1
|
He C, Gai H, Zhao W, Zhang H, Lai L, Ding C, Chen L, Ding J. Advances in the Study of Etiology and Molecular Mechanisms of Sensorineural Hearing Loss. Cell Biochem Biophys 2024; 82:1721-1734. [PMID: 38849694 DOI: 10.1007/s12013-024-01344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Sensorineural hearing loss (SNHL), a multifactorial progressive disorder, results from a complex interplay of genetic and environmental factors, with its underlying mechanisms remaining unclear. Several pathological factors are believed to contribute to SNHL, including genetic factors, ion homeostasis, cell apoptosis, immune inflammatory responses, oxidative stress, hormones, metabolic syndrome, human cytomegalovirus infection, mitochondrial damage, and impaired autophagy. These factors collectively interact and play significant roles in the onset and progression of SNHL. The present review offers a comprehensive overview of the various factors that contribute to SNHL, emphasizes recent developments in understanding its etiology, and explores relevant preventive and intervention measures.
Collapse
Affiliation(s)
- Cairong He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Hongcun Gai
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Wen Zhao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Haiqin Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lin Lai
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chenyu Ding
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lin Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jie Ding
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
2
|
Suarez D, Kjar A, Scott B, Hillam K, Vargis E, Nielson C, Sommer E, Zhang E, Holley A, Traxler A, Hughes M, Wang Y, Firpo MA, Britt D, Park AH. Can Ganciclovir and Quercetin-P188 Ameliorate Cytomegalovirus Induced Hearing Loss? Laryngoscope 2024; 134:1457-1463. [PMID: 37589298 DOI: 10.1002/lary.30975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Determine whether combination therapy with ganciclovir (GCV) and a Quercetin-P188 solution improves hearing outcomes in a murine cytomegalovirus (CMV) model. METHODS BALB/c mice were infected with murine CMV on postnatal day 3 (p3). Quercetin was solubilized in saline using P188 (QP188). Treatment groups received either GCV, QP188, GCV and QP188, or P188 delivery vehicle BID at 12-hour intervals via intraperitoneal injection. All treatment groups were treated for 14 days starting at p3. Uninfected controls were treated with the combined regimen, saline or P188 delivery vehicle. Auditory thresholds were assessed using distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) testing at 4, 6, and 8 weeks of age. Temporal bones from separate CMV-infected groups were harvested at p10, and viral load was determined by quantitative polymerase chain reaction. RESULTS CMV-infected mice receiving combination therapy GCV+QP188 demonstrated statistically significant lower ABR (p < 0.001) and DPOAE thresholds (p < 0.001) compared with mice treated with GCV monotherapy, QP188 monotherapy, and P188 delivery vehicle at 4, 6, and 8 weeks of age. GCV+QP188 combination therapy, GCV monotherapy, and QP188 monotherapy resulted in a nonsignificant reduction in mean viral titers compared to P188 monotherapy (p = 0.08). CONCLUSION Combining GCV with the excipients quercetin and P188 effectively ameliorated CMV-induced sensorineural hearing loss in a murine model. This result may be partially explained by a reduction in viral titers in mouse temporal bones that correlate with in vitro studies demonstrating additive antiviral effect in cell culture. LEVEL OF EVIDENCE NA Laryngoscope, 134:1457-1463, 2024.
Collapse
Affiliation(s)
- Daniel Suarez
- Division of Otolaryngology - Head and Neck Surgery, Primary Children's Medical Center, University of Utah, Salt Lake City, Utah, U.S.A
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Andrew Kjar
- Department of Biological Engineering, Utah State University, Logan, Utah, U.S.A
| | - Boston Scott
- Division of Otolaryngology - Head and Neck Surgery, Primary Children's Medical Center, University of Utah, Salt Lake City, Utah, U.S.A
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Katrina Hillam
- Division of Otolaryngology - Head and Neck Surgery, Primary Children's Medical Center, University of Utah, Salt Lake City, Utah, U.S.A
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, Logan, Utah, U.S.A
| | - Christopher Nielson
- Division of Otolaryngology - Head and Neck Surgery, Primary Children's Medical Center, University of Utah, Salt Lake City, Utah, U.S.A
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Elizabeth Sommer
- Division of Otolaryngology - Head and Neck Surgery, Primary Children's Medical Center, University of Utah, Salt Lake City, Utah, U.S.A
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Emily Zhang
- Division of Otolaryngology - Head and Neck Surgery, Primary Children's Medical Center, University of Utah, Salt Lake City, Utah, U.S.A
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Anna Holley
- Division of Otolaryngology - Head and Neck Surgery, Primary Children's Medical Center, University of Utah, Salt Lake City, Utah, U.S.A
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Abigail Traxler
- Division of Otolaryngology - Head and Neck Surgery, Primary Children's Medical Center, University of Utah, Salt Lake City, Utah, U.S.A
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Maura Hughes
- Division of Otolaryngology - Head and Neck Surgery, Primary Children's Medical Center, University of Utah, Salt Lake City, Utah, U.S.A
