1
|
Lin YR, Lam LY, Chang CM, Lam HYP. Concomitant occurrence of chronic Schistosoma mansoni infection and chronic colitis restore immune imbalance and dysbiosis leading to protection against intestinal colitis and schistosome egg-induced intestinal fibrosis. Mem Inst Oswaldo Cruz 2025; 120:e240045. [PMID: 40332187 PMCID: PMC12051921 DOI: 10.1590/0074-02760240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/23/2024] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Schistosomiasis is one of the most devastating tropical diseases in developing countries and is usually misdiagnosed with colitis because the prevalence of co-occurrence of both diseases is high. Previously, infection of Schistosoma japonicum cercariae has been shown to provide immediate protection against dextran sodium sulphate (DSS)-induced acute colitis in mice models. Studies using synthesised peptides or soluble proteins from parasites also revealed similar protection against colitis. However, most of these studies were done within a short timeframe, which cannot completely represent the actual situation where natural infection of Schistosoma or colitis is usually chronic. OBJECTIVES This study aims to investigate how chronic schistosomiasis affects chronic intestinal inflammation. METHODS Mice were infected with Schistosoma mansoni and induced simultaneously with chronic colitis. The symptoms and severity of intestinal inflammation and fibrosis were investigated by disease activity index, histology, enzyme-linked immunosorbent assay (ELISA), and quantitative polymerase chain reaction (qPCR). Furthermore, immune analysis by ELISA and qPCR and microbiome analysis by 16S rDNA sequencing were done to investigate the underlying mechanism. FINDINGS Concomitant occurrence of chronic schistosomiasis and chronic colitis significantly alleviated colitis symptoms, lessened intestinal inflammation, and reduced egg-induced fibrosis. Further analysis revealed an alternation of the intestinal immunity and gut microbiome community in mice with both diseases, which could be the potential reason for this outcome. MAIN CONCLUSIONS Our results represent a mechanism of how schistosomiasis and chronic intestinal inflammation affect each other.
Collapse
Affiliation(s)
- You-Ren Lin
- Tzu Chi University, School of Medicine, Master Program in Biomedical Sciences, Hualien, Taiwan
| | - Long Yin Lam
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, Kowloon, Hong Kong SAR, China
| | - Chun-Ming Chang
- Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Department of General Surgery, Hualien, Taiwan
- Tzu Chi University, Institute of Medical Sciences, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Tzu Chi University, School of Medicine, Master Program in Biomedical Sciences, Hualien, Taiwan
- Tzu Chi University, Institute of Medical Sciences, Hualien, Taiwan
- Tzu Chi University, School of Medicine, Department of Biochemistry, Hualien, Taiwan
| |
Collapse
|
2
|
Henthorn CR, McCusker P, Le Clec’h W, Chevalier FD, Anderson TJ, Zamanian M, Chan JD. Transcriptional phenotype of the anti-parasitic benzodiazepine meclonazepam on the blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 2025; 19:e0012969. [PMID: 40198716 PMCID: PMC12058154 DOI: 10.1371/journal.pntd.0012969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 05/07/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025] Open
Abstract
There are limited control measures for the disease schistosomiasis, despite the fact that infection with parasitic blood flukes affects hundreds of millions of people worldwide. The current treatment, praziquantel, has been in use since the 1980's and there is a concern that drug resistance may emerge with continued monotherapy. Given the need for additional antischistosomal drugs, we have re-visited an old lead, meclonazepam. In comparison to praziquantel, there has been relatively little work on its antiparasitic mechanism. Recent findings indicate that praziquantel and meclonazepam act through distinct receptors, making benzodiazepines a promising chemical series for further exploration. Previous work has profiled the transcriptional changes evoked by praziquantel treatment. Here, we examine in detail schistosome phenotypes evoked by in vitro and in vivo meclonazepam treatment. These data confirm that meclonazepam causes extensive tegument damage and directly kills parasites, as measured by pro-apoptotic caspase activation. In vivo meclonazepam exposure results in differential expression of many genes that are divergent in parasitic flatworms, as well as several gene products implicated in blood feeding and regulation of hemostasis in other parasites. Many of these transcripts are also differentially expressed with praziquantel exposure, which may reflect a common schistosome response to the two drugs. However, despite these similarities in drug response, praziquantel-resistant parasites retain susceptibility to meclonazepam's schistocidal effects. These data provide new insight into the mechanism of antischistosomal benzodiazepines, resolving similarities and differences with the current frontline therapy, praziquantel.
