1
|
Vázquez Marrero VR, Doerner J, Wodzanowski KA, Zhang J, Lu A, Boyer FD, Vargas I, Hossain S, Kammann KB, Dresler MV, Shin S. Dendritic cells activate pyroptosis and effector-triggered apoptosis to restrict Legionella infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638189. [PMID: 40027713 PMCID: PMC11870440 DOI: 10.1101/2025.02.13.638189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The innate immune system relies on pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and guard proteins to monitor pathogen disruption of host cell processes. How different immune cell types engage PRR- and guard protein-dependent defenses in response to infection is poorly understood. Here, we show that macrophages and dendritic cells (DCs) respond in distinct ways to bacterial virulence activities. In macrophages, the bacterial pathogen Legionella pneumophila deploys its Dot/Icm type IV secretion system (T4SS) to deliver effector proteins that facilitate its robust intracellular replication. In contrast, T4SS activity triggers rapid DC death that potently restricts Legionella replication within this cell type. Intriguingly, we found that infected DCs exhibit considerable heterogeneity at the single cell level. Initially, a subset of DCs activate caspase-11 and NLRP3 inflammasome-dependent pyroptosis and release IL-1 β early during infection. At later timepoints, a separate DC population undergoes apoptosis driven by T4SS effectors that block host protein synthesis, thereby depleting the levels of the pro-survival proteins Mcl-1 and cFLIP. Together, pyroptosis and effector-triggered apoptosis robustly restrict Legionella replication in DCs. Collectively, our work suggests a model where Mcl-1 and cFLIP guard host translation in DCs, and that macrophages and DCs distinctly employ innate immune sensors and guard proteins to mount divergent responses to Legionella infection.
Collapse
|
2
|
Romanov KA, O'Connor TJ. Legionella pneumophila, a Rosetta stone to understanding bacterial pathogenesis. J Bacteriol 2024; 206:e0032424. [PMID: 39636264 PMCID: PMC11656745 DOI: 10.1128/jb.00324-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Legionella pneumophila is an environmentally acquired pathogen that causes respiratory disease in humans. While the discovery of L. pneumophila is relatively recent compared to other bacterial pathogens, over the past 50 years, L. pneumophila has emerged as a powerhouse for studying host-pathogen interactions. In its natural habitat of fresh water, L. pneumophila interacts with a diverse array of protozoan hosts and readily evolve to expand their host range. This has led to the accumulation of the most extensive arsenal of secreted virulence factors described for a bacterial pathogen and their ability to infect humans. Within amoebae and human alveolar macrophages, the bacteria replicate within specialized membrane-bound compartments, establishing L. pneumophila as a model for studying intracellular vacuolar pathogens. In contrast, the virulence factors required for intracellular replication are specifically tailored to individual host cells types, allowing the pathogen to adapt to variation between disparate niches. The broad host range of this pathogen, combined with the extensive diversity and genome plasticity across the Legionella genus, has thus established this bacterium as an archetype to interrogate pathogen evolution, functional genomics, and ecology. In this review, we highlight the features of Legionella that establish them as a versatile model organism, new paradigms in bacteriology and bacterial pathogenesis resulting from the study of Legionella, as well as current and future questions that will undoubtedly expand our understanding of the complex and intricate biology of the microbial world.
Collapse
Affiliation(s)
- Katerina A. Romanov
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara J. O'Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Su J, Yao B, Huang R, Liu X, Zhang Z, Zhang Y. Cross-Kingdom Pathogenesis of Pantoea alfalfae CQ10: Insights from Transcriptome and Proteome Analyses. Microorganisms 2024; 12:2197. [PMID: 39597586 PMCID: PMC11596184 DOI: 10.3390/microorganisms12112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
In grassland agroecosystems, some plant pathogenic bacteria can cause disease in animals. These strains are known as plant and animal cross-kingdom pathogenic bacteria. In this study, we established an alfalfa root infection model and a mouse model via the gavage administration of the Pantoea alfalfae CQ10 (CQ10) bacterial suspension. It was confirmed that the CQ10 strain caused bacterial leaf blight of alfalfa. Mice inoculated with 0.4 mL of 109 cfu/mL bacterial suspension developed clinical symptoms 48 h later, such as diminished vitality, tendencies to huddle, and lack of appetite, including severe lesions in stomach, liver, kidney, and spleen tissues. CQ10 strains were isolated from mouse feces at different time points of inoculation. Thus, CQ10 is a plant and animal cross-kingdom pathogenic bacterium. Transcriptome and proteome analyses showed that biofilm and iron uptake are important virulence factors of the pathogen CQ10, among which Bap and Lpp regulating biofilm are the key cross-kingdom virulence genes of CQ10. From an evolutionary perspective, insights gained from this dual animal-plant pathogen system may help to elucidate the molecular basis underlying the host specificity of bacterial pathogens. The result provides a theoretical basis for the risk assessment, prevention, and control strategies of new pathogenic bacteria entering a new region.
Collapse
Affiliation(s)
- Jing Su
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Bo Yao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Rong Huang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Xiaoni Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (R.H.); (X.L.)