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Yong Wang
- Division of Otolaryngology - Head and Neck Surgery, Primary Children's Medical Center, University of Utah, Salt Lake City, Utah, U.S.A
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Matthew A Firpo
- Division of Otolaryngology - Head and Neck Surgery, Primary Children's Medical Center, University of Utah, Salt Lake City, Utah, U.S.A
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - David Britt
- Department of Biological Engineering, Utah State University, Logan, Utah, U.S.A
| | - Albert H Park
- Division of Otolaryngology - Head and Neck Surgery, Primary Children's Medical Center, University of Utah, Salt Lake City, Utah, U.S.A
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| |
Collapse
|
3
|
Hillam K, Suarez D, Nielson C, Traxler A, Sommer E, Winslow A, Holley A, Huang E, Hughes M, Firpo MA, Rower J, Park AH. Hearing Following Prolonged and Delayed Ganciclovir Treatment in a Murine Cytomegalovirus Model. Laryngoscope 2024; 134:433-438. [PMID: 37421238 DOI: 10.1002/lary.30860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/20/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVE Compare hearing outcomes utilizing standard, prolonged and delayed ganciclovir (GCV) therapy in a murine model of cytomegalovirus (CMV). METHODS BALB/c mice were inoculated with mouse cytomegalovirus (mCMV) or saline via intracerebral injection on postnatal day 3 (p3). Intraperitoneal GCV or saline was administered at 12 h intervals for the duration of the standard (p3-p17), delayed (p30-p44), or prolonged treatment windows (p3-p31). Auditory thresholds were assessed using distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) testing at 4, 6, and 8 weeks of age. Blood and tissue samples were harvested from mice on p17 and p37 one hour after GCV administration, and their concentrations were assessed via liquid chromatography-mass spectrometry. RESULTS A delayed course of GCV improved ABR but not DPOAE thresholds in mCMV-infected mice. A prolonged course of GCV did not provide better hearing thresholds than those administered standard treatment. The average GCV concentration in all 17-day-old mice tissue was significantly higher than those in older 37-day-old mice. CONCLUSION Delayed GCV treatment provided a hearing benefit on ABR over untreated mCMV infected mice. Prolonged CGV administration showed no benefit compared to a shorter duration GCV treatment. GCV drug concentrations both systemically and in the cochlea are much lower in older mice. These results have potential implications for the clinical management of cCMV infected children. LEVEL OF EVIDENCE NA Laryngoscope, 134:433-438, 2024.
Collapse
Affiliation(s)
- Katrina Hillam
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Daniel Suarez
- Department of Otolaryngology, State University of New York Downstate Medical Center, Stony Brook, New York, U.S.A
| | - Christopher Nielson
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Abigail Traxler
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Elizabeth Sommer
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Anna Winslow
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Anna Holley
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Emily Huang
- Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Maura Hughes
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Matthew A Firpo
- Department of Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| | - Joseph Rower
- University of Utah Center for Human Toxicology and Department of Pharmacology and Toxicology, Salt Lake City, Utah, U.S.A
| | - Albert H Park
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, U.S.A
| |
Collapse
|
4
|
Singh S, Maheshwari A, Boppana S. CMV-induced Hearing Loss. NEWBORN (CLARKSVILLE, MD.) 2023; 2:249-262. [PMID: 38348106 PMCID: PMC10860330 DOI: 10.5005/jp-journals-11002-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Congenital cytomegalovirus (cCMV) infection is the most common fetal viral infection and contributes to about 25% of childhood hearing loss by the age of 4 years. It is the leading nongenetic cause of sensorineural hearing loss (SNHL). Infants born to seroimmune mothers are not completely protected from SNHL, although the severity of their hearing loss may be milder than that seen in those whose mothers had a primary infection. Both direct cytopathic effects and localized inflammatory responses contribute to the pathogenesis of cytomegalovirus (CMV)-induced hearing loss. Hearing loss may be delayed onset, progressive or fluctuating in nature, and therefore, a significant proportion will be missed by universal newborn hearing screening (NHS) and warrants close monitoring of hearing function at least until 5-6 years of age. A multidisciplinary approach is required for the management of hearing loss. These children may need assistive hearing devices or cochlear implantation depending on the severity of their hearing loss. In addition, early intervention services such as speech or occupational therapy could help better communication, language, and social skill outcomes. Preventive measures to decrease intrauterine CMV transmission that have been evaluated include personal protective measures, passive immunoprophylaxis and valacyclovir treatment during pregnancy in mothers with primary CMV infection. Several vaccine candidates are currently in testing and one candidate vaccine in phase 3 trials. Until a CMV vaccine becomes available, behavioral and educational interventions may be the most effective strategy to prevent maternal CMV infection.
