1
|
Iwatani Y, Matsuoka K, Ode H, Kubota M, Nakata Y, Setoyama Y, Kojima K, Imahashi M, Yokomaku Y. The unique structure of the highly conserved PPLP region in HIV-1 Vif is critical for the formation of APOBEC3 recognition interfaces. mBio 2025; 16:e0333224. [PMID: 39835817 PMCID: PMC11898743 DOI: 10.1128/mbio.03332-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
The human cellular cytidine deaminases APOBEC3s (A3s) inhibit virion infectivity factor (Vif)-deficient HIV-1 replication. However, virus-encoded Vifs abolish this defense system by specifically recruiting A3s to an E3 ubiquitin ligase complex to induce their degradation. The highly conserved Vif PPLP motif is critical for the Vif-mediated antagonism of A3s and is believed to be important for Vif multimerization. However, how the PPLP motif dictates the functions of Vif remains unclear. Here, we aimed to elucidate this mechanism using biochemical and structural biology approaches. First, we found that no stable Vif multimer complexes formed in our tandem coimmunoprecipitation assays. Next, a series of Vif truncation mutants were constructed, and the short α-helix α6 just downstream of PPLP was found to be the smallest fragment essential for efficient A3G degradation in cells. In silico structural analysis suggested that PPLP-α6 adopts a stable L-shaped conformation when complexed in Vif/CBF-β and contributes to the structural integrity of Vif. In vitro ubiquitination assays with recombinant proteins confirmed that PPLP-α6 is necessary to form the functional complex of the E3 ligase adaptor of Vif/CBF-β/elongin B/elongin C. Additionally, mutations of the highly conserved PPLP-α6 hydrophobic residues severely disrupted Vif function. In the Vif structure, PPLP-α6 is positioned behind α1-α2 that constitutes the A3-binding Vif interfaces. Therefore, both the PPLP motif and α6 play critical allosteric roles in maintaining the integrity of the A3 interaction interfaces. Our findings will also provide important data for the design of novel anti-HIV-1 compounds that disrupt the A3-binding Vif interfaces.IMPORTANCEThe APOBEC3 (A3) family enzymes potently block the replication of retroviruses, such as HIV-1. However, HIV-1 expresses Vif, a small multifaceted protein that binds and specifically eliminates A3s in infected cells via ubiquitination-proteasome degradation. Thus, A3-Vif interactions are attractive targets for anti-HIV-1 drug development. The Vif PPLP motif that is distal from these interfaces is necessary for A3 degradation; however, the mechanism by which PPLP participates in A3 degradation is unknown. In this study, we performed biochemical and structural biology analyses to elucidate the underlying mechanisms involved. We found that the PPLP motif, in addition to the short downstream fragment α6, forms a stable L-shaped conformation and acts as a scaffold for the A3 recognition interfaces. Importantly, mutations in α6 abolished Vif function to antagonize multiple A3 family enzymes. These findings provide important data for the development of novel HIV-1 inhibitors that utilize A3s as cellular defense enzymes.
Collapse
Affiliation(s)
- Yasumasa Iwatani
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
- Department of AIDS Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuhiro Matsuoka
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Hirotaka Ode
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Mai Kubota
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Yoshihiro Nakata
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Yuka Setoyama
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Kanako Kojima
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Mayumi Imahashi
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Yoshiyuki Yokomaku
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Chung DH, Connelly EJ, Unnikrishnan A, Chuo SW, Wucherer K, Nadel CM, Gestwicki JE, Southworth DR, Craik CS. Recombinant antibodies inhibit enzymatic activity of the E3 ubiquitin ligase CHIP via multiple mechanisms. J Biol Chem 2025; 301:108220. [PMID: 39863102 PMCID: PMC11883360 DOI: 10.1016/j.jbc.2025.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility. Moreover, the best ways of inhibiting CHIP's function are not obvious, as this complex protein is composed of a tetratricopeptide repeat (TPR) domain, a U-box domain, and a coiled-coil domain that mediates homodimerization. To probe the structure and function of CHIP, we report an antibody panning campaign that yielded six recombinant Fabs with affinity for CHIP. Interestingly, these antibodies varied in their binding site(s) and impact on CHIP function, such as inhibiting TPR interactions, autoubiquitination, and/or substrate ubiquitination. Of particular interest, antibody 2F1 nearly eliminated substrate binding (IC50 = 2.7 μM) and limited ubiquitination and autoubiquitination. Cryo-electron microscopy of the 2F1:CHIP complex revealed a 2:1 binding mode (Fab:CHIP dimer), with 2F1 bound to the U-box domain and simultaneously displacing the TPR domain. Together, these studies provide insight into ways of inhibiting CHIP's activity and provide a series of new probes for exploring the function of this important E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Dong Hee Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.