Collapse
Affiliation(s)
- Clair R. Henthorn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul McCusker
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Winka Le Clec’h
- Disease Intervention & Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Frédéric D. Chevalier
- Disease Intervention & Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Timothy J.C. Anderson
- Disease Intervention and Prevention program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John D. Chan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Global Health Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Santiago LF, da Silva ES, Dos Santos PS, Salazar-Garcés LF, Santos SPO, Fernandes AMS, Silva RC, Alves VS, Briza P, Ferreira F, Pacheco LGC, Alcantara-Neves NM, Pinheiro CS. The proteome of human adult whipworm Trichuris trichiura: A source of potential immunomodulatory molecules. Acta Trop 2025; 263:107566. [PMID: 39988282 DOI: 10.1016/j.actatropica.2025.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Soil-transmitted helminths (STHs), including Trichuris trichiura, pose a major global health challenge, particularly in children, causing significant morbidity. However, T. trichiura's ability to modulate host immune responses offers a unique opportunity to discover biomolecules with therapeutic potential for inflammatory, allergic, and autoimmune disorders. This study conducted a proteomic analysis of adult male and female T. trichiura using liquid chromatography-tandem mass spectrometry (LC-MS/MS), identifying 810 parasite proteins. Of these, 177 were exclusive to females, 277 to males, and 356 shared. Gene ontology analysis showed similar cellular component profiles in males and females, mostly involving intracellular structures. However, female-exclusive proteins exhibited more diverse components. Molecular function analysis highlighted hydrolytic and catalytic activities, suggesting enzymatic strategies for nutrition and immune modulation. Notably, immunomodulatory proteins were identified in both sexes, showing therapeutic potential, including a Kunitz protease inhibitor and glutamate dehydrogenase. To evaluate immunomodulatory properties, one identified protein (rc4299) was tested on cultures of peripheral blood mononuclear cells (PBMCs) from allergic individuals. The recombinantly produced rc4299 increased IL-10 secretion, indicating potential for treating autoimmune and allergic diseases. This study uncovers the T. trichiura proteome and highlights promising therapeutic targets, emphasizing the parasite's complex interactions with the host immune system.
Collapse
Affiliation(s)
- Leonardo F Santiago
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | - Eduardo S da Silva
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | | | | | - Sara P O Santos
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | | | - Raphael C Silva
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | - Vitor S Alves
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | - Peter Briza
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Fatima Ferreira
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Luis G C Pacheco
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | | | - Carina S Pinheiro
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil.
| |
Collapse
|
4
|
Zhu Y, Chen X, Zheng H, Ma Q, Chen K, Li H. Anti-Inflammatory Effects of Helminth-Derived Products: Potential Applications and Challenges in Diabetes Mellitus Management. J Inflamm Res 2024; 17:11789-11812. [PMID: 39749005 PMCID: PMC11694023 DOI: 10.2147/jir.s493374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
The global rise in diabetes mellitus (DM), particularly type 2 diabetes (T2D), has become a major public health challenge. According to the "hygiene hypothesis", helminth infections may offer therapeutic benefits for DM. These infections are known to modulate immune responses, reduce inflammation, and improve insulin sensitivity. However, they also carry risks, such as malnutrition, anemia, and intestinal obstruction. Importantly, helminth excretory/secretory products, which include small molecules and proteins, have shown therapeutic potential in treating various inflammatory diseases with minimal side effects. This review explores the anti-inflammatory properties of helminth derivatives and their potential to alleviate chronic inflammation in both type 1 diabetes and T2D, highlighting their promise as future drug candidates. Additionally, it discusses the possible applications of these derivatives in DM management and the challenges involved in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xintong Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hezheng Zheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiman Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People’s Republic of China
- Ocean College, Beibu Gulf University, Qinzhou, Guangxi, People’s Republic of China
| |
Collapse
|
5
|
Henthorn CR, McCusker P, Clec’h WL, Chevalier FD, Anderson TJ, Zamanian M, Chan JD. Transcriptional phenotype of the anti-parasitic benzodiazepine meclonazepam on the blood fluke Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620505. [PMID: 39554156 PMCID: PMC11565718 DOI: 10.1101/2024.10.29.620505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
There are limited control measures for the disease schistosomiasis, despite the fact that infection with parasitic blood flukes affects hundreds of millions of people worldwide. The current treatment, praziquantel, has been in use since the 1980's and there is a concern that drug resistance may emerge with continued monotherapy. Given the need for additional antischistosomal drugs, we have re-visited an old lead, meclonazepam. In comparison to praziquantel, there has been relatively little work on its antiparasitic mechanism. Recent findings indicate that praziquantel and meclonazepam act through distinct receptors, making benzodiazepines a promising chemical series for further exploration. Previous work has profiled the transcriptional changes evoked by praziquantel treatment. Here, we examine in detail schistosome phenotypes evoked by in vitro and in vivo meclonazepam treatment. These data confirm that meclonazepam causes extensive tegument damage and directly kills parasites, as measured by pro-apoptotic caspase activation. In vivo meclonazepam exposure results in differential expression of many genes that are divergent in parasitic flatworms, as well as several gene products implicated in blood feeding and regulation of hemostasis in other parasites. Many of these transcripts are also differentially expressed with praziquantel exposure, which may reflect a common schistosome response to the two drugs. However, despite these similarities in drug response, praziquantel-resistant parasites retain susceptibility to meclonazepam's schistocidal effects. These data provide new insight into the mechanism of antischistosomal benzodiazepines, resolving similarities and differences with the current frontline therapy, praziquantel.