Collapse
Affiliation(s)
- Srijan Singh
- Department of Neonatology, Kailash Hospital, Noida, Uttar Pradesh, India
- Global Newborn Society (https://www.globalnewbornsociety.org/), Clarksville, Maryland, United States of America
| | - Akhil Maheshwari
- Global Newborn Society (https://www.globalnewbornsociety.org/), Clarksville, Maryland, United States of America
- Department of Pediatrics, Louisiana State University, Shreveport, Louisiana, United States of America
| | - Suresh Boppana
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
5
|
Yu Y, Shi K, Nielson C, Graham EM, Price MS, Haller TJ, Carraro M, Firpo MA, Park AH, Harrison RV. Hearing loss caused by CMV infection is correlated with reduced endocochlear potentials caused by strial damage in murine models. Hear Res 2022; 417:108454. [DOI: 10.1016/j.heares.2022.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
|
6
|
Girsch JH, Mejia Plazas MC, Olivier A, Farah M, Littlefield D, Behl S, Punia S, Sakemura R, Hemsath JR, Norgan A, Enninga EAL, Johnson EL, Chakraborty R. Host-Viral Interactions at the Maternal-Fetal Interface. What We Know and What We Need to Know. FRONTIERS-A JOURNAL OF WOMEN STUDIES 2022; 2:833106. [PMID: 36742289 PMCID: PMC9894500 DOI: 10.3389/fviro.2022.833106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In humans, the hemochorial placenta is a unique temporary organ that forms during pregnancy to support fetal development, gaseous exchange, delivery of nutrition, removal of waste products, and provides immune protection, while maintaining tolerance to the HLA-haploidentical fetus. In this review, we characterize decidual and placental immunity during maternal viral (co)-infection with HIV-1, human cytomegalovirus (HCMV), and Zika virus. We discuss placental immunology, clinical presentation, and epidemiology, before characterizing host susceptibility and cellular tropism, and how the three viruses gain access into specific placental target cells. We describe current knowledge on host-viral interactions with decidual and stromal human placental macrophages or Hofbauer cells, trophoblasts including extra villous trophoblasts, T cells, and decidual natural killer (dNK) cells. These clinically significant viral infections elicit both innate and adaptive immune responses to control replication. However, the three viruses either during mono- or co-infection (HIV-1 and HCMV) escape detection to initiate placental inflammation associated with viral transmission to the developing fetus. Aside from congenital or perinatal infection, other adverse pregnancy outcomes include preterm labor and spontaneous abortion. In addition, maternal HIV-1 and HCMV co-infection are associated with impaired fetal and infant immunity in postnatal life and poor clinical outcomes during childhood in exposed infants, even in the absence of vertical transmission of HIV-1. Given the rapidly expanding numbers of HIV-1-exposed uninfected infants and children globally, further research is urgently needed on neonatal immune programming during maternal mono-and co-infection. This review therefore includes sections on current knowledge gaps that may prompt future research directions. These gaps reflect an emerging but poorly characterized field. Their significance and potential investigation is underscored by the fact that although viral infections result in adverse consequences in both mother and developing fetus/newborn, antiviral and immunomodulatory therapies can improve clinical outcomes in the dyad.
Collapse
Affiliation(s)
- James H. Girsch
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States,,Mayo Clinic Graduate School of Biomedical Science, Rochester, MN, United States
| | - Maria C. Mejia Plazas
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Amanda Olivier
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Mohamed Farah
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Dawn Littlefield
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Supriya Behl
- Department of Pediatric Research, Mayo Clinic, Rochester, MN, United States
| | - Sohan Punia
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Reona Sakemura
- Department of Hematology Research, Mayo Clinic, Rochester, MN, United States
| | - Jack R. Hemsath
- Department of Infectious Diseases Research, Mayo Clinic, Rochester, MN, United States
| | - Andrew Norgan
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Elizabeth A. L. Enninga
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, United States,,Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Erica L. Johnson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Rana Chakraborty
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States,,Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, United States,,Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, United States,Correspondence: Rana Chakraborty
| |
Collapse
|
7
|
Otsuka KS, Nielson C, Firpo MA, Park AH, Beaudin AE. Early Life Inflammation and the Developing Hematopoietic and Immune Systems: The Cochlea as a Sensitive Indicator of Disruption. Cells 2021; 10:cells10123596. [PMID: 34944105 PMCID: PMC8700005 DOI: 10.3390/cells10123596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence indicates that perinatal infection and inflammation can influence the developing immune system and may ultimately affect long-term health and disease outcomes in offspring by perturbing tissue and immune homeostasis. We posit that perinatal inflammation influences immune outcomes in offspring by perturbing (1) the development and function of fetal-derived immune cells that regulate tissue development and homeostasis, and (2) the establishment and function of developing hematopoietic stem cells (HSCs) that continually generate immune cells across the lifespan. To disentangle the complexities of these interlinked systems, we propose the cochlea as an ideal model tissue to investigate how perinatal infection affects immune, tissue, and stem cell development. The cochlea contains complex tissue architecture and a rich immune milieu that is established during early life. A wide range of congenital infections cause cochlea dysfunction and sensorineural hearing loss (SNHL), likely attributable to early life inflammation. Furthermore, we show that both immune cells and bone marrow hematopoietic progenitors can be simultaneously analyzed within neonatal cochlear samples. Future work investigating the pathogenesis of SNHL in the context of congenital infection will therefore provide critical information on how perinatal inflammation drives disease susceptibility in offspring.
