1
|
The HDAC inhibitor zabadinostat is a systemic regulator of adaptive immunity. Commun Biol 2023; 6:102. [PMID: 36702861 PMCID: PMC9878486 DOI: 10.1038/s42003-023-04485-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Protein acetylation plays a key role in regulating cellular processes and is subject to aberrant control in diverse pathologies. Although histone deacetylase (HDAC) inhibitors are approved drugs for certain cancers, it is not known whether they can be deployed in other therapeutic contexts. We have explored the clinical HDAC inhibitor, zabadinostat/CXD101, and found that it is a stand-alone regulator of the adaptive immune response. Zabadinostat treatment increased expression of MHC class I and II genes in a variety of cells, including dendritic cells (DCs) and healthy tissue. Remarkably, zabadinostat enhanced the activity of DCs, and CD4 and CD8 T lymphocytes. Using an antigenic peptide presented to the immune system by MHC class I, zabadinostat caused an increase in antigen-specific CD8 T lymphocytes. Further, mice immunised with covid19 spike protein and treated with zabadinostat exhibit enhanced covid19 neutralising antibodies and an increased level of T lymphocytes. The enhanced humoral response reflected increased activity of T follicular helper (Tfh) cells and germinal centre (GC) B cells. Our results argue strongly that zabadinostat has potential to augment diverse therapeutic agents that act through the immune system.
Collapse
|
2
|
Hirai T, Yoshioka Y. Considerations of CD8+ T Cells for Optimized Vaccine Strategies Against Respiratory Viruses. Front Immunol 2022; 13:918611. [PMID: 35774782 PMCID: PMC9237416 DOI: 10.3389/fimmu.2022.918611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The primary goal of vaccines that protect against respiratory viruses appears to be the induction of neutralizing antibodies for a long period. Although this goal need not be changed, recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have drawn strong attention to another arm of acquired immunity, CD8+ T cells, which are also called killer T cells. Recent evidence accumulated during the coronavirus disease 2019 (COVID-19) pandemic has revealed that even variants of SARS-CoV-2 that escaped from neutralizing-antibodies that were induced by either infection or vaccination could not escape from CD8+ T cell-mediated immunity. In addition, although traditional vaccine platforms, such as inactivated virus and subunit vaccines, are less efficient in inducing CD8+ T cells, newly introduced platforms for SARS-CoV-2, namely, mRNA and adenoviral vector vaccines, can induce strong CD8+ T cell-mediated immunity in addition to inducing neutralizing antibodies. However, CD8+ T cells function locally and need to be at the site of infection to control it. To fully utilize the protective performance of CD8+ T cells, it would be insufficient to induce only memory cells circulating in blood, using injectable vaccines; mucosal immunization could be required to set up CD8+ T cells for the optimal protection. CD8+ T cells might also contribute to the pathology of the infection, change their function with age and respond differently to booster vaccines in comparison with antibodies. Herein, we overview cutting-edge ideas on CD8+ T cell-mediated immunity that can enable the rational design of vaccines for respiratory viruses.
Collapse
Affiliation(s)
- Toshiro Hirai
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- *Correspondence: Toshiro Hirai,
| | - Yasuo Yoshioka
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| |
Collapse
|
3
|
Cupovic J, Ring SS, Onder L, Colston JM, Lütge M, Cheng HW, De Martin A, Provine NM, Flatz L, Oxenius A, Scandella E, Krebs P, Engeler D, Klenerman P, Ludewig B. Adenovirus vector vaccination reprograms pulmonary fibroblastic niches to support protective inflating memory CD8 + T cells. Nat Immunol 2021; 22:1042-1051. [PMID: 34267375 PMCID: PMC7611414 DOI: 10.1038/s41590-021-00969-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Pathogens and vaccines that produce persisting antigens can generate expanded pools of effector memory CD8+ T cells, described as memory inflation. While properties of inflating memory CD8+ T cells have been characterized, the specific cell types and tissue factors responsible for their maintenance remain elusive. Here, we show that clinically applied adenovirus vectors preferentially target fibroblastic stromal cells in cultured human tissues. Moreover, we used cell-type-specific antigen targeting to define critical cells and molecules that sustain long-term antigen presentation and T cell activity after adenovirus vector immunization in mice. While antigen targeting to myeloid cells was insufficient to activate antigen-specific CD8+ T cells, genetic activation of antigen expression in Ccl19-cre-expressing fibroblastic stromal cells induced inflating CD8+ T cells. Local ablation of vector-targeted cells revealed that lung fibroblasts support the protective function and metabolic fitness of inflating memory CD8+ T cells in an interleukin (IL)-33-dependent manner. Collectively, these data define a critical fibroblastic niche that underpins robust protective immunity operating in a clinically important vaccine platform.