| | - Emily J Connelly
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Aparna Unnikrishnan
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA
| | - Shih-Wei Chuo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Kristin Wucherer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Cory M Nadel
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA; Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA; Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA
| | - Daniel R Southworth
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
3
|
Abajorga M, Yurkovetskiy L, Luban J. piRNA Defense Against Endogenous Retroviruses. Viruses 2024; 16:1756. [PMID: 39599869 PMCID: PMC11599104 DOI: 10.3390/v16111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Infection by retroviruses and the mobilization of transposable elements cause DNA damage that can be catastrophic for a cell. If the cell survives, the mutations generated by retrotransposition may confer a selective advantage, although, more commonly, the effect of new integrants is neutral or detrimental. If retrotransposition occurs in gametes or in the early embryo, it introduces genetic modifications that can be transmitted to the progeny and may become fixed in the germline of that species. PIWI-interacting RNAs (piRNAs) are single-stranded, 21-35 nucleotide RNAs generated by the PIWI clade of Argonaute proteins that maintain the integrity of the animal germline by silencing transposons. The sequence specific manner by which piRNAs and germline-encoded PIWI proteins repress transposons is reminiscent of CRISPR, which retains memory for invading pathogen sequences. piRNAs are processed preferentially from the unspliced transcripts of piRNA clusters. Via complementary base pairing, mature antisense piRNAs guide the PIWI clade of Argonaute proteins to transposon RNAs for degradation. Moreover, these piRNA-loaded PIWI proteins are imported into the nucleus to modulate the co-transcriptional repression of transposons by initiating histone and DNA methylation. How retroviruses that invade germ cells are first recognized as foreign by the piRNA machinery, as well as how endogenous piRNA clusters targeting the sequences of invasive genetic elements are acquired, is not known. Currently, koalas (Phascolarctos cinereus) are going through an epidemic due to the horizontal and vertical transmission of the KoRV-A gammaretrovirus. This provides an unprecedented opportunity to study how an exogenous retrovirus becomes fixed in the genome of its host, and how piRNAs targeting this retrovirus are generated in germ cells of the infected animal. Initial experiments have shown that the unspliced transcript from KoRV-A proviruses in koala testes, but not the spliced KoRV-A transcript, is directly processed into sense-strand piRNAs. The cleavage of unspliced sense-strand transcripts is thought to serve as an initial innate defense until antisense piRNAs are generated and an adaptive KoRV-A-specific genome immune response is established. Further research is expected to determine how the piRNA machinery recognizes a new foreign genetic invader, how it distinguishes between spliced and unspliced transcripts, and how a mature genome immune response is established, with both sense and antisense piRNAs and the methylation of histones and DNA at the provirus promoter.
Collapse
Affiliation(s)
- Milky Abajorga
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
4
|
Li YL, Langley CA, Azumaya CM, Echeverria I, Chesarino NM, Emerman M, Cheng Y, Gross JD. The structural basis for HIV-1 Vif antagonism of human APOBEC3G. Nature 2023; 615:728-733. [PMID: 36754086 PMCID: PMC10033410 DOI: 10.1038/s41586-023-05779-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
The APOBEC3 (A3) proteins are host antiviral cellular proteins that hypermutate the viral genome of diverse viral families. In retroviruses, this process requires A3 packaging into viral particles1-4. The lentiviruses encode a protein, Vif, that antagonizes A3 family members by targeting them for degradation. Diversification of A3 allows host escape from Vif whereas adaptations in Vif enable cross-species transmission of primate lentiviruses. How this 'molecular arms race' plays out at the structural level is unknown. Here, we report the cryogenic electron microscopy structure of human APOBEC3G (A3G) bound to HIV-1 Vif, and the hijacked cellular proteins that promote ubiquitin-mediated proteolysis. A small surface explains the molecular arms race, including a cross-species transmission event that led to the birth of HIV-1. Unexpectedly, we find that RNA is a molecular glue for the Vif-A3G interaction, enabling Vif to repress A3G by ubiquitin-dependent and -independent mechanisms. Our results suggest a model in which Vif antagonizes A3G by intercepting it in its most dangerous form for the virus-when bound to RNA and on the pathway to packaging-to prevent viral restriction. By engaging essential surfaces required for restriction, Vif exploits a vulnerability in A3G, suggesting a general mechanism by which RNA binding helps to position key residues necessary for viral antagonism of a host antiviral gene.
Collapse
Affiliation(s)
- Yen-Li Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Caroline A Langley
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Caleigh M Azumaya
- Fred Hutchinson Cancer Center, Electron Microscopy Shared Resource, Seattle, WA, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Bioscience Institute, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yifan Cheng
- Quantitative Bioscience Institute, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Quantitative Bioscience Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
5
|
Kaake RM, Echeverria I, Kim SJ, Von Dollen J, Chesarino NM, Feng Y, Yu C, Ta H, Chelico L, Huang L, Gross J, Sali A, Krogan NJ. Characterization of an A3G-Vif HIV-1-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host-Pathogen Complexes. Mol Cell Proteomics 2021; 20:100132. [PMID: 34389466 PMCID: PMC8459920 DOI: 10.1016/j.mcpro.2021.100132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 10/24/2022] Open
Abstract
Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFβ) to determine the structure of the (A3G-Vif-CRL5-CBFβ) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFβ complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yuqing Feng
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - Hai Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Linda Chelico
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - John Gross
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
6
|
Hu Y, Knecht KM, Shen Q, Xiong Y. Multifaceted HIV-1 Vif interactions with human E3 ubiquitin ligase and APOBEC3s. FEBS J 2021; 288:3407-3417. [PMID: 32893454 PMCID: PMC8172064 DOI: 10.1111/febs.15550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
APOBEC3 (A3) proteins are a family of host antiviral restriction factors that potently inhibit various retroviral infections, including human immunodeficiency virus (HIV)-1. To overcome this restriction, HIV-1 virion infectivity factor (Vif) recruits the cellular cofactor CBFβ to assist in targeting A3 proteins to a host E3 ligase complex for polyubiquitination and subsequent proteasomal degradation. Intervention of the Vif-A3 interactions could be a promising therapeutic strategy to facilitate A3-mediated suppression of HIV-1 in patients. In this structural snapshot, we review the structural features of the recently determined structure of human A3F in complex with HIV-1 Vif and its cofactor CBFβ, discuss insights into the molecular principles of Vif-A3 interplay during the arms race between the virus and host, and highlight the therapeutic implications.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kirsten M. Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qi Shen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Sevillano N, Green EM, Votteler J, Kim DY, Ren X, Yang B, Liu X, Lourenço AL, Hurley JH, Farr-Jones S, Gross JD, Cheng Y, Craik CS. Identification of recombinant Fabs for structural and functional characterization of HIV-host factor complexes. PLoS One 2021; 16:e0250318. [PMID: 33983947 PMCID: PMC8118348 DOI: 10.1371/journal.pone.0250318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/05/2021] [Indexed: 12/03/2022] Open
Abstract
Viral infection and pathogenesis is mediated by host protein—viral protein complexes that are important targets for therapeutic intervention as they are potentially less prone to development of drug resistance. We have identified human, recombinant antibodies (Fabs) from a phage display library that bind to three HIV-host complexes. We used these Fabs to 1) stabilize the complexes for structural studies; and 2) facilitate characterization of the function of these complexes. Specifically, we generated recombinant Fabs to Vif-CBF-β-ELOB-ELOC (VCBC); ESCRT-I complex and AP2-complex. For each complex we measured binding affinities with KD values of Fabs ranging from 12–419 nM and performed negative stain electron microscopy (nsEM) to obtain low-resolution structures of the HIV-Fab complexes. Select Fabs were converted to scFvs to allow them to fold intracellularly and perturb HIV-host protein complex assembly without affecting other pathways. To identify these recombinant Fabs, we developed a rapid screening pipeline that uses quantitative ELISAs and nsEM to establish whether the Fabs have overlapping or independent epitopes. This pipeline approach is generally applicable to other particularly challenging antigens that are refractory to immunization strategies for antibody generation including multi-protein complexes providing specific, reproducible, and renewable antibody reagents for research and clinical applications. The curated antibodies described here are available to the scientific community for further structural and functional studies on these critical HIV host-factor proteins.