Collapse
Affiliation(s)
- Kelly S. Otsuka
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA;
| | - Christopher Nielson
- Division of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (C.N.); (A.H.P.)
| | - Matthew A. Firpo
- Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA;
| | - Albert H. Park
- Division of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (C.N.); (A.H.P.)
| | - Anna E. Beaudin
- Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Correspondence:
| |
Collapse
|
8
|
Xia W, Yan H, Zhang Y, Wang C, Gao W, Lv C, Wang W, Liu Z. Congenital Human Cytomegalovirus Infection Inducing Sensorineural Hearing Loss. Front Microbiol 2021; 12:649690. [PMID: 33936007 PMCID: PMC8079719 DOI: 10.3389/fmicb.2021.649690] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the primary cause of congenital infections. Despite its clinical significance, congenital HCMV infection is frequently overlooked clinically since most affected infants are asymptomatic. Sensorineural hearing loss (SNHL) is one of the most widely known disorders caused by congenital HCMV infection. The potential mechanism, however, remains unknown to date. The mechanism by which congenital HCMV infection induces sensorineural deafness has been partly characterized, leading to advancements in diagnosis, therapy, and prevention strategies. HCMV-induced hearing loss primarily involves immune responses, the release of inflammatory factors by natural killer (NK) cells, apoptosis of cochlear spiral ganglion, and potential changes due to vascular dysfunction. The diagnosis of HCMV induced SNHL includes serological examination to mothers, imaging, and amniotic fluid examination. Ganciclovir, mainly used for antiviral therapy and behavioral prevention, can, to some degree, prevent congenital HCMV infection. The role of HCMV infection in hearing loss needs further investigation since the mechanism of hearing loss caused by cytomegalovirus infection is not well understood. Although some advancement has been made in diagnosing and treating SNHL, more improvement is needed. A comprehensive understanding of cytomegalovirus’s pathogenesis is of key importance for preventing, diagnosing, and treating SNHL.
Collapse
Affiliation(s)
- Wenwen Xia
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Hui Yan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yiyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Congcong Wang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Wei Gao
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Changning Lv
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Wentao Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Rodent Models of Congenital Cytomegalovirus Infection. Methods Mol Biol 2021. [PMID: 33555596 DOI: 10.1007/978-1-0716-1111-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Human cytomegalovirus (HCMV) is a leading viral cause of congenital infections in the central nervous system (CNS) and may result in severe long-term sequelae. High rates of sequelae following congenital HCMV infection and insufficient antiviral therapy in the perinatal period makes the development of an HCMV-specific vaccine a high priority of modern medicine. Due to the species specificity of HCMV, animal models are frequently used to study CMV pathogenesis. Studies of murine cytomegalovirus (MCMV) infections of adult mice have played a significant role as a model of CMV biology and pathogenesis, while MCMV infection of newborn mice has been successfully used as a model of perinatal CMV infection. Newborn mice infected with MCMV have high levels of viremia during which the virus establishes a productive infection in most organs, coupled with a robust inflammatory response. Productive infection in the brain parenchyma during early postnatal period leads to an extensive nonnecrotizing multifocal widespread encephalitis characterized by infiltration of components of both innate and adaptive immunity. As a result, impairment in postnatal development of mouse cerebellum leads to long-term motor and sensor disabilities. This chapter summarizes current findings of rodent models of perinatal CMV infection and describes methods for analysis of perinatal MCMV infection in newborn mice.
Collapse
|
10
|
Sayahi T, Nielson C, Yu Y, Neuberger K, Seipp M, Firpo MA, Kelly K, Park AH. Airborne Aerosolized Mouse Cytomegalovirus From Common Otolaryngology Procedures: Implications for COVID-19 Infection. Otolaryngol Head Neck Surg 2021; 164:547-555. [PMID: 32928037 PMCID: PMC7492827 DOI: 10.1177/0194599820957966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine whether common otolaryngology procedures generate viable aerosolized virus through a murine cytomegalovirus (mCMV) model for infection. STUDY DESIGN mCMV model of infection. SETTING University of Utah laboratory. METHODS Three-day-old BALB/c mice were inoculated with mCMV or saline. Five days later, each mouse underwent drilling, microdebrider, coblation, and electrocautery procedures. Particle size distribution and PM2.5 (particulate matter <2.5 µm) concentration were determined with a scanning mobility particle sizer and an aerosol particle sizer in the range of 15 nm to 32 µm. Aerosolized samples from these procedures were collected with an Aerosol Devices BioSpot sampler for viral titer based on polymerase chain reaction and for viable virus through viral culture. RESULTS As compared with the background aerosol concentrations, coblation and electrocautery showed statistically significant increases in airborne aerosols (Tukey-adjusted P value <.040), while microdebrider and drilling at 30,000 rpm did not (.870 < Tukey-adjusted P value < .930). We identified viral DNA in samples from coblation and drilling procedures, although we did not identify viable viruses in aerosol samples from any of the 4 procedures. CONCLUSION Coblation and electrocautery procedures generate >100-fold increases in aerosol concentrations over background; only coblation and drilling produce aerosolized viral DNA. The high concentration of aerosols from coblation and electrocautery suggests the need for appropriate safeguards against particle exposure to health care workers. The presence of viral DNA from drilling and coblation procedures warrants the need for appropriate protection against droplet and aerosol exposure.
Collapse
Affiliation(s)
- Tofigh Sayahi
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Christopher Nielson
- Division of Otolaryngology–Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Yuan Yu
- Division of Otolaryngology–Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Kaden Neuberger
- Division of Otolaryngology–Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Michael Seipp
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A. Firpo
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Kerry Kelly
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Albert H. Park
- Division of Otolaryngology–Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Almishaal A, Mathur PD, Franklin L, Shi K, Haller T, Martinovic A, Hirschmugl K, Earl BR, Zhang C, Yang J, Deans MR, Firpo MA, Park AH. Role of cochlear synaptopathy in cytomegalovirus infected mice and in children. Int J Pediatr Otorhinolaryngol 2020; 138:110275. [PMID: 32828018 PMCID: PMC8663027 DOI: 10.1016/j.ijporl.2020.110275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Determine whether a murine model of cytomegalovirus (CMV) and CMV- infected children show evidence of synaptopathy. STUDY DESIGN Murine model of CMV infection and case series. SUBJECTS AND METHODS C57 BL/6 mice were inoculated with murine-CMV (mCMV). Auditory function was assessed using Auditory Brainstem Response (ABR) and distortion product otoacoustic emission (DPOAE) testing. Temporal bones from mCMV-infected mice were used for both ribbon synapse and hair cell quantification. Four groups of children (non-CMV normal hearing, non-CMV hearing impaired, CMV normal hearing and CMV hearing impaired) underwent ABRs between 2014 and 2018. The outcomes included raw amplitude, wave I:V amplitude ratio, absolute latency, and interpeak latency. RESULTS Mice at 8 weeks post mCMV infection had higher ABR and DPOAE (P < 0.05) thresholds and increased outer hair cell loss compared to uninfected mice and mCMV-infected mice at 4 and 6 weeks post infection, indicating progressive hearing loss. A reduction in the wave I amplitude and synaptic counts were noted earlier at 4 weeks in CMV-infected mice (P < 0.05). The human data indicated that the wave I:V amplitude ratio was lower on average in CMV-infected groups when compared to the uninfected cohorts. The wave I:V amplitude ratio for the click and 4k stimuli were not significantly different between the congenital CMV-infected and uninfected children with normal or with hearing loss. CONCLUSION This study suggests mCMV infection results in a synaptopathy before hair cell damage. Additional studies need to be performed to determine whether this effect is also observed in CMV-infected children. LEVEL OF EVIDENCE Animal studies and basic science- NA; human studies: level 4.
Collapse
Affiliation(s)
- Ali Almishaal
- College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Pranav Dinesh Mathur
- Otonomy Inc, San Diego, CA, USA; Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Lesley Franklin
- Department of Audiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin Shi
- Division of Otolaryngology, University of Utah, UT, USA; Department of Surgery, University of Utah, UT, USA
| | - Travis Haller
- Division of Otolaryngology, University of Utah, UT, USA; Department of Surgery, University of Utah, UT, USA
| | | | - Kayla Hirschmugl
- Hearing and Speech Center, Children's National, Washington. D.C., USA
| | - Brian R Earl
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Chong Zhang
- Department of Internal Medicine- Epidemiology, University of Utah, UT, USA
| | - Jun Yang
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael R Deans
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, USA; Division of Otolaryngology, University of Utah, UT, USA; Department of Surgery, University of Utah, UT, USA
| | | | - Albert H Park
- Division of Otolaryngology, University of Utah, UT, USA; Department of Surgery, University of Utah, UT, USA.
| |
Collapse
|
12
|
Serban BA, Shi K, Alverson JB, Hoody J, Priestley ND, Park AH, Serban MA. Single Application Cold-Chain Independent Drug Delivery System for Outer Ear Infections. ACS Biomater Sci Eng 2020; 6:5969-5978. [PMID: 33299928 PMCID: PMC7720692 DOI: 10.1021/acsbiomaterials.0c01223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Outer ear infections (OE) affect millions of people annually with significant associated healthcare costs. Incorrect administration or non-compliance with the treatment regimen can lead to infection persistence, recurrence, antibiotic resistance, and in severe cases aggravation to malignant otitis externa. Such issues are particularly pertinent for military personnel, patients in nursing homes, the geriatric population, for patients with head or hand tremors and for those with limited or no access to proper healthcare. With the intent of using traditional material science principles to deconvolute material design while increasing relevance and efficacy, we developed a single application, cold-chain independent thixotropic drug delivery system. This can be easily applied into the ear as a liquid, then gels to deliver effective concentrations of antibiotics against bacterial strains commonly associated with OE. The system maintains thixotropic properties over several stress/no stress cycles, shows negligible swelling and temperature dependence, and does not impact the minimum inhibitory concentration or bactericidal effects of relevant antibiotics. Moreover, the thixogels are biocompatible and are well tolerated in the ear. This drug delivery system can readily translate into a user-friendly product, could improve compliance via a single application by the diagnosing health care provider, is expected to effectively treat OE and minimize the development of antibiotic resistance, infection recurrence or exacerbation.
Collapse
Affiliation(s)
- Bogdan A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Kevin Shi
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, UT 84113, USA
| | - Jeremy B. Alverson
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - John Hoody
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Nigel D. Priestley
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Albert H. Park
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, UT 84113, USA
| | - Monica A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
13
|
Rai V, Wood MB, Feng H, Schabla NM, Tu S, Zuo J. The immune response after noise damage in the cochlea is characterized by a heterogeneous mix of adaptive and innate immune cells. Sci Rep 2020; 10:15167. [PMID: 32938973 PMCID: PMC7495466 DOI: 10.1038/s41598-020-72181-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cells of the immune system are present in the adult cochlea and respond to damage caused by noise exposure. However, the types of immune cells involved and their locations within the cochlea are unclear. We used flow cytometry and immunostaining to reveal the heterogeneity of the immune cells in the cochlea and validated the presence of immune cell gene expression by analyzing existing single-cell RNA-sequencing (scRNAseq) data. We demonstrate that cell types of both the innate and adaptive immune system are present in the cochlea. In response to noise damage, immune cells increase in number. B, T, NK, and myeloid cells (macrophages and neutrophils) are the predominant immune cells present. Interestingly, immune cells appear to respond to noise damage by infiltrating the organ of Corti. Our studies highlight the need to further understand the role of these immune cells within the cochlea after noise exposure.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cochlea/immunology
- Cochlea/injuries
- Cochlea/pathology
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/immunology
- Female
- Hearing Loss, Noise-Induced/immunology
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Immunity, Innate
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Leukocyte Common Antigens/metabolism
- Macrophages/immunology
- Macrophages/pathology
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Neutrophils/immunology
- Neutrophils/pathology
- Organ of Corti/immunology
- Organ of Corti/injuries
- Organ of Corti/pathology
- RNA-Seq
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Megan B Wood
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hao Feng
- Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Nathan M Schabla
- Department of Medical Microbiology and Immunology and Flow Cytometry Core, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Shu Tu
- Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Jian Zuo
- Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
14
|
Aaron KA, Kim GS, Cheng AG. Advances in Inner Ear Therapeutics for Hearing Loss in Children. CURRENT OTORHINOLARYNGOLOGY REPORTS 2020; 8:285-294. [PMID: 36090148 PMCID: PMC9455742 DOI: 10.1007/s40136-020-00300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose of review Hearing loss is a common congenital sensory disorder with various underlying causes. Here, we review and focus on genetic, infectious, and ototoxic causes and recent advances in inner ear therapeutics. Recent findings While hearing aids and cochlear implantation are the mainstay of treatment for pediatric hearing loss, novel biological therapeutics are being explored. Recent preclinical studies report positive results in viral-mediated gene transfer techniques and surgical approaches to the inner ear for genetic hearing loss. Novel pharmacologic agents, on the other hand, show promising results in reducing aminoglycoside and cisplatin ototoxicity. Clinical trials are underway to evaluate the efficacy of antivirals for cytomegalovirus-related hearing loss, and its pathogenesis and other potential therapeutics are currently under investigation. Summary Individualized therapies for genetic and infectious causes of sensorineural hearing loss in animal models as well as pediatric patients show promising results, with their potential efficacy being active areas of research.