Collapse
Affiliation(s)
- Clair R. Henthorn
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - Paul McCusker
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Microbe and Pathogen Biology, Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Winka Le Clec’h
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Frédéric D. Chevalier
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Timothy J.C. Anderson
- Disease Intervention and Prevention program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - John D. Chan
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, WI, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Global Health Institute, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
6
|
Chaponda MM, Lam HYP. Schistosoma antigens: A future clinical magic bullet for autoimmune diseases? Parasite 2024; 31:68. [PMID: 39481080 PMCID: PMC11527426 DOI: 10.1051/parasite/2024067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases are characterized by dysregulated immunity against self-antigens. Current treatment of autoimmune diseases largely relies on suppressing host immunity to prevent excessive inflammation. Other immunotherapy options, such as cytokine or cell-targeted therapies, have also been used. However, most patients do not benefit from these therapies as recurrence of the disease usually occurs. Therefore, more effort is needed to find alternative immune therapeutics. Schistosoma infection has been a significant public health problem in most developing countries. Schistosoma parasites produce eggs that continuously secrete soluble egg antigen (SEA), which is a known modulator of host immune responses by enhancing Th2 immunity and alleviating outcomes of Th1 and Th17 responses. Recently, SEA has shown promise in treating autoimmune disorders due to their substantial immune-regulatory effects. Despite this interest, how these antigens modulate human immunity demonstrates only limited pieces of evidence, and whether there is potential for Schistosoma antigens in other diseases in the future remains an unsolved question. This review discusses how SEA modulates human immune responses and its potential for development as a novel immunotherapeutic for autoimmune diseases. We also discuss the immune modulatory effects of other non-SEA schistosome antigens at different stages of the parasite's life cycle.
Collapse
Affiliation(s)
- Mphatso Mayuni Chaponda
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
| | - Ho Yin Pekkle Lam
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University Hualien Taiwan
- Institute of Medical Science, Tzu Chi University Hualien Taiwan
| |
Collapse
|
7
|
Sun F, Deng X, Gao H, Ding L, Zhu W, Luo H, Ye X, Luo X, Chen Z, Qin C. Characterization of Kunitz-Domain Anticoagulation Peptides Derived from Acinetobacter baumannii Exotoxin Protein F6W77. Toxins (Basel) 2024; 16:450. [PMID: 39453226 PMCID: PMC11511053 DOI: 10.3390/toxins16100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Recent studies have revealed that the coagulation system plays a role in mammalian innate defense by entrapping bacteria in clots and generating antibacterial peptides. So, it is very important for the survival of bacteria to defend against the host coagulation system, which suggests that bacterial exotoxins might be a new source of anticoagulants. In this study, we analyzed the genomic sequences of Acinetobacter baumannii and a new bacterial exotoxin protein, F6W77, with five Kunitz-domains, KABP1-5, was identified. Each Kunitz-type domain features a classical six-cysteine framework reticulated by three conserved disulfide bridges, which was obviously similar to animal Kunitz-domain peptides but different from plant Kunitz-domain peptides. Anticoagulation function evaluation showed that towards the intrinsic coagulation pathway, KABP1 and KABP5 had apparently inhibitory activity, KABP4 had weak inhibitory activity, and KBAP2 and KABP3 had no effect even at a high concentration of 20 μg/mL. All five Kunitz-domain peptides, KABP1-5, had no inhibitory activity towards the extrinsic coagulation pathway. Enzyme-inhibitor experiments showed that the high-activity anticoagulant peptide KABP1 had apparently inhibitory activity towards two key coagulation factors, Xa and XIa, which was further confirmed by pull-down experiments that showed that KABP1 can bind to coagulation factors Xa and XIa directly. Structure-function relationship analyses of five Kunitz-type domain peptides showed that the arginine of the P1 site of three new bacterial anticoagulants, KABP1, KABP4 and KABP5, might be the key residue for their anticoagulation activity. In conclusion, with bioinformatics analyses, peptide recombination, and functional evaluation, we firstly found bacterial-exotoxin-derived Kunitz-type serine protease inhibitors with selectively inhibiting activity towards intrinsic coagulation pathways, and highlighted a new interaction between pathogenic bacteria and the human coagulation system.
Collapse
Affiliation(s)
- Fang Sun
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaolin Deng
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Huanhuan Gao
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Li Ding
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wen Zhu
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Hongyi Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiangdong Ye
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xudong Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Zongyun Chen
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Chenhu Qin
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
8
|