Collapse
Affiliation(s)
- Jovana Cupovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Sandra S Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Julia M Colston
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nicholas M Provine
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Elke Scandella
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Berne, Berne, Switzerland
| | - Daniel Engeler
- Department of Urology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Chang J. Adenovirus Vectors: Excellent Tools for Vaccine Development. Immune Netw 2021; 21:e6. [PMID: 33728099 PMCID: PMC7937504 DOI: 10.4110/in.2021.21.e6] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Adenovirus was originally used as a vector for gene therapy. In recent years, with the development of the next-generation vectors with increased safety and high immunogenicity to transgene products, its utility as a vaccine vector has continued to increase. Adenovirus-based vaccines are currently being tested not only to prevent various infectious diseases but also to be applied as cancer vaccines. In this review, I discuss the innate and adaptive aspects of the immunological characteristics of adenovirus vectors and further examine the current status of advanced adenovirus-based vaccine development. Various methods that can overcome the limitations of currently used adenoviruses as vaccine vehicles are also discussed. Through this study, I hope that vaccine development using adenovirus vectors will be expedited and more successful.
Collapse
Affiliation(s)
- Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
5
|
Atcheson E, Li W, Bliss CM, Chinnakannan S, Heim K, Sharpe H, Hutchings C, Dietrich I, Nguyen D, Kapoor A, Jarvis MA, Klenerman P, Barnes E, Simmonds P. Use of an Outbred Rat Hepacivirus Challenge Model for Design and Evaluation of Efficacy of Different Immunization Strategies for Hepatitis C Virus. Hepatology 2020; 71:794-807. [PMID: 31400152 PMCID: PMC7154631 DOI: 10.1002/hep.30894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS The lack of immunocompetent small animal models for hepatitis C virus (HCV) has greatly hindered the development of effective vaccines. Using rodent hepacivirus (RHV), a homolog of HCV that shares many characteristics of HCV infection, we report the development and application of an RHV outbred rat model for HCV vaccine development. APPROACH AND RESULTS Simian adenovirus (ChAdOx1) encoding a genetic immune enhancer (truncated shark class II invariant chain) fused to the nonstructural (NS) proteins NS3-NS5B from RHV (ChAd-NS) was used to vaccinate Sprague-Dawley rats, resulting in high levels of cluster of differentiation 8-positive (CD8+ ) T-cell responses. Following RHV challenge (using 10 or 100 times the minimum infectious dose), 42% of vaccinated rats cleared infection within 6-8 weeks, while all mock vaccinated controls became infected with high-level viremia postchallenge. A single, 7-fold higher dose of ChAd-NS increased efficacy to 67%. Boosting with ChAd-NS or with a plasmid encoding the same NS3-NS5B antigens increased efficacy to 100% and 83%, respectively. A ChAdOx1 vector encoding structural antigens (ChAd-S) was also constructed. ChAd-S alone showed no efficacy. Strikingly, when combined with ChAd-NS, ChAD-S produced 83% efficacy. Protection was associated with a strong CD8+ interferon gamma-positive recall response against NS4. Next-generation sequencing of a putative RHV escape mutant in a vaccinated rat identified mutations in both identified immunodominant CD8+ T-cell epitopes. CONCLUSIONS A simian adenovirus vector vaccine strategy is effective at inducing complete protective immunity in the rat RHV model. The RHV Sprague-Dawley rat challenge model enables comparative testing of vaccine platforms and antigens and identification of correlates of protection and thereby provides a small animal experimental framework to guide the development of an effective vaccine for HCV in humans.
Collapse
Affiliation(s)
- Erwan Atcheson
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Wenqin Li
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Carly M. Bliss
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | | | - Kathrin Heim
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Hannah Sharpe
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Claire Hutchings
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Isabelle Dietrich
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Dung Nguyen
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Amit Kapoor
- Centre for Vaccines and ImmunityThe Research Institute at Nationwide Children’s HospitalColumbusOH
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Peter Simmonds
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Welten SPM, Baumann NS, Oxenius A. Fuel and brake of memory T cell inflation. Med Microbiol Immunol 2019; 208:329-338. [PMID: 30852648 DOI: 10.1007/s00430-019-00587-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/24/2022]
Abstract
Memory T cell inflation is a process in which a large number of effector memory T cells accumulates in peripheral tissues. This phenomenon is observed upon certain low level persistent virus infections, but it is most commonly described upon infection with the β-herpesvirus Cytomegalovirus. Due to the induction of this large pool of functional effector CD8 T cells in peripheral tissues, the interest in using CMV-based vaccine vectors for vaccination purposes is rising. However, the exact mechanisms of memory T cell inflation are not yet fully understood. It is clear that repetitive exposure to antigen is a key determinant for memory inflation, and therefore the viral inoculum dose and the subsequent number of viral reactivation events strongly impact on the magnitude of the inflationary T cell pool. In addition, the number of CMV-specific CD8 T cells that is able to sense these reactivation events affects the size of the inflationary T cell pool. In the following, we will discuss factors that either promote or limit T cell inflation from both the virus and host perspective. These factors mostly operate by influencing the amount of available antigen or by affecting the T cell pool that is able to respond to the antigen. Furthermore, we will discuss the recent use of CMV-based vaccines in pre-clinical experimental settings, where these vectors have shown promising results by inducing prolonged effector memory T cell responses to foreign-introduced epitopes and thereby provided protection from subsequent virus or tumour challenges.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
7
|
Gordon CL, Hutchings CL, Highton AJ, Colston JM, Provine NM, Klenerman P. Memory inflation following adenoviral vaccination depends on IL-21. Vaccine 2018; 36:7011-7016. [PMID: 30279090 PMCID: PMC6219444 DOI: 10.1016/j.vaccine.2018.09.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022]
Abstract
Cytomegalovirus (CMV) and non-replicating adenoviral vectors can induce expanded, sustained effector-memory CD8+ T-cell responses, termed “memory inflation”. During murine CMV (MCMV) infection, CD4+ Tcells maintain inflationary virus-specific CD8+ T-cell responses via IL-2 but not IL-21. Adenovirus vector vaccination can induce phenotypically, functionally and transcriptionally similar inflationary responses, but it is not known how IL-21 influences the inflating memory response to adenoviral vaccination. Here, we show that IL-21 is an absolute requirement for induction and maintenance of vaccine-derived inflationary CD8+ T-cell responses. These data indicate that the induction pathway of inflationary Ad-LacZ T-cells is distinct from inflationary MCMV-specific T-cells and is highly dependent on IL-21. Our observations highlight a fundamental difference in the mechanism by which adenovirus vectors and MCMV drive inflationary T-cell responses.
Collapse
Affiliation(s)
- Claire L Gordon
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Claire L Hutchings
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Andrew J Highton
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Julia M Colston
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Nicholas M Provine
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK.
| |
Collapse
|
8
|
Abstract
Memory inflation, as a term, has been used for 15 years now to describe the longitudinal development of stable, expanded CD8+ T memory pools with a distinct phenotype and functional profile which emerge in specific infection and vaccine settings. These settings have in common the persistence of antigen, especially cytomegalovirus infection but also more recently adenoviral vector vaccination. However, in contrast to chronic infections which lead to "exhaustion" the repeated antigen encounters experienced by CD8+ T cells lead to development of a robust T-cell population structure which maintains functionality and size. In this review, I will discuss how the ideas around this form of memory have evolved over time and some new models which can help explain how these populations are induced and sustained. These models are relevant to immunity against persistent viruses, to novel vaccine strategies and to concepts about aging.
Collapse
Affiliation(s)
- Paul Klenerman
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology UnitUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Gordon CL, Lee LN, Swadling L, Hutchings C, Zinser M, Highton AJ, Capone S, Folgori A, Barnes E, Klenerman P. Induction and Maintenance of CX3CR1-Intermediate Peripheral Memory CD8 + T Cells by Persistent Viruses and Vaccines. Cell Rep 2018; 23:768-782. [PMID: 29669283 PMCID: PMC5917822 DOI: 10.1016/j.celrep.2018.03.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/26/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
The induction and maintenance of T cell memory is critical to the success of vaccines. A recently described subset of memory CD8+ T cells defined by intermediate expression of the chemokine receptor CX3CR1 was shown to have self-renewal, proliferative, and tissue-surveillance properties relevant to vaccine-induced memory. We tracked these cells when memory is sustained at high levels: memory inflation induced by cytomegalovirus (CMV) and adenovirus-vectored vaccines. In mice, both CMV and vaccine-induced inflationary T cells showed sustained high levels of CX3R1int cells exhibiting an effector-memory phenotype, characteristic of inflationary pools, in early memory. In humans, CX3CR1int CD8+ T cells were strongly induced following adenovirus-vectored vaccination for hepatitis C virus (HCV) (ChAd3-NSmut) and during natural CMV infection and were associated with a memory phenotype similar to that in mice. These data indicate that CX3CR1int cells form an important component of the memory pool in response to persistent viruses and vaccines in both mice and humans.
Collapse
Affiliation(s)
- Claire Louse Gordon
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Lian Ni Lee
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Leo Swadling
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Claire Hutchings
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Madeleine Zinser
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Andrew John Highton
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Stefania Capone
- Reithera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Antonella Folgori
- Reithera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK.
| |
Collapse
|