Collapse
Affiliation(s)
- Ksenia A. Aaron
- Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Grace S. Kim
- Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Alan G. Cheng
- Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| |
Collapse
|
15
|
Haller TJ, Price MS, Lindsay SR, Hillas E, Seipp M, Firpo MA, Park AH. Effects of ganciclovir treatment in a murine model of cytomegalovirus‐induced hearing loss. Laryngoscope 2020; 130:1064-1069. [DOI: 10.1002/lary.28134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Travis J. Haller
- Division of Otolaryngology–Head and Neck SurgeryUniversity of Utah School of Medicine Salt Lake City Utah U.S.A
| | - Melissa S. Price
- School of MedicineUniversity of Utah School of Medicine Salt Lake City Utah U.S.A
| | - Spencer R. Lindsay
- Division of Otolaryngology–Head and Neck SurgeryUniversity of Utah School of Medicine Salt Lake City Utah U.S.A
| | - Elaine Hillas
- Department of SurgeryUniversity of Utah Salt Lake City Utah U.S.A
| | - Michael Seipp
- Department of SurgeryUniversity of Utah Salt Lake City Utah U.S.A
| | - Matthew A. Firpo
- Department of SurgeryUniversity of Utah School of Medicine Salt Lake City Utah U.S.A
| | - Albert H. Park
- Division of Otolaryngology–Head and Neck SurgeryUniversity of Utah School of Medicine Salt Lake City Utah U.S.A
| |
Collapse
|
16
|
Nelson CS, Baraniak I, Lilleri D, Reeves MB, Griffiths PD, Permar SR. Immune Correlates of Protection Against Human Cytomegalovirus Acquisition, Replication, and Disease. J Infect Dis 2020; 221:S45-S59. [PMID: 32134477 PMCID: PMC7057792 DOI: 10.1093/infdis/jiz428] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects and an etiology of significant morbidity and mortality in solid organ and hematopoietic stem cell transplant recipients. There is tremendous interest in developing a vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease, yet after nearly a half-century of research and development in this field we remain without such an intervention. Defining immune correlates of protection is a process that enables targeted vaccine/immunotherapeutic discovery and informed evaluation of clinical performance. Outcomes in the HCMV field have previously been measured against a variety of clinical end points, including virus acquisition, systemic replication, and progression to disease. Herein we review immune correlates of protection against each of these end points in turn, showing that control of HCMV likely depends on a combination of innate immune factors, antibodies, and T-cell responses. Furthermore, protective immune responses are heterogeneous, with no single immune parameter predicting protection against all clinical outcomes and stages of HCMV infection. A detailed understanding of protective immune responses for a given clinical end point will inform immunogen selection and guide preclinical and clinical evaluation of vaccines or immunotherapeutics to prevent HCMV-mediated congenital and transplant disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,Correspondence: Cody S. Nelson, Human Vaccine Institute, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710 ()
| | - Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Daniele Lilleri
- Laboratory of Genetics, Transplantation, and Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
17
|
Pecha PP, Almishaal AA, Mathur PD, Hillas E, Johnson T, Price MS, Haller T, Yang J, Rajasekaran NS, Firpo MA, Park AH. Role of Free Radical Formation in Murine Cytomegalovirus-Induced Hearing Loss. Otolaryngol Head Neck Surg 2020; 162:709-717. [PMID: 32041493 DOI: 10.1177/0194599820901485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The goal of the study was to determine whether reactive oxygen species (ROS) mediates cytomegalovirus (CMV)-induced labyrinthitis. STUDY DESIGN Murine model of CMV infection. SETTING University of Utah laboratory. SUBJECTS AND METHODS Nrf2 knockout mice were inoculated with murine CMV. Auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs) were then performed on these and uninfected controls. BALB/c mice were inoculated with murine CMV to determine whether a marker for ROS production, dihydroethidium (DHE), is expressed 7 days after inoculation. Finally, 2 antioxidants-D-methionine and ACE-Mg (vitamins A, C, and E with magnesium)-were administered 1 hour before and after infection in inoculated mice for 14 days. Temporal bones were harvested at postnatal day 10 for DHE detection. ABR and DPOAE testing was done at postnatal day 30. Scanning electron microscopy was also performed at postnatal day 30 to evaluate outer hair cell integrity. RESULTS Nrf2-infected mice had worse hearing than uninfected mice (P < .001). A statistically significant increase in DHE fluorescence was detected in BALB/c-infected mice as compared with uninfected mice 7 days after inoculation. D-methionine- and ACE-Mg-treated mice demonstrated an attenuation of the DHE fluorescence and a significant improvement in ABR and DPOAE thresholds when compared with untreated infected controls (P < .0001). Scanning electron microscopy demonstrated less outer hair cell loss in the treated versus untreated infected controls. CONCLUSION These results demonstrate for the first time that excessive ROS mediates CMV-induced hearing loss in a mouse model.