Collapse
Affiliation(s)
- Natalia Sevillano
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Evan M. Green
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Jörg Votteler
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Dong Young Kim
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Xuefeng Ren
- Department of Molecular and Cellular Biology, University of California, Berkeley, California, United States of America
| | - Bei Yang
- Department of Molecular and Cellular Biology, University of California, Berkeley, California, United States of America
| | - Xi Liu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - James H. Hurley
- Department of Molecular and Cellular Biology, University of California, Berkeley, California, United States of America
| | - Shauna Farr-Jones
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - John D. Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Degradation-Independent Inhibition of APOBEC3G by the HIV-1 Vif Protein. Viruses 2021; 13:v13040617. [PMID: 33916704 PMCID: PMC8066197 DOI: 10.3390/v13040617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin–proteasome system plays an important role in the cell under normal physiological conditions but also during viral infections. Indeed, many auxiliary proteins from the (HIV-1) divert this system to its own advantage, notably to induce the degradation of cellular restriction factors. For instance, the HIV-1 viral infectivity factor (Vif) has been shown to specifically counteract several cellular deaminases belonging to the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 or A3) family (A3A to A3H) by recruiting an E3-ubiquitin ligase complex and inducing their polyubiquitination and degradation through the proteasome. Although this pathway has been extensively characterized so far, Vif has also been shown to impede A3s through degradation-independent processes, but research on this matter remains limited. In this review, we describe our current knowledge regarding the degradation-independent inhibition of A3s, and A3G in particular, by the HIV-1 Vif protein, the molecular mechanisms involved, and highlight important properties of this small viral protein.
Collapse
|
9
|
Zhang Z, Perković M, Gu Q, Balakrishnan K, Sangwiman A, Häussinger D, Lindemann D, Münk C. HIV-2 Vif and foamy virus Bet antagonize APOBEC3B by different mechanisms. Virology 2020; 554:17-27. [PMID: 33333348 DOI: 10.1016/j.virol.2020.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
The family of human APOBEC3 (A3) restriction factors is formed by seven different proteins, A3A-D and A3F-H. Among these A3s, A3B harbors strong restriction activity against several retroviruses, such as SIV, and MLV. How lentiviruses and other retroviruses, prevalent in many primate species, counteract A3B is poorly understood. In this study, we found that A3B strongly inhibited SIVmac and HIV-2 infectivity, which was antagonized by their Vif proteins. Both SIVmac and HIV-2 Vifs diminished the protein level of A3B in viral producer cells, and hindered A3B incorporation into viral particles. We observed that HIV-2 Vif binds A3B and induces its degradation by assembly of an A3-Vif-CUL5-ElonginB/C E3-ligase complex. A3B and HIV-2 Vif localize and interact in the nucleus. In addition, we also found that the accessory protein Bet of prototype foamy virus (PFV) significantly antagonized the anti-SIVmac activity of A3B. Like Vif, Bet prevented the incorporation of A3B into viral particles. However, in contrast to Vif Bet did not induce the degradation of A3B. Rather, Bet binds A3B to block formation of high molecular weight A3B complexes and induces A3B cytoplasmic trapping. In summary, these findings indicate that A3B is recognized by diverse retroviruses and counteracted by virus-specific pathways that could be targeted to inhibit A3B mutating activity in cancers.
Collapse
Affiliation(s)
- Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mario Perković
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Qinyong Gu
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kannan Balakrishnan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anucha Sangwiman
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, 01307, Dresden, Germany; CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307, Dresden, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
10
|
Pan Y, Shlyakhtenko LS, Lyubchenko YL. High-speed atomic force microscopy directly visualizes conformational dynamics of the HIV Vif protein in complex with three host proteins. J Biol Chem 2020; 295:11995-12001. [PMID: 32587092 PMCID: PMC7443491 DOI: 10.1074/jbc.ra120.014442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Indexed: 11/06/2022] Open
Abstract
Vif (viral infectivity factor) is a protein that is essential for the replication of the HIV-1 virus. The key function of Vif is to disrupt the antiviral activity of host APOBEC3 (apolipoprotein B mRNA-editing enzyme catalytic subunit 3) proteins, which mutate viral nucleic acids. Inside the cell, Vif binds to the host cell proteins Elongin-C, Elongin-B, and core-binding factor subunit β, forming a four-protein complex called VCBC. The structure of VCBC-Cullin5 has recently been solved by X-ray crystallography, and, using molecular dynamics simulations, the dynamics of VCBC have been characterized. Here, we applied time-lapse high-speed atomic force microscopy to visualize the conformational changes of the VCBC complex. We determined the three most favorable conformations of this complex, which we identified as the triangle, dumbbell, and globular structures. Moreover, we characterized the dynamics of each of these structures. Our data revealed the very dynamic behavior of all of them, with the triangle and dumbbell structures being the most dynamic. These findings provide insight into the structure and dynamics of the VCBC complex and may support efforts to improve HIV treatment, because Vif is essential for virus survival in the cell.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
11
|
Villanova F, Barreiros M, Leal É. Is the tryptophan codon of gene vif the Achilles' heel of HIV-1? PLoS One 2020; 15:e0225563. [PMID: 32570272 PMCID: PMC7308096 DOI: 10.1371/journal.pone.0225563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/05/2020] [Indexed: 12/04/2022] Open
Abstract
To evaluate the impact of hypermutation on the HIV-1 dissemination at the population level we studied 7072 sequences HIV-1 gene vif retrieved from the public databank. From this dataset 854 sequences were selected because they had associated values of CD4+ T lymphocytes counts and viral loads and they were used to assess the correlation between clinical parameters and hypermutation. We found that the frequency of stop codons at sites 5, 11 and 79 ranged from 2.8x10-4 to 4.2x10-4. On the other hand, at codons 21, 38, 70, 89 and 174 the frequency of stop codons ranged from 1.4x10-3 to 2.5x10-3. We also found a correlation between clinical parameters and hypermutation where patients harboring proviruses with one or more stop codons at the tryptophan sites of the gene vif had higher CD4+ T lymphocytes counts and lower viral loads compared to the population. Our findings indicate that A3 activity potentially restrains HIV-1 replication because individuals with hypermutated proviruses tend to have lower numbers of RNA copies. However, owing to the low frequency of hypermutated sequences observed in the databank (44 out of 7072), it is unlikely that A3 has a significant impact to curb HIV-1 dissemination at the population level.
Collapse
Affiliation(s)
- Fabiola Villanova
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Marta Barreiros
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
- * E-mail:
| |
Collapse
|
12
|
Binning JM, Chesarino NM, Emerman M, Gross JD. Structural Basis for a Species-Specific Determinant of an SIV Vif Protein toward Hominid APOBEC3G Antagonism. Cell Host Microbe 2020; 26:739-747.e4. [PMID: 31830442 DOI: 10.1016/j.chom.2019.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/05/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022]
Abstract
Primate lentiviruses encode a Vif protein that counteracts the host antiviral APOBEC3 (A3) family members. The adaptation of Vif to species-specific A3 determinants is a critical event that allowed the spillover of a lentivirus from monkey reservoirs to chimpanzees and subsequently to humans, which gave rise to HIV-1 and the acquired immune deficiency syndrome (AIDS) pandemic. How Vif-A3 protein interactions are remodeled during evolution is unclear. Here, we report a 2.94 Å crystal structure of the Vif substrate receptor complex from simian immunodeficiency virus isolated from red-capped mangabey (SIVrcm). The structure of the SIVrcm Vif complex illuminates the stage of lentiviral Vif evolution that is immediately prior to entering hominid primates. Structure-function studies reveal the adaptations that allowed SIVrcm Vif to antagonize hominid A3G. These studies show a partitioning between an evolutionarily dynamic specificity determinant and a conserved protein interacting surface on Vif that enables adaptation while maintaining protein interactions required for potent A3 antagonism.
Collapse
Affiliation(s)
- Jennifer M Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Basu K, Green EM, Cheng Y, Craik CS. Why recombinant antibodies - benefits and applications. Curr Opin Biotechnol 2019; 60:153-158. [PMID: 30849700 PMCID: PMC6728236 DOI: 10.1016/j.copbio.2019.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/22/2018] [Accepted: 01/21/2019] [Indexed: 01/07/2023]
Abstract
Antibodies (Abs) are ubiquitous reagents for biological and biochemical research and are rapidly expanding into new therapeutic areas. They are one of the most important probes for determining how proteins function under normal and pathophysiological conditions. Abs are required for the quantification of targets, detection of temporal and spatial patterns of protein expression in cells and tissues, and identification of interacting partners and their biological activities. Their remarkable specificity and unique binding properties can facilitate three-dimensional structure determination using X-ray crystallography and electron cryomicroscopy. While hybridoma technology that involves animal immunization is often productive, many antigen targets do not generate useful Abs. This is particularly true if unique states of the target or critical non-immunogenic target sequences need to be recognized by the Abs. By using the methods of recombinant antibody generation, identification, and engineering, these 'hybridoma-refractory' antigens can be readily targeted. Specific, reproducible, and renewable recombinant Abs are proving to be invaluable reagents in applications ranging from biological discovery to structure determination of challenging macromolecules.
Collapse
Affiliation(s)
- Koli Basu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| | - Evan M Green
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States; Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| |
Collapse
|
14
|
Hüttenhain R, Xu J, Burton LA, Gordon DE, Hultquist JF, Johnson JR, Satkamp L, Hiatt J, Rhee DY, Baek K, Crosby DC, Frankel AD, Marson A, Harper JW, Alpi AF, Schulman BA, Gross JD, Krogan NJ. ARIH2 Is a Vif-Dependent Regulator of CUL5-Mediated APOBEC3G Degradation in HIV Infection. Cell Host Microbe 2019; 26:86-99.e7. [PMID: 31253590 DOI: 10.1016/j.chom.2019.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/24/2018] [Accepted: 04/26/2019] [Indexed: 12/29/2022]
Abstract
The Cullin-RING E3 ligase (CRL) family is commonly hijacked by pathogens to redirect the host ubiquitin proteasome machinery to specific targets. During HIV infection, CRL5 is hijacked by HIV Vif to target viral restriction factors of the APOBEC3 family for ubiquitination and degradation. Here, using a quantitative proteomics approach, we identify the E3 ligase ARIH2 as a regulator of CRL5-mediated APOBEC3 degradation. The CUL5Vif/CBFß complex recruits ARIH2 where it acts to transfer ubiquitin directly to the APOBEC3 targets. ARIH2 is essential for CRL5-dependent HIV infectivity in primary CD4+ T cells. Furthermore, we show that ARIH2 cooperates with CRL5 to prime other cellular substrates for polyubiquitination, suggesting this may represent a general mechanism beyond HIV infection and APOBEC3 degradation. Taken together, these data identify ARIH2 as a co-factor in the Vif-hijacked CRL5 complex that contributes to HIV infectivity and demonstrate the operation of the E1-E2-E3/E3-substrate ubiquitination mechanism in a viral infection context.
Collapse
Affiliation(s)
- Ruth Hüttenhain
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA.
| | - Jiewei Xu
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Lily A Burton
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David E Gordon
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Judd F Hultquist
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA; Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey R Johnson
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Laura Satkamp
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Joseph Hiatt
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Y Rhee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kheewoong Baek
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - David C Crosby
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Arno F Alpi
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA.
| |
Collapse
|
15
|
Ball KA, Chan LM, Stanley DJ, Tierney E, Thapa S, Ta HM, Burton L, Binning JM, Jacobson MP, Gross JD. Conformational Dynamics of the HIV-Vif Protein Complex. Biophys J 2019; 116:1432-1445. [PMID: 30961890 PMCID: PMC6486493 DOI: 10.1016/j.bpj.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus-1 viral infectivity factor (Vif) is an intrinsically disordered protein responsible for the ubiquitination of the APOBEC3 (A3) antiviral proteins. Vif folds when it binds Cullin-RING E3 ligase 5 and the transcription cofactor CBF-β. A five-protein complex containing the substrate receptor (Vif, CBF-β, Elongin-B, Elongin-C (VCBC)) and Cullin5 (CUL5) has a published crystal structure, but dynamics of this VCBC-CUL5 complex have not been characterized. Here, we use molecular dynamics (MD) simulations and NMR to characterize the dynamics of the VCBC complex with and without CUL5 and an A3 protein bound. Our simulations show that the VCBC complex undergoes global dynamics involving twisting and clamshell opening of the complex, whereas VCBC-CUL5 maintains a more static conformation, similar to the crystal structure. This observation from MD is supported by methyl-transverse relaxation-optimized spectroscopy NMR data, which indicates that the VCBC complex without CUL5 is dynamic on the μs-ms timescale. Our NMR data also show that the VCBC complex is more conformationally restricted when bound to the antiviral APOBEC3F (one of the A3 proteins), consistent with our MD simulations. Vif contains a flexible linker region located at the hinge of the VCBC complex, which changes conformation in conjunction with the global dynamics of the complex. Like other substrate receptors, VCBC can exist alone or in complex with CUL5 and other proteins in cells. Accordingly, the VCBC complex could be a good target for therapeutics that would inhibit full assembly of the ubiquitination complex by stabilizing an alternate VCBC conformation.
Collapse
Affiliation(s)
- K Aurelia Ball
- Department of Chemistry, Skidmore College, Saratoga Springs, New York.
| | - Lieza M Chan
- Department of Chemistry, Skidmore College, Saratoga Springs, New York
| | - David J Stanley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Elise Tierney
- Department of Chemistry, Skidmore College, Saratoga Springs, New York
| | - Sampriti Thapa
- Department of Chemistry, Skidmore College, Saratoga Springs, New York
| | - Hai M Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Lily Burton
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jennifer M Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
16
|
Role of co-expressed APOBEC3F and APOBEC3G in inducing HIV-1 drug resistance. Heliyon 2019; 5:e01498. [PMID: 31025011 PMCID: PMC6475876 DOI: 10.1016/j.heliyon.2019.e01498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/24/2019] [Accepted: 04/05/2019] [Indexed: 01/04/2023] Open
Abstract
The APOBEC3 enzymes can induce mutagenesis of HIV-1 proviral DNA through the deamination of cytosine. HIV-1 overcomes this restriction through the viral protein Vif that induces APOBEC3 proteasomal degradation. Within this dynamic host-pathogen relationship, the APOBEC3 enzymes have been found to be beneficial, neutral, or detrimental to HIV-1 biology. Here, we assessed the ability of co-expressed APOBEC3F and APOBEC3G to induce HIV-1 resistance to antiviral drugs. We found that co-expression of APOBEC3F and APOBEC3G enabled partial resistance of APOBEC3F to Vif-mediated degradation with a corresponding increase in APOBEC3F-induced deaminations in the presence of Vif, in addition to APOBEC3G-induced deaminations. We recovered HIV-1 drug resistant variants resulting from APOBEC3-induced mutagenesis, but these variants were less able to replicate than drug resistant viruses derived from RT-induced mutations alone. The data support a model in which APOBEC3 enzymes cooperate to restrict HIV-1, promoting viral inactivation over evolution to drug resistance.
Collapse
|
17
|
Zhong M, Lee GM, Sijbesma E, Ottmann C, Arkin MR. Modulating protein-protein interaction networks in protein homeostasis. Curr Opin Chem Biol 2019; 50:55-65. [PMID: 30913483 DOI: 10.1016/j.cbpa.2019.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 12/12/2022]
Abstract
Protein-protein interactions (PPIs) occur in complex networks. These networks are highly dependent on cellular context and can be extensively altered in disease states such as cancer and viral infection. In recent years, there has been significant progress in developing inhibitors that target individual PPIs either orthosterically (at the interface) or allosterically. These molecules can now be used as tools to dissect PPI networks. Here, we review recent examples that highlight the use of small molecules and engineered proteins to probe PPIs within the complex networks that regulate protein homeostasis. Researchers have discovered multiple mechanisms to modulate PPIs involved in host/viral interactions, deubiquitinases, the ATPase p97/VCP, and HSP70 chaperones. However, few studies have evaluated the effect of such modulators on the target's network or have compared the biological implications of different modulation strategies. Such studies will have an important impact on next generation therapeutics.
Collapse
Affiliation(s)
- Mengqi Zhong
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California, San Francisco, CA, USA
| | - Gregory M Lee
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California, San Francisco, CA, USA
| | - Eline Sijbesma
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Christian Ottmann
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California, San Francisco, CA, USA.
| |
Collapse
|