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
4
|
Oberkircher LM, Scheiding VM, Rafeld HL, Hanssen E, Hansen JN, Fleischmann MJ, Kessler N, Pitsch D, Wachten D, Kastenmüller W, Brown AS, Hartland EL, van Driel IR, Ng GZ, Garbi N. Opposing roles of resident and infiltrating immune cells in the defense against Legionella longbeachae via IL-18R/IFN-γ/ROS axis in mice. Mucosal Immunol 2024; 17:777-792. [PMID: 38750967 DOI: 10.1016/j.mucimm.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 07/21/2024]
Abstract
The immune response against Legionella longbeachae, a causative agent of the often-fatal Legionnaires' pneumonia, is poorly understood. Here, we investigated the specific roles of tissue-resident alveolar macrophages (AMs) and infiltrating phagocytes during infection with this pathogen. AMs were the predominant cell type that internalized bacteria 1 day after infection. A total of 3 and 5 days after infection, AM numbers were greatly reduced, whereas there was an influx of neutrophils and, later, monocyte-derived cells (MCs) into lung tissue. AMs carried greater numbers of viable L. longbeachae than neutrophils and MCs, which correlated with a higher capacity of L. longbeachae to translocate bacterial effector proteins required for bacterial replication into the AM cytosol. Cell ablation experiments demonstrated that AM promoted infection, whereas neutrophils and MC were required for efficient bacterial clearance. Interleukin (IL)-18 was important for interferon-γ production by IL-18R+ natural killer cells and T cells, which, in turn, stimulated reactive oxygen species-mediated bactericidal activity in neutrophils, resulting in the restriction of L. longbeachae infection. Ciliated bronchiolar epithelial cells also expressed IL-18R but did not play a role in IL-18-mediated L. longbeachae clearance. Our results have identified opposing innate functions of tissue-resident and infiltrating immune cells during L. longbeachae infection that may be manipulated to improve protective responses.
Collapse
Affiliation(s)
- Lara M Oberkircher
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Bonn, Germany; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Victoria M Scheiding
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - H Linda Rafeld
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia; Life & Medical-Sciences Institute, University of Bonn, Bonn, Germany
| | - Eric Hanssen
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; Ian Holmes Imaging Centre, University of Melbourne, Melbourne, Australia
| | - Jan N Hansen
- Institute of Innate Immunity, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Markus J Fleischmann
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - David Pitsch
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Andrew S Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Ian R van Driel
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Garrett Z Ng
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Stegmann F, Diersing C, Lepenies B. Legionella pneumophila modulates macrophage functions through epigenetic reprogramming via the C-type lectin receptor Mincle. iScience 2024; 27:110700. [PMID: 39252966 PMCID: PMC11382120 DOI: 10.1016/j.isci.2024.110700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Legionella pneumophila is a pathogen which can lead to a severe form of pneumonia in humans known as Legionnaires disease after replication in alveolar macrophages. Viable L. pneumophila actively secrete effector molecules to modulate the host's immune response. Here, we report that L. pneumophila-derived factors reprogram macrophages into a tolerogenic state, a process to which the C-type lectin receptor Mincle (CLEC4E) markedly contributes. The underlying epigenetic state is characterized by increases of the closing mark H3K9me3 and decreases of the opening mark H3K4me3, subsequently leading to the reduced secretion of the cytokines TNF, IL-6, IL-12, the production of reactive oxygen species, and cell-surface expression of MHC-II and CD80 upon re-stimulation. In summary, these findings provide important implications for our understanding of Legionellosis and the contribution of Mincle to reprogramming of macrophages by L. pneumophila.
Collapse
Affiliation(s)
- Felix Stegmann
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
| | - Christina Diersing
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
| |
Collapse
|
6
|
Mascarenhas DP, Zamboni DS. Innate immune responses and monocyte-derived phagocyte recruitment in protective immunity to pathogenic bacteria: insights from Legionella pneumophila. Curr Opin Microbiol 2024; 80:102495. [PMID: 38908045 DOI: 10.1016/j.mib.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024]
Abstract
Legionella species are Gram-negative intracellular bacteria that evolved in soil and freshwater environments, where they infect and replicate within various unicellular protozoa. The primary virulence factor of Legionella is the expression of a type IV secretion system (T4SS), which contributes to the translocation of effector proteins that subvert biological processes of the host cells. Because of its evolution in unicellular organisms, T4SS effector proteins are not adapted to subvert specific mammalian signaling pathways and immunity. Consequently, Legionella pneumophila has emerged as an interesting infection model for investigating immune responses against pathogenic bacteria in multicellular organisms. This review highlights recent advances in our understanding of mammalian innate immunity derived from studies involving L. pneumophila. This includes recent insights into inflammasome-mediated mechanisms restricting bacterial replication in macrophages, mechanisms inducing cell death in response to infection, induction of effector-triggered immunity, activation of specific pulmonary cell types in mammalian lungs, and the protective role of recruiting monocyte-derived cells to infected lungs.
Collapse
Affiliation(s)
- Danielle Pa Mascarenhas
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
7
|
Zhu Y, Liu D. Legionella. MOLECULAR MEDICAL MICROBIOLOGY 2024:1547-1557. [DOI: 10.1016/b978-0-12-818619-0.00071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Sorobetea D, Matsuda R, Peterson ST, Grayczyk JP, Rao I, Krespan E, Lanza M, Assenmacher CA, Mack M, Beiting DP, Radaelli E, Brodsky IE. Inflammatory monocytes promote granuloma control of Yersinia infection. Nat Microbiol 2023; 8:666-678. [PMID: 36879169 PMCID: PMC10653359 DOI: 10.1038/s41564-023-01338-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023]
Abstract
Granulomas are organized immune cell aggregates formed in response to chronic infection or antigen persistence. The bacterial pathogen Yersinia pseudotuberculosis (Yp) blocks innate inflammatory signalling and immune defence, inducing neutrophil-rich pyogranulomas (PGs) within lymphoid tissues. Here we uncover that Yp also triggers PG formation within the murine intestinal mucosa. Mice lacking circulating monocytes fail to form defined PGs, have defects in neutrophil activation and succumb to Yp infection. Yersinia lacking virulence factors that target actin polymerization to block phagocytosis and reactive oxygen burst do not induce PGs, indicating that intestinal PGs form in response to Yp disruption of cytoskeletal dynamics. Notably, mutation of the virulence factor YopH restores PG formation and control of Yp in mice lacking circulating monocytes, demonstrating that monocytes override YopH-dependent blockade of innate immune defence. This work reveals an unappreciated site of Yersinia intestinal invasion and defines host and pathogen drivers of intestinal granuloma formation.