Collapse
Affiliation(s)
- Phayvanh P Pecha
- Division of Pediatric Otolaryngology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ali A Almishaal
- College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Pranav D Mathur
- Otonomy Inc, San Diego, California, USA.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, USA
| | - Elaine Hillas
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Taelor Johnson
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Melissa S Price
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Travis Haller
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Jun Yang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, USA.,Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | - Namakkal S Rajasekaran
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Cardiovascular Medicine, Department of Medicine, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Matthew A Firpo
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Albert H Park
- College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.,Division of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Sung CYW, Seleme MC, Payne S, Jonjic S, Hirose K, Britt W. Virus-induced cochlear inflammation in newborn mice alters auditory function. JCI Insight 2019; 4:128878. [PMID: 31484824 DOI: 10.1172/jci.insight.128878] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Although human cytomegalovirus (HCMV) is a known cause of sensorineural hearing loss in infants with congenital HCMV (cCMV) infections, mechanisms that contribute to sensorineural hearing loss (SNHL) in infants with cCMV infection are not well defined. Using a murine model of CMV infection during auditory development, we have shown that peripheral infection of newborn mice with murine CMV (MCMV) results in focal infection of the cochlea and virus-induced cochlear inflammation. Approximately 50%-60% of infected mice exhibited increased auditory brainstem response (ABR) thresholds across a range of sound frequencies. Histological analyses of the cochlea in MCMV-infected mice with elevated ABR thresholds revealed preservation of hair cell (HC) number and morphology in the organ of Corti. In contrast, the number of spiral ganglion neurons (SGN), synapses, and neurites connecting the cochlear HC and SGN nerve terminals were decreased. Decreasing cochlear inflammation by corticosteroid treatment of MCMV-infected mice resulted in preservation of SGN and improved auditory function. These findings show that virus-induced cochlear inflammation during early auditory development, rather than direct virus-mediated damage, could contribute to histopathology in the cochlea and altered auditory function without significant loss of HCs in the sensory epithelium.
Collapse
Affiliation(s)
| | - Maria C Seleme
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Shelby Payne
- Department of Otolaryngology, Washington University, St. Louis, Missouri, USA
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Keiko Hirose
- Department of Otolaryngology, Washington University, St. Louis, Missouri, USA
| | - William Britt
- Department of Microbiology and.,Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama, USA.,Department of Neurobiology, University of Alabama School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Abstract
Congenital and perinatal infections represent major causes of permanent disability among children worldwide. Linked together by the acronym TORCH, denoting Toxoplasma gondii, rubella virus, cytomegalovirus, and herpes virus, congenital infections can result from only a modest number of human pathogens that cross the placenta and infect the fetus. Although congenital rubella syndrome has been eliminated in the Americas by immunization, several pathogens discussed in this chapter cannot currently be prevented by vaccines or effectively treated with the available antimicrobial drugs. Due to the immaturity of the immune system, newborn infants are at risk for postnatally acquired infections with certain viruses and several bacteria. This chapter summarizes the epidemiology, pathogenesis, clinical manifestations, diagnosis, treatment, and prevention of selected pathogens that can damage the developing nervous system. As emphasized by the persisting challenges of preventing congenital cytomegalovirus infection and the emergence of severe brain damage associated with congenital Zika syndrome, these pathogens remain important causes of cerebral palsy, epilepsy, and intellectual disability.
Collapse
|
20
|
Congenital Cytomegalovirus Infection Alters Olfaction Before Hearing Deterioration In Mice. J Neurosci 2018; 38:10424-10437. [PMID: 30341181 DOI: 10.1523/jneurosci.0740-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/24/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022] Open
Abstract
In developed countries, cytomegalovirus (CMV)-infected newborns are at high risk of developing sensorineural handicaps such as hearing loss, requiring extensive follow-up. However, early prognostic tools for auditory damage in children are not yet available. In the fetus, CMV infection leads to early olfactory bulb (OB) damage, suggesting that olfaction might represent a valuable prognosis for neurological outcome of this viral infection. Here, we demonstrate that in utero CMV inoculation causes fetal infection and growth retardation in mice of both sexes. It disrupts OB normal development, leading to disproportionate OB cell layers and rapid major olfactory deficits. Olfaction is impaired as early as day 6 after birth in both sexes, long before the emergence of auditory deficits. Olfactometry in males reveals a long-lasting alteration in olfactory perception and discrimination, particularly in binary mixtures of monomolecular odorants. Although sensory inputs to the OB remain unchanged, hallmarks of autophagy are increased in the OB of 3-postnatal week-old mice, leading to local neuroinflammation and loss of neurons expressing tyrosine hydroxylase and calbindin. At the cellular level, we found CMV-infected cells and an increased number of apoptotic cells scattered throughout the OB layers, whereas cell proliferation in the neurogenic subventricular zone was decreased. These cellular observations were long-lasting, persisting up to 16 weeks after birth in both males and females and thus providing a mechanism supporting olfactory loss. Despite obvious differences in neurogenesis between human and mouse, these findings offer new strategies aimed at early detection of neurological dysfunctions caused by congenital infections.SIGNIFICANCE STATEMENT In developed countries, congenital cytomegalovirus (CMV)-infected newborns are at high risk of developing sensory handicaps such as hearing loss, thus requiring prolonged follow-up. In this study, we describe for the first time the functional impact of congenital CMV infection on the olfactory system and its associated sense of smell. We demonstrate that a mouse model of congenital CMV infection shows defects in olfactory bulb (OB) normal development and pronounced olfactory deficits affecting acuity and discrimination of odorants. These major olfactory deficits occur long before the emergence of auditory deficits through the upregulation of OB autophagy inducing local neuroinflammation and altered neuron content. Our findings provide new opportunities for designing olfactory means to monitor the possible neurological outcome during congenital CMV infection.
Collapse
|