Zhang Y, Shen C, Zhu X, Leow CY, Ji M, Xu Z. Helminth-derived molecules: pathogenic and pharmacopeial roles. J Biomed Res 2024; 38:1-22. [PMID: 39314046 PMCID: PMC11629161 DOI: 10.7555/jbr.38.20240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Parasitic helminths, taxonomically comprising trematodes, cestodes, and nematodes, are multicellular invertebrates widely disseminated in nature and have afflicted people continuously for a long time. Helminths play potent roles in the host through generating a variety of novel molecules, including some excretory/secretory products and others that are involved in intracellular material exchange and information transfer as well as the initiation or stimulation of immune and metabolic activation. The helminth-derived molecules have developed powerful and diverse immunosuppressive effects to achieve immune evasion for parasite survival and establish chronic infections. However, they also improve autoimmune and allergic inflammatory responses and promote metabolic homeostasis by promoting metabolic reprogramming of various immune functions, and then inducing alternatively activated macrophages, T helper 2 cells, and regulatory T cells-mediated immune responses. Therefore, a deeper exploration of the immunopathogenic mechanism and immune regulatory mechanisms of helminth-derived molecules exerted in the host is crucial for understanding host-helminth interactions as well as the development of therapeutic drugs for infectious or non-infectious diseases. In this review, we focus on the properties of helminth-derived molecules to give an overview of the most recent scientific knowledge about their pathogenic and pharmacopeial roles in immune-metabolic homeostasis.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
9
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
10
|
Peng B, Luo Y, Xie S, Zhuang Q, Li J, Zhang P, Liu K, Zhang Y, Zhou C, Guo C, Zhou Z, Zhou J, Cai Y, Xia M, Cheng K, Ming Y. Proliferation of MDSCs may indicate a lower CD4+ T cell immune response in schistosomiasis japonica. Parasite 2024; 31:52. [PMID: 39212529 PMCID: PMC11363901 DOI: 10.1051/parasite/2024050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Schistosoma japonicum (S. japonicum) is the main species of Schistosoma prevalent in China. Myeloid-derived suppressor cells (MDSCs) are important immunoregulatory cells and generally expand in parasite infection, but there is little research relating to MDSCs in Schistosoma infection. METHODS Fifty-six S. japonicum-infected patients were included in this study. MDSCs and percentages and absolute cell numbers of lymphocyte subsets, including CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells and natural killer (NK) cells were detected using flow cytometry. The degree of liver fibrosis was determined using color Doppler ultrasound. RESULTS Patients infected with S. japonicum had a much higher percentage of MDSCs among peripheral blood mononuclear cells (PBMCs) than the healthy control. Regarding subpopulations of MDSCs, the percentage of granulocytic myeloid-derived suppressor cells (G-MDSCs) was clearly increased. Correlation analysis showed that the absolute cell counts of T-cell subsets correlated negatively with the percentages of MDSCs and G-MDSCs among PBMCs. The percentage of G-MDSCs in PBMCs was also significantly higher in patients with liver fibrosis diagnosed by color doppler ultrasound (grade > 0), and the percentage of G-MDSCs in PBMCs and liver fibrosis grading based on ultrasound showed a positive correlation. CONCLUSION S. japonicum infection contributes to an increase in MDSCs, especially G-MDSCs, whose proliferation may inhibit the number of CD4+ T cells in peripheral blood. Meanwhile, there is a close relationship between proliferation of G-MDSCs and liver fibrosis in S. japonicum-infected patients.
Collapse
Affiliation(s)
- Bo Peng
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Yulin Luo
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Shudong Xie
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Quan Zhuang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Pengpeng Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Kai Liu
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Yu Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Chen Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Chen Guo
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Zhaoqin Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Jie Zhou
- Schistosomiasis Control Institute of Hunan Province, Yueyang, Hunan, China - Xiangyue Hospital affiliated to Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Yu Cai
- Xiangyue Hospital affiliated to Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Meng Xia
- Xiangyue Hospital affiliated to Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Ke Cheng
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| |
Collapse
|
11
|
Li X, Liu Y, Zou Y, Zhang J, Wang Y, Ding Y, Shi Z, Guo X, Zhang S, Yin H, Guo A, Wang S. Echinococcus multilocularis serpin regulates macrophage polarization and reduces gut dysbiosis in colitis. Infect Immun 2024; 92:e0023224. [PMID: 39037247 PMCID: PMC11320943 DOI: 10.1128/iai.00232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Helminths serve as principal regulators in modulating host immune responses, and their excretory-secretory proteins are recognized as potential therapeutic agents for inflammatory bowel disease. Nevertheless, our comprehension of the mechanisms underlying immunoregulation remains restricted. This investigation delves into the immunomodulatory role of a secretory protein serpin (Emu-serpin), within the larval stage of Echinococcus multilocularis. Our observations indicate that Emu-serpin effectively alleviates dextran sulfate sodium-induced colitis, yielding a substantial reduction in immunopathology and an augmentation of anti-inflammatory cytokines. Furthermore, this suppressive regulatory effect is concomitant with the reduction of gut microbiota dysbiosis linked to colitis, as evidenced by a marked impediment to the expansion of the pathobiont taxa Enterobacteriaceae. In vivo experiments demonstrate that Emu-serpin facilitates the expansion of M2 phenotype macrophages while concurrently diminishing M1 phenotype macrophages, alongside an elevation in anti-inflammatory cytokine levels. Subsequent in vitro investigations involving RAW264.7 and bone marrow macrophages reveal that Emu-serpin induces a conversion of M2 macrophage populations from a pro-inflammatory to an anti-inflammatory phenotype through direct inhibition. Adoptive transfer experiments reveal the peritoneal macrophages induced by Emu-serpin alleviate colitis and gut microbiota dysbiosis. In summary, these findings propose that Emu-serpin holds the potential to regulate macrophage polarization and maintain gut microbiota homeostasis in colitis, establishing it as a promising candidate for developing helminth therapy for preventing inflammatory diseases.
Collapse
Affiliation(s)
- Xiaolu Li
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yihui Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yang Zou
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Jiayun Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yugui Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yingying Ding
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Zhiqi Shi
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Xiaola Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Shaohua Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Aijiang Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Shuai Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
12
|
Lian L, Sun H, Wang J, Li W, Sheng Y, Gong X, Sun Q, Wang P, Zheng Y, Song H. Identification of the interaction between MAPK1 and Eimeria acervulina serine protease inhibitor: a preliminary functional study. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1716-1720. [PMID: 38946425 PMCID: PMC11659786 DOI: 10.3724/abbs.2024095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/30/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Liyin Lian
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - He Sun
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Jing Wang
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Wanjing Li
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Yifan Sheng
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Xinyue Gong
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Qian Sun
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Pu Wang
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Yadong Zheng
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| | - Houhui Song
- />College of Animal Science and Technology & College of Veterinary MedicineZhejiang A&F UniversityKey Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang ProvinceProvincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina Australia Joint Laboratory for Animal Health Big Data AnalyticsHangzhou311300China
| |
Collapse
|
13
|
Fló M, Pellizza L, Durán R, Alvarez B, Fernández C. The monodomain Kunitz protein EgKU-7 from the dog tapeworm Echinococcus granulosus is a high-affinity trypsin inhibitor with two interaction sites. Biochem J 2024; 481:717-739. [PMID: 38752933 DOI: 10.1042/bcj20230514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Typical Kunitz proteins (I2 family of the MEROPS database, Kunitz-A family) are metazoan competitive inhibitors of serine peptidases that form tight complexes of 1:1 stoichiometry, mimicking substrates. The cestode Echinococcus granulosus, the dog tapeworm causing cystic echinococcosis in humans and livestock, encodes an expanded family of monodomain Kunitz proteins, some of which are secreted to the dog host interface. The Kunitz protein EgKU-7 contains, in addition to the Kunitz domain with the anti-peptidase loop comprising a critical arginine, a C-terminal extension of ∼20 amino acids. Kinetic, electrophoretic, and mass spectrometry studies using EgKU-7, a C-terminally truncated variant, and a mutant in which the critical arginine was substituted by alanine, show that EgKU-7 is a tight inhibitor of bovine and canine trypsins with the unusual property of possessing two instead of one site of interaction with the peptidases. One site resides in the anti-peptidase loop and is partially hydrolyzed by bovine but not canine trypsins, suggesting specificity for the target enzymes. The other site is located in the C-terminal extension. This extension can be hydrolyzed in a particular arginine by cationic bovine and canine trypsins but not by anionic canine trypsin. This is the first time to our knowledge that a monodomain Kunitz-A protein is reported to have two interaction sites with its target. Considering that putative orthologs of EgKU-7 are present in other cestodes, our finding unveils a novel piece in the repertoire of peptidase-inhibitor interactions and adds new notes to the evolutionary host-parasite concerto.
Collapse
Affiliation(s)
- Martín Fló
- Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Leonardo Pellizza
- Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Fernández
- Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
14
|
Jardim Poli P, Fischer-Carvalho A, Tahira AC, Chan JD, Verjovski-Almeida S, Sena Amaral M. Long Non-Coding RNA Levels Are Modulated in Schistosoma mansoni following In Vivo Praziquantel Exposure. Noncoding RNA 2024; 10:27. [PMID: 38668385 PMCID: PMC11053911 DOI: 10.3390/ncrna10020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Schistosomiasis is a disease caused by trematodes of the genus Schistosoma that affects over 200 million people worldwide. For decades, praziquantel (PZQ) has been the only available drug to treat the disease. Despite recent discoveries that identified a transient receptor ion channel as the target of PZQ, schistosome response to this drug remains incompletely understood, since effectiveness relies on other factors that may trigger a complex regulation of parasite gene expression. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that play important roles in S. mansoni homeostasis, reproduction, and fertility. Here, we show that in vivo PZQ treatment modulates lncRNA levels in S. mansoni. We re-analyzed public RNA-Seq data from mature and immature S. mansoni worms treated in vivo with PZQ and detected hundreds of lncRNAs differentially expressed following drug exposure, many of which are shared among mature and immature worms. Through RT-qPCR, seven out of ten selected lncRNAs were validated as differentially expressed; interestingly, we show that these lncRNAs are not adult worm stage-specific and are co-expressed with PZQ-modulated protein-coding genes. By demonstrating that parasite lncRNA expression levels alter in response to PZQ, this study unravels an important step toward elucidating the complex mechanisms of S. mansoni response to PZQ.
Collapse
Affiliation(s)
- Pedro Jardim Poli
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - Agatha Fischer-Carvalho
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - Ana Carolina Tahira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - John D. Chan
- Global Health Institute, University of Wisconsin-Madison, Madison, WI 53792, USA;
| | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Murilo Sena Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| |
Collapse
|
15
|
Wu F, Wu J, Chen X, Zhou J, Du Z, Tong D, Zhang H, Huang Y, Yang Y, Du A, Ma G. A secreted BPTI/Kunitz inhibitor domain-containing protein of barber's pole worm interacts with host NLRP3 inflammasome activation-associated G protein subunit to inhibit IL-1β and IL-18 maturation in vitro. Vet Parasitol 2023; 323:110052. [PMID: 37865081 DOI: 10.1016/j.vetpar.2023.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Protease inhibitors are major components of excretory/secretory products released by parasitic nematodes and have been proposed to play roles in host-parasite interactions. Haemonchus contortus (the barber's pole worm) encodes for several serine protease inhibitors, and in a previous study we identified a trypsin inhibitor-like serine protease inhibitor of this blood-feeding nematode, SPI-I8, as necessary for anticoagulation. Here, we demonstrated that a bovine pancreatic trypsin inhibitor/Kunitz-type serine protease inhibitor (BPTI/Kunitz) domain-containing protein highly expressed in parasitic stages, HCON_00133150, is involved in suppressing proinflammatory cytokine production in mammalian cells. Fluorescent labelling of HCON_00133150 revealed a punctate localisation at the inner hypodermal membrane of H. contortus, an organ closely related to the excretory column. Yeast two-hybrid screening and immunoprecipitation-mass spectrometry identified that the recombinant HCON_00133150 physically interacted with a range of host proteins including the G protein subunit beta 1 of sheep (Ovis aries; OaGNB1), a negative regulator of NLRP3 inflammasome activation. Interestingly, heterologous expression of HCON_00133150 enhanced the inhibitory effect of OaGNB1 on NLRP3 inflammasome and the maturation of proinflammatory cytokines IL-1β and IL-18 in transfected cells. 1-to-1 orthologues (n = 33) of BPTI/Kunitz inhibitor domain-containing proteins were predicted in clades III, IV and V (but not clade I) parasitic nematodes. Structural (tandem BPTI/Kunitz inhibitor domains inverted into the globular reticulation) and functional (a GNB1 enhancer) characterisation of HCON_00133150 and its orthologues elucidated that these molecules might contribute to immune suppression by parasitic nematodes in animals and humans.
Collapse
Affiliation(s)
- Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jie Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jingru Zhou
- MOE Frontier Science Center for Brain and Brain-machine integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhendong Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Danni Tong
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yan Huang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China; Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
16
|
Rashno Z, Rismani E, Ghasemi JB, Mansouri M, Shabani M, Afgar A, Dabiri S, Rezaei Makhouri F, Hatami A, Harandi MF. Design of ion channel blocking, toxin-like Kunitz inhibitor peptides from the tapeworm, Echinococcus granulosus, with potential anti-cancer activity. Sci Rep 2023; 13:11465. [PMID: 37454225 PMCID: PMC10349847 DOI: 10.1038/s41598-023-38159-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Over-expression of K+ channels has been reported in human cancers and is associated with the poor prognosis of several malignancies. EAG1, a particular potassium ion channel, is widely expressed in the brain but poorly expressed in other normal tissues. Kunitz proteins are dominant in metazoan including the dog tapeworm, Echinococcus granulosus. Using computational analyses on one A-type potassium channel, EAG1, and in vitro cellular methods, including major cancer cell biomarkers expression, immunocytochemistry and whole-cell patch clamp, we demonstrated the anti-tumor activity of three synthetic small peptides derived from E. granulosus Kunitz4 protease inhibitors. Experiments showed induced significant apoptosis and inhibition of proliferation in both cancer cell lines via disruption in cell-cycle transition from the G0/G1 to S phase. Western blotting showed that the levels of cell cycle-related proteins including P27 and P53 were altered upon kunitz4-a and kunitz4-c treatment. Patch clamp analysis demonstrated a significant increase in spontaneous firing frequency in Purkinje neurons, and exposure to kunitz4-c was associated with an increase in the number of rebound action potentials after hyperpolarized current. This noteworthy component in nature could act as an ion channel blocker and is a potential candidate for cancer chemotherapy based on potassium channel blockage.
Collapse
Affiliation(s)
- Zahra Rashno
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jahan B Ghasemi
- Faculty of Chemistry, School of Sciences, University of Tehran, Tehran, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abbas Hatami
- Pathology and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| |
Collapse
|
17
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Differential Analysis of Key Proteins Related to Fibrosis and Inflammation in Soluble Egg Antigen of Schistosoma mansoni at Different Infection Times. Pathogens 2023; 12:pathogens12030441. [PMID: 36986363 PMCID: PMC10054402 DOI: 10.3390/pathogens12030441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Schistosomiasis is a major global health problem. Schistosomes secrete antigens into the host tissue that bind to chemokines or inhibit immune cell receptors, regulating the immune responses to allow schistosome development. However, the detailed mechanism of chronic schistosome infection-induced liver fibrosis, including the relationship between secreted soluble egg antigen (SEA) and hepatic stellate cell (HSC) activation, is still unknown. We used mass spectrometry to identify the SEA protein sequences from different infection weeks. In the 10th and 12th infection weeks, we focused on the SEA components and screened out the special protein components, particularly fibrosis- and inflammation-related protein sequences. Our results have identified heat shock proteins, phosphorylation-associated enzymes, or kinases, such as Sm16, GSTA3, GPCRs, EF1-α, MMP7, and other proteins linked to schistosome-induced liver fibrosis. After sorting, we found many special proteins related to fibrosis and inflammation, but studies proving their association with schistosomiasis infection are limited. Follow-up studies on MICOS, MATE1, 14-3-3 epsilon, and CDCP1 are needed. We treated the LX-2 cells with the SEA from the 8th, 10th, and 12th infection weeks to test HSC activation. In a trans-well cell model in which PBMCs and HSCs were co-cultured, the SEA could significantly induce TGF-β secretion, especially from the 12th week of infection. Our data also showed that TGF-β secreted by PBMC after the SEA treatment activates LX-2 and upregulates hepatic fibrotic markers α-SMA and collagen 1. Based on these results, the CUB domain-containing protein 1 (CDCP1) screened at the 12th infection week could be investigated further. This study clarifies the trend of immune mechanism variation in the different stages of schistosome infection. However, how egg-induced immune response transformation causes liver tissue fibrosis needs to be studied further.
Collapse
|
19
|
Kobpornchai P, Reamtong O, Phuphisut O, Malaitong P, Adisakwattana P. Serine protease inhibitor derived from Trichinella spiralis (TsSERP) inhibits neutrophil elastase and impairs human neutrophil functions. Front Cell Infect Microbiol 2022; 12:919835. [PMID: 36389172 PMCID: PMC9640929 DOI: 10.3389/fcimb.2022.919835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
During early infection with Trichinella spiralis, host neutrophils destroy newborn larvae migrating in the bloodstream, preventing infection. However, parasites secrete various immunomodulatory molecules to escape the host’s defense mechanisms, allowing them to infect the host and live for long periods. T. spiralis secretes serine protease inhibitors (TsSERPs), which are key inhibitory molecules that regulate serine proteases involved in digestion and inflammation. However, the modulatory roles of TsSERP in the inhibition of neutrophil serine proteases (NSPs) and neutrophil functions are unknown. Therefore, the immunomodulatory properties of recombinant TsSERP1 (rTsSERP1) on NSPs and neutrophil functions were investigated in this study. rTsSERP1 preferentially inhibited human neutrophil elastase (hNE). In addition, incubation of rTsSERP1 with fMLP-induced neutrophils impaired their phagocytic ability. The formation of neutrophil extracellular traps (NETs) was activated with phorbol myristate acetate (PMA), and NETs were dramatically reduced when treated with rTsSERP1. Furthermore, rTsSERP1 suppressed the production of proinflammatory cytokines and chemokines during neutrophil activation, which are essential for neutrophil-mediated local or systemic inflammation regulation. In conclusion, T. spiralis immune evasion mechanisms are promoted by the inhibitory properties of TsSERP1 against neutrophil elastase and neutrophil defense functions, and these might be promising alternative treatment targets for inflammatory disorders.
Collapse
Affiliation(s)
- Porntida Kobpornchai
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Preeyarat Malaitong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Poom Adisakwattana,
| |
Collapse
|
20
|
Skelly PJ, Da'dara AA. Schistosome secretomes. Acta Trop 2022; 236:106676. [PMID: 36113567 DOI: 10.1016/j.actatropica.2022.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomes are intravascular parasitic platyhelminths (blood flukes) that infect over 200 million people globally. Biomolecules secreted by the worms likely contribute to their ability to survive in the bloodstreams of immunocompetent hosts for many years. Here we review what is known about the protein composition of material released by the worms. Prominent among cercarial excretions/secretions (ES) is a ∼ 30 kDa serine protease called cercarial elastase (SmCE in Schistosoma mansoni), likely important in host invasion. Also prominent is a 117 amino acid non-glycosylated polypeptide (Sm16) that can impact several host cell-types to impinge on immunological outcomes. Similarly, components of the egg secretome (notably the 134 amino acid homodimeric glycoprotein "IL-4 inducing principle of schistosome eggs", IPSE, and the 225-amino acid monomeric T2 ribonuclease - omega-1) are capable of driving Th2-biased immune responses. A ∼36kDa chemokine binding glycoprotein SmCKBP, secreted by eggs, can negate the impact of several cytokines and can impede neutrophil migration. Of special interest is a disparate collection of classically cytosolic proteins that are surprisingly often identified in schistosome ES across life stages. These proteins, perhaps released as components of extracellular vesicles (EVs), include glycolytic enzymes, redox proteins, proteases and protease inhibitors, heat shock proteins, proteins involved in translation/turnover, histones, and others. Some such proteins may display "moonlighting" functions and, for example, impede blood clot formation around the worms. More prosaically, since several are particularly abundant soluble proteins, their appearance in the ES fraction may be indicative of worm damage ex vivo leading to protein leakage. Some bioactive schistosome ES proteins are in development as novel therapeutics against autoimmune, inflammatory, and other, non-parasitic, diseases.
Collapse
Affiliation(s)
- Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
21
|
Costain AH, Phythian-Adams AT, Colombo SAP, Marley AK, Owusu C, Cook PC, Brown SL, Webb LM, Lundie RJ, Borger JG, Smits HH, Berriman M, MacDonald AS. Dynamics of Host Immune Response Development During Schistosoma mansoni Infection. Front Immunol 2022; 13:906338. [PMID: 35958580 PMCID: PMC9362740 DOI: 10.3389/fimmu.2022.906338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Schistosomiasis is a disease of global significance, with severity and pathology directly related to how the host responds to infection. The immunological narrative of schistosomiasis has been constructed through decades of study, with researchers often focussing on isolated time points, cell types and tissue sites of interest. However, the field currently lacks a comprehensive and up-to-date understanding of the immune trajectory of schistosomiasis over infection and across multiple tissue sites. We have defined schistosome-elicited immune responses at several distinct stages of the parasite lifecycle, in three tissue sites affected by infection: the liver, spleen, and mesenteric lymph nodes. Additionally, by performing RNA-seq on the livers of schistosome infected mice, we have generated novel transcriptomic insight into the development of schistosome-associated liver pathology and fibrosis across the breadth of infection. Through depletion of CD11c+ cells during peak stages of schistosome-driven inflammation, we have revealed a critical role for CD11c+ cells in the co-ordination and regulation of Th2 inflammation during infection. Our data provide an updated and high-resolution account of how host immune responses evolve over the course of murine schistosomiasis, underscoring the significance of CD11c+ cells in dictating host immunopathology against this important helminth infection.
Collapse
Affiliation(s)
- Alice H. Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Stefano A. P. Colombo
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Angela K. Marley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christian Owusu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Peter C. Cook
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sheila L. Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Lauren M. Webb
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Immunology, University of Washington, Seattle, WA, United States
| | | | | | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
Wang J, Zhang L, Shi Q, Yang B, He Q, Wang J, Weng Q. Targeting innate immune responses to attenuate acetaminophen-induced hepatotoxicity. Biochem Pharmacol 2022; 202:115142. [PMID: 35700755 DOI: 10.1016/j.bcp.2022.115142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is an important cause of acute liver failure, resulting in massive deaths in many developed countries. Currently, the metabolic process of APAP in the body has been well studied. However, the underlying mechanism of APAP-induced liver injury remains elusive. Increasing clinical and experimental evidences indicate that the innate immune responses are involved in the pathogenesis of APAP-induced acute liver injury (AILI), in which immune cells have dual roles of inducing inflammation to exacerbate hepatotoxicity and removing dead cells and debris to help liver regeneration. In this review, we summarize the latest findings of innate immune cells involved in AILI, particularly emphasizing the activation of innate immune cells and their different roles during the injury and repair phases. Moreover, current available treatments are discussed according to the different roles of innate immune cells in the development of AILI. This review aims to update the knowledge about innate immune responses in the pathogenesis of AILI, and provide potential therapeutic interventions for AILI.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lulu Zhang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Shi
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
23
|
Ding L, Shu Z, Hao J, Luo X, Ye X, Zhu W, Duan W, Chen Z. Schixator, a new FXa inhibitor from Schistosoma japonicum with antithrombotic effect and low bleeding risk. Biochem Biophys Res Commun 2022; 603:138-143. [DOI: 10.1016/j.bbrc.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022]
|
24
|
Plant Kunitz Inhibitors and Their Interaction with Proteases: Current and Potential Pharmacological Targets. Int J Mol Sci 2022; 23:ijms23094742. [PMID: 35563133 PMCID: PMC9100506 DOI: 10.3390/ijms23094742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The action of proteases can be controlled by several mechanisms, including regulation through gene expression; post-translational modifications, such as glycosylation; zymogen activation; targeting specific compartments, such as lysosomes and mitochondria; and blocking proteolysis using endogenous inhibitors. Protease inhibitors are important molecules to be explored for the control of proteolytic processes in organisms because of their ability to act on several proteases. In this context, plants synthesize numerous proteins that contribute to protection against attacks by microorganisms (fungi and bacteria) and/or invertebrates (insects and nematodes) through the inhibition of proteases in these organisms. These proteins are widely distributed in the plant kingdom, and are present in higher concentrations in legume seeds (compared to other organs and other botanical families), motivating studies on their inhibitory effects in various organisms, including humans. In most cases, the biological roles of these proteins have been assigned based mostly on their in vitro action, as is the case with enzyme inhibitors. This review highlights the structural evolution, function, and wide variety of effects of plant Kunitz protease inhibitors, and their potential for pharmaceutical application based on their interactions with different proteases.
Collapse
|
25
|
Sanches RCO, Mambelli F, Oliveira SC. Neutrophils and schistosomiasis: a missing piece in pathology. Parasite Immunol 2022; 44:e12916. [PMID: 35332932 DOI: 10.1111/pim.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Abstract
Schistosomiasis is a chronic human parasitic disease that causes serious health problems worldwide. The disease-associated liver pathology is one of the hallmarks of infections by S. mansoni and S. japonicum, and is accountable for the debilitating condition found in infected patients. In the past few years, investigative studies have highlighted the key role played by neutrophils and the influence of inflammasome signaling pathway in different pathological conditions. However, it is noteworthy that the study of inflammasome activation in neutrophils has been overlooked by reports concerning macrophages and monocytes. This interplay between neutrophils and inflammasomes is much more poorly investigated during schistosomiasis. Herein we reviewed the role of neutrophils during schistosomiasis and addressed the potential connection between these cells and inflammasome activation in this context.
Collapse
Affiliation(s)
- Rodrigo C O Sanches
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio Mambelli
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Brazil
| |
Collapse
|
26
|
Abstract
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Collapse
Affiliation(s)
- Sreemoyee Acharya
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Ajendra J. Lessons in type 2 immunity: Neutrophils in Helminth infections. Semin Immunol 2021; 53:101531. [PMID: 34836773 DOI: 10.1016/j.smim.2021.101531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
Neutrophils constitute the body's first line of defense against invading pathogens. Equipped with a large array of tools, these immune cells are highly efficient in eliminating bacterial and viral infections, yet their activity can at the same time be detrimental to the host itself - this is the broad consensus on these granulocytes. However, the last decade has proven that neutrophils are a much more sophisticated cell type with unexpected and underappreciated functions in health and disease. In this review, we look at the latest discoveries in neutrophil biology with a focus on their role during the hallmark setting of type 2 immunity - helminth infection. We discuss the involvement of neutrophils in various helminth infection models and summarize the latest findings regarding neutrophil regulation and effector function. We will show that neutrophils have much more to offer than previously thought and while studies of neutrophils in helminth infections are still in its infancy, recent discoveries highlight more than ever that these cells are a key cog of the immune system, even during type 2 responses.
Collapse
Affiliation(s)
- Jesuthas Ajendra
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK.
| |
Collapse
|
28
|
Kretschmer D, Breitmeyer R, Gekeler C, Lebtig M, Schlatterer K, Nega M, Stahl M, Stapels D, