumococcal colonization. PLoS Pathog 2018; 14:e1007052. [PMID: 29750817 PMCID: PMC5965902 DOI: 10.1371/journal.ppat.1007052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/23/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023] Open
Abstract
To survive diverse host environments, the human pathogen Streptococcus pneumoniae must prevent its self-produced, extremely high levels of peroxide from reacting with intracellular iron. However, the regulatory mechanism(s) by which the pneumococcus accomplishes this balance remains largely enigmatic, as this pathogen and other related streptococci lack all known redox-sensing transcription factors. Here we describe a two-component-derived response regulator, RitR, as the archetype for a novel family of redox sensors in a subset of streptococcal species. We show that RitR works to both repress iron transport and enable nasopharyngeal colonization through a mechanism that exploits a single cysteine (Cys128) redox switch located within its linker domain. Biochemical experiments and phylogenetics reveal that RitR has diverged from the canonical two-component virulence regulator CovR to instead dimerize and bind DNA only upon Cys128 oxidation in air-rich environments. Atomic structures show that Cys128 oxidation initiates a "helical unravelling" of the RitR linker region, suggesting a mechanism by which the DNA-binding domain is then released to interact with its cognate regulatory DNA. Expanded computational studies indicate this mechanism could be shared by many microbial species outside the streptococcus genus.
Collapse
Affiliation(s)
- David G. Glanville
- Department of Microbiology and Immunology, Loyola University Chicago; Maywood, IL, United States of America
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Lanlan Han
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Andrew F. Maule
- Department of Horticulture, University of Wisconsin–Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Alexandra Woodacre
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Devsaagar Thanki
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Iman Tajer Abdullah
- Department of Infection and Immunity, University of Leicester, Leicester, United Kingdom
| | - Julie A. Morrissey
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Thomas B. Clarke
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Hasan Yesilkaya
- Department of Infection and Immunity, University of Leicester, Leicester, United Kingdom
| | - Nicholas R. Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago; Maywood, IL, United States of America
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Zhi X, Abdullah IT, Gazioglu O, Manzoor I, Shafeeq S, Kuipers OP, Hiller NL, Andrew PW, Yesilkaya H. Rgg-Shp regulators are important for pneumococcal colonization and invasion through their effect on mannose utilization and capsule synthesis. Sci Rep 2018; 8:6369. [PMID: 29686372 PMCID: PMC5913232 DOI: 10.1038/s41598-018-24910-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/05/2018] [Indexed: 01/18/2023] Open
Abstract
Microbes communicate with each other by using quorum sensing (QS) systems and modulate their collective 'behavior' for in-host colonization and virulence, biofilm formation, and environmental adaptation. The recent increase in genome data availability reveals the presence of several putative QS sensing circuits in microbial pathogens, but many of these have not been functionally characterized yet, despite their possible utility as drug targets. To increase the repertoire of functionally characterized QS systems in bacteria, we studied Rgg144/Shp144 and Rgg939/Shp939, two putative QS systems in the important human pathogen Streptococcus pneumoniae. We find that both of these QS circuits are induced by short hydrophobic peptides (Shp) upon sensing sugars found in the respiratory tract, such as galactose and mannose. Microarray analyses using cultures grown on mannose and galactose revealed that the expression of a large number of genes is controlled by these QS systems, especially those encoding for essential physiological functions and virulence-related genes such as the capsular locus. Moreover, the array data revealed evidence for cross-talk between these systems. Finally, these Rgg systems play a key role in colonization and virulence, as deletion mutants of these QS systems are attenuated in the mouse models of colonization and pneumonia.
Collapse
Affiliation(s)
- Xiangyun Zhi
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Iman Tajer Abdullah
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
- Department of Biology, College of Science, University of Kirkuk, Kirkuk, Iraq
| | - Ozcan Gazioglu
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Irfan Manzoor
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sulman Shafeeq
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Peter W Andrew
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
36
|
Hobbs JK, Pluvinage B, Boraston AB. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett 2018; 592:3865-3897. [PMID: 29608212 DOI: 10.1002/1873-3468.13045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is a frequent colonizer of the upper airways; however, it is also an accomplished pathogen capable of causing life-threatening diseases. To colonize and cause invasive disease, this bacterium relies on a complex array of factors to mediate the host-bacterium interaction. The respiratory tract is rich in functionally important glycoconjugates that display a vast range of glycans, and, thus, a key component of the pneumococcus-host interaction involves an arsenal of bacterial carbohydrate-active enzymes to depolymerize these glycans and carbohydrate transporters to import the products. Through the destruction of host glycans, the glycan-specific metabolic machinery deployed by S. pneumoniae plays a variety of roles in the host-pathogen interaction. Here, we review the processing and metabolism of the major host-derived glycans, including N- and O-linked glycans, Lewis and blood group antigens, proteoglycans, and glycogen, as well as some dietary glycans. We discuss the role of these metabolic pathways in the S. pneumoniae-host interaction, speculate on the potential of key enzymes within these pathways as therapeutic targets, and relate S. pneumoniae as a model system to glycan processing in other microbial pathogens.
Collapse
Affiliation(s)
- Joanne K Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| |
Collapse
|
37
|
Hetrodt F, Lausch J, Meyer-Lueckel H, Apel C, Conrads G. Natural saliva as an adjuvant in a secondary caries model based on Streptococcus mutans. Arch Oral Biol 2018; 90:138-143. [PMID: 29614462 DOI: 10.1016/j.archoralbio.2018.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Two factors for secondary caries formation were evaluated using an artificial biofilm model, saliva as additive in culture medium and bonding procedures of composite materials for artificial gap creation. DESIGN Standardized cavities were prepared in bovine tooth samples (n = 44), treated with two different bonding pretreatments, restored and after artificial ageing incubated with Streptococcus mutans in a Mueller-Hinton-Broth-Sugar medium with or without human saliva for seven days. Secondary caries formation was analyzed using confocal laser scanning microscopy and transversal microradiography. RESULTS Lesions were significantly pronounced in groups using saliva, but were not influenced by the bonding pretreatments. CONCLUSIONS The results indicate that the addition of saliva, but not the type of bonding procedure influences the outcome in the present biofilm-based secondary caries model.
Collapse
Affiliation(s)
- Franziska Hetrodt
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Julian Lausch
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Hendrik Meyer-Lueckel
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland.
| | - Christian Apel
- Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, Helmholtz Institute of RWTH Aachen University & Hospital, Pauwelsstraße 20, 52074, Aachen, Germany.
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
38
|
Identification and Crystallographic Analysis of a New Carbohydrate Acetylesterase (SmAcE1) from Sinorhizobium meliloti. CRYSTALS 2018. [DOI: 10.3390/cryst8010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Motib A, Guerreiro A, Al-Bayati F, Piletska E, Manzoor I, Shafeeq S, Kadam A, Kuipers O, Hiller L, Cowen T, Piletsky S, Andrew PW, Yesilkaya H. Modulation of Quorum Sensing in a Gram-Positive Pathogen by Linear Molecularly Imprinted Polymers with Anti-infective Properties. Angew Chem Int Ed Engl 2017; 56:16555-16558. [DOI: 10.1002/anie.201709313] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/01/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Anfal Motib
- Department of Infection, Immunity & Inflammation; University of Leicester; Leicester LE1 9HN UK
| | - Antonio Guerreiro
- MIP Diagnostics Ltd, Fielding Johnson Bldg.; University of Leicester; Leicester LE1 7RH UK
| | - Firas Al-Bayati
- Department of Infection, Immunity & Inflammation; University of Leicester; Leicester LE1 9HN UK
| | - Elena Piletska
- Chemistry Department; University of Leicester; Leicester LE1 7RH UK
| | - Irfan Manzoor
- Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Sulman Shafeeq
- Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Anagha Kadam
- Department of Biological Sciences; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Oscar Kuipers
- Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Luisa Hiller
- Department of Biological Sciences; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Todd Cowen
- Chemistry Department; University of Leicester; Leicester LE1 7RH UK
| | - Sergey Piletsky
- Chemistry Department; University of Leicester; Leicester LE1 7RH UK
| | - Peter W. Andrew
- Department of Infection, Immunity & Inflammation; University of Leicester; Leicester LE1 9HN UK
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation; University of Leicester; Leicester LE1 9HN UK
| |
Collapse
|
40
|
Motib A, Guerreiro A, Al-Bayati F, Piletska E, Manzoor I, Shafeeq S, Kadam A, Kuipers O, Hiller L, Cowen T, Piletsky S, Andrew PW, Yesilkaya H. Modulation of Quorum Sensing in a Gram-Positive Pathogen by Linear Molecularly Imprinted Polymers with Anti-infective Properties. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anfal Motib
- Department of Infection, Immunity & Inflammation; University of Leicester; Leicester LE1 9HN UK
| | - Antonio Guerreiro
- MIP Diagnostics Ltd, Fielding Johnson Bldg.; University of Leicester; Leicester LE1 7RH UK
| | - Firas Al-Bayati
- Department of Infection, Immunity & Inflammation; University of Leicester; Leicester LE1 9HN UK
| | - Elena Piletska
- Chemistry Department; University of Leicester; Leicester LE1 7RH UK
| | - Irfan Manzoor
- Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Sulman Shafeeq
- Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Anagha Kadam
- Department of Biological Sciences; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Oscar Kuipers
- Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Luisa Hiller
- Department of Biological Sciences; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Todd Cowen
- Chemistry Department; University of Leicester; Leicester LE1 7RH UK
| | - Sergey Piletsky
- Chemistry Department; University of Leicester; Leicester LE1 7RH UK
| | - Peter W. Andrew
- Department of Infection, Immunity & Inflammation; University of Leicester; Leicester LE1 9HN UK
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation; University of Leicester; Leicester LE1 9HN UK
| |
Collapse
|
41
|
Riesbeck K. Hemolytic Uremic Syndrome Associated With Pneumococci in Children—An Elusive Mystery Now Explained? J Infect Dis 2017; 217:341-343. [DOI: 10.1093/infdis/jix306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
|