Collapse
Affiliation(s)
- Daniel Sorobetea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rina Matsuda
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan T Peterson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James P Grayczyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Indira Rao
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elise Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Lanza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Ataide MA, Manin GZ, Oliveira SS, Guerra RO, Zamboni DS. Inflammasome activation and CCR2-mediated monocyte-derived dendritic cell recruitment restrict Legionella pneumophila infection. Eur J Immunol 2023; 53:e2249985. [PMID: 36427489 DOI: 10.1002/eji.202249985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Flagellin-induced NAIP/NLRC4 inflammasome activation and pyroptosis are critical events restricting Legionella pneumophila infection. However, the cellular and molecular dynamics of the in vivo responses against this bacterium are still unclear. We have found temporal coordination of two independent innate immunity pathways in controlling Legionella infection, the inflammasome activation and the CCR2-mediated Mo-DC recruitment. Inflammasome activation was an important player at the early stage of infection by lowering the numbers of bacteria for an efficient bacterial clearance conferred by the Mo-DC at the late stage of the infection. Mo-DC emergence highly depended on CCR2-signaling and dispensed inflammasome activation and pyroptosis. Also, Mo-DC compartment did not rely on the inflammasome machinery to deliver proper immune responses and was the most abundant cytokine-producing among the monocyte-derived cells in the infected lung. Importantly, when the CCR2- and NLRC4-dependent axes of response were simultaneously ablated, we observed an aggravated bacterial burden in the lung of infected mice. Taken together, we showed that inflammasome activation and CCR2-mediated immune response interplay in distinct pathways to restrict pulmonary bacterial infection. These findings extend our understanding of the in vivo integration and cooperation of different innate immunity arms in controlling infectious agents.
Collapse
Affiliation(s)
- Marco A Ataide
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Graziele Z Manin
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samuel S Oliveira
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rhanoica O Guerra
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
10
|
Kumova OK, Galani IE, Rao A, Johnson H, Triantafyllia V, Matt SM, Pascasio J, Gaskill PJ, Andreakos E, Katsikis PD, Carey AJ. Severity of neonatal influenza infection is driven by type I interferon and oxidative stress. Mucosal Immunol 2022; 15:1309-1320. [PMID: 36352099 PMCID: PMC9724789 DOI: 10.1038/s41385-022-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
Neonates exhibit increased susceptibility to respiratory viral infections, attributed to inflammation at the developing pulmonary air-blood interface. IFN I are antiviral cytokines critical to control viral replication, but also promote inflammation. Previously, we established a neonatal murine influenza virus (IV) model, which demonstrates increased mortality. Here, we sought to determine the role of IFN I in this increased mortality. We found that three-day-old IFNAR-deficient mice are highly protected from IV-induced mortality. In addition, exposure to IFNβ 24 h post IV infection accelerated death in WT neonatal animals but did not impact adult mortality. In contrast, IFN IIIs are protective to neonatal mice. IFNβ induced an oxidative stress imbalance specifically in primary neonatal IV-infected pulmonary type II epithelial cells (TIIEC), not in adult TIIECs. Moreover, neonates did not have an infection-induced increase in antioxidants, including a key antioxidant, superoxide dismutase 3, as compared to adults. Importantly, antioxidant treatment rescued IV-infected neonatal mice, but had no impact on adult morbidity. We propose that IFN I exacerbate an oxidative stress imbalance in the neonate because of IFN I-induced pulmonary TIIEC ROS production coupled with developmentally regulated, defective antioxidant production in response to IV infection. This age-specific imbalance contributes to mortality after respiratory infections in this vulnerable population.
Collapse
Affiliation(s)
- Ogan K. Kumova
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ioanna-Evdokia Galani
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Abhishek Rao
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Hannah Johnson
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Stephanie M. Matt
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Judy Pascasio
- Pathology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Peter J. Gaskill
- Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Peter D. Katsikis
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alison J. Carey
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Pediatrics, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
11
|
Wu J, Wang X, Zhou M, Chen GB, Du J, Wang Y, Ye C. The value of lymphocyte-to-monocyte ratio and neutrophil-to-lymphocyte ratio in differentiating pneumonia from upper respiratory tract infection (URTI) in children: a cross-sectional study. BMC Pediatr 2021; 21:545. [PMID: 34861849 PMCID: PMC8641150 DOI: 10.1186/s12887-021-03018-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUNDS Early and accurate diagnosis of pediatric pneumonia in primary health care can reduce the chance of long-term respiratory diseases, related hospitalizations and mortality while lowering medical costs. The aim of this study was to assess the value of blood biomarkers, clinical symptoms and their combination in assisting discrimination of pneumonia from upper respiratory tract infection (URTI) in children. METHODS Both univariate and multivariate logistic regressions were used to build the pneumonia screening model based on a retrospective cohort, comprised of 5211 children (age ≤ 18 years). The electronic health records of the patients, who had inpatient admission or outpatient visits between February 15, 2012 to September 30, 2018, were extracted from the hospital information system of Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, China. The children who were diagnosed with pneumonia and URTI were enrolled and their clinical features and levels of blood biomarkers were compared. Using the area under the ROC curve, both two screening models were evaluated under 80% (training) versus 20% (test) cross-validation data split for their accuracy. RESULTS In the retrospective cohort, 2548 of 5211 children were diagnosed with the defined pneumonia. The univariate screening model reached predicted AUCs of 0.76 for lymphocyte/monocyte ratio (LMR) and 0.71 for neutrophil/lymphocyte ratio (NLR) when identified overall pneumonia from URTI, attaining the best performance among the biomarker candidates. In subgroup analysis, LMR and NLR attained AUCs of 0.80 and 0.86 to differentiate viral pneumonia from URTI, and AUCs of 0.77 and 0.71 to discriminate bacterial pneumonia from URTI respectively. After integrating LMR and NLR with three clinical symptoms of fever, cough and rhinorrhea, the multivariate screening model obtained increased predictive values, reaching validated AUCs of 0.84, 0.95 and 0.86 for distinguishing pneumonia, viral pneumonia and bacterial pneumonia from URTI respectively. CONCLUSIONS Our study demonstrated that combining LMR and NLR with critical clinical characteristics reached promising accuracy in differentiating pneumonia from URTI, thus could be considered as a useful screening tool to assist the diagnosis of pneumonia, in particular, in community healthcare centers. Further researches could be conducted to evaluate the model's clinical utility and cost-effectiveness in primary care scenarios to facilitate pneumonia diagnosis, especially in rural settings.
Collapse
Affiliation(s)
- Jinghua Wu
- Department of health management, Hangzhou Normal University, Zhejiang, 310000, Hangzhou, China.,Engineering Research Center of Mobile Health Management System, Ministry of Education, Hangzhou Normal University, Zhejiang, 310000, Hangzhou, China
| | - Xu Wang
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014, Hangzhou, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mingqi Zhou
- Department of health management, Hangzhou Normal University, Zhejiang, 310000, Hangzhou, China.,Engineering Research Center of Mobile Health Management System, Ministry of Education, Hangzhou Normal University, Zhejiang, 310000, Hangzhou, China
| | - Guo-Bo Chen
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang, 310000, Hangzhou, China.,Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, 310000, Hangzhou, China
| | - Jing Du
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, 310000, Hangzhou, China
| | - Ying Wang
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, 310000, Hangzhou, China.
| | - Chengyin Ye
- Department of health management, Hangzhou Normal University, Zhejiang, 310000, Hangzhou, China. .,Engineering Research Center of Mobile Health Management System, Ministry of Education, Hangzhou Normal University, Zhejiang, 310000, Hangzhou, China.
| |
Collapse
|
12
|
Lam LKM, Murphy S, Kokkinaki D, Venosa A, Sherrill-Mix S, Casu C, Rivella S, Weiner A, Park J, Shin S, Vaughan AE, Hahn BH, Odom John AR, Meyer NJ, Hunter CA, Worthen GS, Mangalmurti NS. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci Transl Med 2021; 13:eabj1008. [PMID: 34669439 DOI: 10.1126/scitranslmed.abj1008] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- L K Metthew Lam
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sophia Murphy
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dimitra Kokkinaki
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Scott Sherrill-Mix
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carla Casu
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stefano Rivella
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aaron Weiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jeongho Park
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Audrey R Odom John
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nuala J Meyer
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher A Hunter
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - G Scott Worthen
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Neonatalogy, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nilam S Mangalmurti
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Patel S, Tucker HR, Gogoi H, Mansouri S, Jin L. cGAS-STING and MyD88 Pathways Synergize in Ly6C hi Monocyte to Promote Streptococcus pneumoniae-Induced Late-Stage Lung IFNγ Production. Front Immunol 2021; 12:699702. [PMID: 34512626 PMCID: PMC8427188 DOI: 10.3389/fimmu.2021.699702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
The cyclic GMP–AMP synthase–stimulator of interferon genes (cGAS–STING) pathway senses DNA and induces type I interferon (IFN) production. Whether and how the STING pathway crosstalk to other innate immune pathways during pathogen infection, however, remains unclear. Here, we showed that STING was needed for Streptococcus pneumoniae-induced late, not early, stage of lung IFNγ production. Using knockout mice, IFNγ reporter mice, intracellular cytokine staining, and adoptive cell transfer, we showed that cGAS–STING-dependent lung IFNγ production was independent of type I IFNs. Furthermore, STING expression in monocyte/monocyte-derived cells governed IFNγ production in the lung via the production of IL-12p70. Surprisingly, DNA stimulation alone could not induce IL-12p70 or IFNγ in Ly6Chi monocyte. The production of IFNγ required the activation by both DNA and heat-killed S. pneumococcus. Accordingly, MyD88−/− monocyte did not generate IL-12p70 or IFNγ. In summary, the cGAS–STING pathway synergizes with the MyD88 pathway in monocyte to promote late-stage lung IFNγ production during pulmonary pneumococcal infection.
Collapse
Affiliation(s)
- Seema Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Heidi R Tucker
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Cai J, Cui X, Wang X, You L, Ji C, Cao Y. A Novel Anti-Infective Peptide BCCY-1 With Immunomodulatory Activities. Front Immunol 2021; 12:713960. [PMID: 34367182 PMCID: PMC8339908 DOI: 10.3389/fimmu.2021.713960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance has been considered to be a global threat which underscores the need to develop novel anti-infective therapeutics. Modulation of innate immunity by synthetic peptides is an attractive strategy to overcome this circumstance. We recently reported that BCCY-1, a human β-casein-derived peptide displays regulatory activities on monocytes, thereby enhancing their actions in innate immune responses. However, the function of peptide BCCY-1 in host defense against infection remains unknown. In this study, we investigated the in vivo characteristics and effects of peptide BCCY-1 in mouse models of bacterial infection. Following intraperitoneal injection, the peptide BCCY-1 exhibited high level of cellular uptake by monocytes without obvious toxicities. Results revealed that peptide BCCY-1, but not the scrambled version, stimulated the chemokine production and monocyte recruitment in vivo. Treatment with BCCY-1 enhanced the pathogen clearance and protected mice against lethal infections. Because the anti-infective effects of BCCY-1 was abolished by in vivo depletion of monocytes/macrophages rather than lymphocytes and granulocytes, we conclude that monocytes/macrophages are key effector cells in BCCY-1-mediated anti-infective protection. Additionally, BCCY-1 lacks direct antimicrobial activity. To our knowledge, a human β-casein-derived peptide that counters infection by selective regulation of innate immunity has not been reported previously. These results suggest peptide BCCY-1 as a promising alternative approach and a valuable complement to current anti-infective strategy.
Collapse
Affiliation(s)
- Jinyang Cai
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Wang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Abstract
The Dot/Icm type IV secretion system (T4SS) of Legionella pneumophila is essential for lysosomal evasion and permissiveness of macrophages for intracellular proliferation of the pathogen. In contrast, we show that polymorphonuclear cells (PMNs) respond to a functional Dot/Icm system through rapid restriction of L. pneumophila. Specifically, we show that the L. pneumophila T4SS-injected amylase (LamA) effector catalyzes rapid glycogen degradation in the PMNs cytosol, leading to cytosolic hyperglucose. Neutrophils respond through immunometabolic reprogramming that includes upregulated aerobic glycolysis. The PMNs become activated with spatial generation of intracellular reactive oxygen species within the Legionella-containing phagosome (LCP) and fusion of specific and azurophilic granules to the LCP, leading to rapid restriction of L. pneumophila. We conclude that in contrast to macrophages, PMNs respond to a functional Dot/Icm system, and specifically to the effect of the injected amylase effector, through rapid engagement of major microbicidal processes and rapid restriction of the pathogen. IMPORTANCE Legionella pneumophila is commonly found in aquatic environments and resides within a wide variety of amoebal hosts. Upon aerosol transmission to humans, L. pneumophila invades and replicates with alveolar macrophages, causing pneumonia designated Legionnaires' disease. In addition to alveolar macrophages, neutrophils infiltrate into the lungs of infected patients. Unlike alveolar macrophages, neutrophils restrict and kill L. pneumophila, but the mechanisms were previously unclear. Here, we show that the pathogen secretes an amylase (LamA) enzyme that rapidly breakdowns glycogen stores within neutrophils, and this triggers increased glycolysis. Subsequently, the two major killing mechanisms of neutrophils, granule fusion and production of reactive oxygen species, are activated, resulting in rapid killing of L. pneumophila.
Collapse
|
16
|
Chauhan D, Shames SR. Pathogenicity and Virulence of Legionella: Intracellular replication and host response. Virulence 2021; 12:1122-1144. [PMID: 33843434 PMCID: PMC8043192 DOI: 10.1080/21505594.2021.1903199] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacteria of the genus Legionella are natural pathogens of amoebae that can cause a severe pneumonia in humans called Legionnaires’ Disease. Human disease results from inhalation of Legionella-contaminated aerosols and subsequent bacterial replication within alveolar macrophages. Legionella pathogenicity in humans has resulted from extensive co-evolution with diverse genera of amoebae. To replicate intracellularly, Legionella generates a replication-permissive compartment called the Legionella-containing vacuole (LCV) through the concerted action of hundreds of Dot/Icm-translocated effector proteins. In this review, we present a collective overview of Legionella pathogenicity including infection mechanisms, secretion systems, and translocated effector function. We also discuss innate and adaptive immune responses to L. pneumophila, the implications of Legionella genome diversity and future avenues for the field.
Collapse
Affiliation(s)
- Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | |
Collapse
|
17
|
Ngwaga T, Chauhan D, Shames SR. Mechanisms of Effector-Mediated Immunity Revealed by the Accidental Human Pathogen Legionella pneumophila. Front Cell Infect Microbiol 2021; 10:593823. [PMID: 33614523 PMCID: PMC7886983 DOI: 10.3389/fcimb.2020.593823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
Abstract
Many Gram-negative bacterial pathogens employ translocated virulence factors, termed effector proteins, to facilitate their parasitism of host cells and evade host anti-microbial defenses. However, eukaryotes have evolved to detect effector-mediated virulence strategies through a phenomenon termed effector-triggered immunity (ETI). Although ETI was discovered in plants, a growing body of literature demonstrates that metazoans also utilize effector-mediated immunity to detect and clear bacterial pathogens. This mini review is focused on mechanisms of effector-mediated immune responses by the accidental human pathogen Legionella pneumophila. We highlight recent advancements in the field and discuss the future prospects of harnessing effectors for the development of novel therapeutics, a critical need due to the prevalence and rapid spread of antibiotic resistance.
Collapse
Affiliation(s)
- Tshegofatso Ngwaga
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Stephanie R Shames
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
18
|
Zhuang J, Huang Y, Liang G. Clinical significance of the monocyte:lymphocyte ratio for ankylosing spondylitis patients with thoracolumbar kyphotic deformities. J Int Med Res 2020; 48:300060519893167. [PMID: 31939332 PMCID: PMC7254163 DOI: 10.1177/0300060519893167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose This study aimed to determine the clinical significance of the monocyte:lymphocyte ratio (MLR) in ankylosing spondylitis (AS) patients with thoracolumbar kyphotic deformity. Methods Ninety AS patients and 45 healthy controls were retrospectively enrolled. AS patients were divided into thoracolumbar kyphotic deformity (AS deformity) and spine normal (AS normal) groups. Blood parameters including C-reactive protein and erythrocyte sedimentation rate were determined. Receiver operating characteristic (ROC) curves and binary logistic regression analysis were conducted. Results Counts of white blood cells, neutrophils, and monocytes, and the neutrophil:lymphocyte ratio, platelet:lymphocyte ratio, and MLR were significantly higher in the AS than the control group. ROC curve results showed that the MLR yielded a higher area under the curve (AUC) value than other parameters, compared with controls. The MLR and monocyte count were higher in the AS deformity group than the AS normal group. ROC curve results indicated that the MLR yielded a higher AUC value than other parameters, compared with the AS normal group. Logistic regression suggested that the MLR was an independent predictor for thoracolumbar kyphotic deformity. Conclusions The MLR was elevated in AS patients, and was shown to be an independent predictor for thoracolumbar kyphotic deformity.
Collapse
Affiliation(s)
- Jianxiong Zhuang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yongxiong Huang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guoyan Liang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
19
|
Liu X, Boyer MA, Holmgren AM, Shin S. Legionella-Infected Macrophages Engage the Alveolar Epithelium to Metabolically Reprogram Myeloid Cells and Promote Antibacterial Inflammation. Cell Host Microbe 2020; 28:683-698.e6. [PMID: 32841604 DOI: 10.1016/j.chom.2020.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 01/05/2023]
Abstract
Alveolar macrophages are among the first immune cells that respond to inhaled pathogens. However, numerous pathogens block macrophage-intrinsic immune responses, making it unclear how robust antimicrobial responses are generated. The intracellular bacterium Legionella pneumophila inhibits host translation, thereby impairing cytokine production by infected macrophages. Nevertheless, Legionella-infected macrophages induce an interleukin-1 (IL-1)-dependent inflammatory cytokine response by recruited monocytes and other cells that controls infection. How IL-1 directs these cells to produce inflammatory cytokines is unknown. Here, we show that collaboration with the alveolar epithelium is critical for controlling infection. IL-1 induces the alveolar epithelium to produce granulocyte-macrophage colony-stimulating factor (GM-CSF). Intriguingly, GM-CSF signaling amplifies inflammatory cytokine production in recruited monocytes by enhancing Toll-like receptor (TLR)-induced glycolysis. Our findings reveal that alveolar macrophages engage alveolar epithelial signals to metabolically reprogram monocytes for antibacterial inflammation.
Collapse
Affiliation(s)
- Xin Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Boyer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alicia M Holmgren
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Christensen LM, Sule P, Cirillo SLG, Strain M, Plumlee Q, Adams LG, Cirillo JD. Legionnaires' Disease Mortality in Guinea Pigs Involves the p45 Mobile Genomic Element. J Infect Dis 2020; 220:1700-1710. [PMID: 31268152 PMCID: PMC6782102 DOI: 10.1093/infdis/jiz340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Background Legionella can cause Legionnaires’ disease, a potentially fatal form of pneumonia that occurs as sporadic epidemics. Not all strains display the same propensity to cause disease in humans. Because Legionella pneumophila serogroup 1 is responsible for >85% of infections, the majority of studies have examined this serogroup, but there are 3 commonly used laboratory strains: L pneumophila serogroup 1 Philadelphia (Phil-1)-derived strains JR32 and Lp01 and 130b-derived strain AA100. Methods We evaluated the ability of Phil-1, JR32, Lp01, and AA100 to cause disease in guinea pigs. Results We found that, although Phil-1, JR32, and AA100 cause an acute pneumonia and death by 4 days postinfection (100%), strain Lp01 does not cause mortality (0%). We also noted that Lp01 lacks a mobile element, designated p45, whose presence correlates with virulence. Transfer of p45 into Lp01 results in recovery of the ability of this strain to cause mortality, leads to more pronounced disease, and correlates with increased interferon-γ levels in the lungs and spleens before death. Conclusions These observations suggest a mechanism of Legionnaires’ disease pathogenesis due to the presence of type IVA secretion systems that cause higher mortality due to overinduction of a proinflammatory response in the host.
Collapse
Affiliation(s)
- Lanette M Christensen
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Suat L G Cirillo
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Madison Strain
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Quinci Plumlee
- Department of Veterinary Pathobiology, Texas A&M University, College Station
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| |
Collapse
|
21
|
Farris BY, Monaghan KL, Zheng W, Amend CD, Hu H, Ammer AG, Coad JE, Ren X, Wan ECK. Ischemic stroke alters immune cell niche and chemokine profile in mice independent of spontaneous bacterial infection. IMMUNITY INFLAMMATION AND DISEASE 2019; 7:326-341. [PMID: 31691533 PMCID: PMC6842816 DOI: 10.1002/iid3.277] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023]
Abstract
Introduction Stroke‐associated pneumonia (SAP) is a major cause of mortality in patients who have suffered from severe ischemic stroke. Although multifactorial in nature, stroke‐induced immunosuppression plays a key role in the development of SAP. Previous studies using a murine model of transient middle cerebral artery occlusion (tMCAO) have shown that focal ischemic stroke induction results in functional defects of lymphocytes in the spleen, thymus, and peripheral blood, leading to spontaneous bacterial infection in the lungs without inoculation. However, how ischemic stroke alters immune cell niche and the expression of cytokines and chemokines in the lungs has not been fully characterized. Methods Ischemic stroke was induced in mice by tMCAO. Immune cell profiles in the brain and the lungs at 24‐ and 72‐hour time points were compared by flow cytometric analysis. Cytokine and chemokine expression in the lungs were determined by multiplex bead arrays. Tissue damage and bacterial burden in the lungs following tMCAO were evaluated. Results Ischemic stroke increases the percentage of alveolar macrophages, neutrophils, and CD11b+ dendritic cells, but reduces the percentage of CD4+ T cells, CD8+ T cells, B cells, natural killer cells, and eosinophils in the lungs. The alteration of immune cell niche in the lungs coincides with a significant reduction in the levels of multiple chemokines in the lungs, including CCL3, CCL4, CCL5, CCL17, CCL20, CCL22, CXCL5, CXCL9, and CXCL10. Spontaneous bacterial infection and tissue damage following tMCAO, however, were not observed. Conclusion This is the first report to demonstrate a significant reduction of lymphocytes and multiple proinflammatory chemokines in the lungs following ischemic stroke in mice. These findings suggest that ischemic stroke directly impacts pulmonary immunity.
Collapse
Affiliation(s)
- Breanne Y Farris
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kelly L Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Wen Zheng
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Courtney D Amend
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Heng Hu
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Amanda G Ammer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - James E Coad
- Pathology Laboratory for Translational Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Xuefang Ren
- Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Edwin C K Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
22
|
Jin R, Liu S, Wang M, Zhong W, Li G. Inhibition of CD147 Attenuates Stroke-Associated Pneumonia Through Modulating Lung Immune Response in Mice. Front Neurol 2019; 10:853. [PMID: 31447768 PMCID: PMC6692478 DOI: 10.3389/fneur.2019.00853] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
Background and Purpose: Acute ischemic stroke triggers a profound systemic and local immunodysfunction that increased the susceptibility to infections, especially stroke-associated pneumonia (SAP). Our previous study has shown that inhibition of CD147 ameliorates acute ischemic stroke, however, the role of CD147 in post-stroke lung infection has not been investigated. Methods: C57BL/6 mice were subjected to transient (60 min) middle cerebral artery occlusion, and treated with anti-CD147 antibody (αCD147). Lung histological changes, vascular permeability, and pulmonary edema were determined. Bacterial burden in the lung tissue and Broncho alveolar lavage fluid (BALF) were measured. Lung leukocyte infiltration, circulating platelet-leukocyte aggregates, cell type-specific IL-17A, and IFN-γ expression in the lung were detected by flow cytometry. Results: CD147 expression was markedly upregulated in the lung after stroke. αCD147 treatment significantly decreased the stroke-associated lung histological damages, bacterial load, vascular permeability and pulmonary edema. The protective effects by αCD147 treatment were associated with deceased lung inflammatory cell infiltration by reducing IL-17A expression in lung γδ T cells and attenuated bacterial load by enhancing IFN-γ expression in the lung NK1.1+ cells and CD4+ T cells. In addition, CD147 expression was also increased in the circulating platelets and leukocytes. Enhanced platelet-leukocyte aggregates following stroke was inhibited by αCD147 treatment. Conclusions: Inhibition of CD147 ameliorates aberrant lung inflammatory and immune response and reduces bacterial infection after stroke. CD147 might represent a novel and promising therapeutic target for post-stroke lung infection.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shan Liu
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Min Wang
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Wei Zhong
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Guohong Li
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
23
|
Viewing Legionella pneumophila Pathogenesis through an Immunological Lens. J Mol Biol 2019; 431:4321-4344. [PMID: 31351897 DOI: 10.1016/j.jmb.2019.07.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome-lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.
Collapse
|
24
|
Diagnostic value of blood parameters for community-acquired pneumonia. Int Immunopharmacol 2018; 64:10-15. [PMID: 30144639 DOI: 10.1016/j.intimp.2018.08.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Community-acquired pneumonia (CAP) has a high rate of morbidity and mortality. Blood parameters, including neutrophil, platelet, lymphocyte, monocyte, neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and monocyte to lymphocyte ratio (MLR), have been proposed as indicators of systemic inflammation and infection. However, few studies have focused on the diagnostic value of blood parameters for CAP. OBJECTIVE The study aims to determine the diagnostic value of blood parameters for CAP and to investigate their relationship with disease severity. METHODS CAP patients who fulfilled the inclusion criteria were enrolled in this study. Healthy age- and gender-matched subjects were also enrolled as a control group. Blood parameters, blood biochemistry, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), procalcitonin (PCT), days in hospital, body temperature, pneumonia severity index (PSI), and CURB-65 were recorded. The area under the curve (AUC) values was determined using the receiver-operating characteristic (ROC) curve. The correlation between the variables was tested with Pearson correlation analysis. RESULTS The study included 80 CAP patients and 49 healthy subjects. White blood cell (WBC), neutrophil, monocyte, MLR, PLR, and NLR levels in the CAP group were higher than that of control group, while lymphocyte and hemoglobin (HGB) levels were lower (P < 0.05). The ROC curve result showed that NLR and MLR yielded higher AUC values than other variables. Monocyte was positively correlated with ESR and negatively with body temperature, aspartate aminotransferase (AST), and creatinine (CREA). NLR was positively correlated with CRP, PCT, days in hospital, alanine aminotransferase (ALT), AST, and PSI. MLR was positively correlated with CRP, PCT, and body temperature. An increase in ALT or AST of >2 times of normal was defined as liver injury, and CAP patients were divided into the liver normal group and liver injury group. Sixty-nine patients belonged to the liver normal group, and 11 patients belonged to the liver injury group. Blood parameters, ESR, CRP, PCT, PSI, and CURB-65 were compared between the two groups. The results demonstrated that the monocyte level in the liver injury group was lower than that of the liver normal group (P < 0.05). The ROC curve result showed that the AUC value of monocyte for liver injury was 0.838 (95% confidence interval: 0.733-0.943), which was higher than other variables. CONCLUSIONS NLR and MLR were elevated in CAP patients, resulting in a higher diagnostic value for CAP. NLR showed a significant correlation to PSI, indicating the disease severity of CAP. Monocyte had a higher diagnostic value for liver injury in CAP patients.
Collapse
|
25
|
Naujoks J, Lippmann J, Suttorp N, Opitz B. Innate sensing and cell-autonomous resistance pathways in Legionella pneumophila infection. Int J Med Microbiol 2017; 308:161-167. [PMID: 29097162 DOI: 10.1016/j.ijmm.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular bacterium which can cause a severe pneumonia called Legionnaires' disease after inhalation of contaminated water droplets and replication in alveolar macrophages. The innate immune system is generally able to sense and -in most cases- control L. pneumophila infection. Comorbidities and genetic risk factors, however, can compromise the immune system and high infection doses might overwhelm its capacity, thereby enabling L. pneumophila to grow and disseminate inside the lung. The innate immune system mediates sensing of L. pneumophila by employing e.g. NOD-like receptors (NLRs), Toll-like receptors (TLRs), as well as the cGAS/STING pathway to stimulate death of infected macrophages as well as production of proinflammatory cytokines and interferons (IFNs). Control of pulmonary L. pneumophila infection is largely mediated by inflammasome-, TNFα- and IFN-dependent macrophage-intrinsic resistance mechanisms. This article summarizes the current knowledge of innate immune responses to L. pneumophila infection in general, and of macrophage-intrinsic defense mechanisms in particular.
Collapse
Affiliation(s)
- Jan Naujoks
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Juliane Lippmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Norbert Suttorp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Bastian Opitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany; German Center for Lung Research (DZL), Germany.
| |
Collapse
|
26
|
Salazar GA, Peñaloza HF, Pardo-Roa C, Schultz BM, Muñoz-Durango N, Gómez RS, Salazar FJ, Pizarro DP, Riedel CA, González PA, Alvarez-Lobos M, Kalergis AM, Bueno SM. Interleukin-10 Production by T and B Cells Is a Key Factor to Promote Systemic Salmonella enterica Serovar Typhimurium Infection in Mice. Front Immunol 2017; 8:889. [PMID: 28824622 PMCID: PMC5539121 DOI: 10.3389/fimmu.2017.00889] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative bacterium that produces disease in numerous hosts. In mice, oral inoculation is followed by intestinal colonization and subsequent systemic dissemination, which leads to severe pathogenesis without the activation of an efficient anti-Salmonella immune response. This feature suggests that the infection caused by S. Typhimurium may promote the production of anti-inflammatory molecules by the host that prevent efficient T cell activation and bacterial clearance. In this study, we describe the contribution of immune cells producing the anti-inflammatory cytokine interleukin-10 (IL-10) to the systemic infection caused by S. Typhimurium in mice. We observed that the production of IL-10 was required by S. Typhimurium to cause a systemic disease, since mice lacking IL-10 (IL-10-/-) were significantly more resistant to die after an infection as compared to wild-type (WT) mice. IL-10-/- mice had reduced bacterial loads in internal organs and increased levels of pro-inflammatory cytokines in serum at 5 days of infection. Importantly, WT mice showed high bacterial loads in tissues and no increase of cytokines in serum after 5 days of S. Typhimurium infection, except for IL-10. In WT mice, we observed a peak of il-10 messenger RNA production in ileum, spleen, and liver after 5 days of infection. Importantly, the adoptive transfer of T or B cells from WT mice restored the susceptibility of IL-10-/- mice to systemic S. Typhimurium infection, suggesting that the generation of regulatory cells in vivo is required to sustain a systemic infection by S. Typhimurium. These findings support the notion that IL-10 production from lymphoid cells is a key process in the infective cycle of S. Typhimurium in mice due to generation of a tolerogenic immune response that prevents bacterial clearance and supports systemic dissemination.
Collapse
Affiliation(s)
- Geraldyne A. Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de, Chile Santiago, Chile
| | - Hernán F. Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de, Chile Santiago, Chile
| | - Catalina Pardo-Roa
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de, Chile Santiago, Chile
| | - Bárbara M. Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de, Chile Santiago, Chile
| | - Natalia Muñoz-Durango
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de, Chile Santiago, Chile
| | - Roberto S. Gómez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de, Chile Santiago, Chile
| | - Francisco J. Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de, Chile Santiago, Chile
| | - Daniela P. Pizarro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de, Chile Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de, Chile Santiago, Chile
| | - Manuel Alvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de, Chile Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de, Chile Santiago, Chile
| |
Collapse
|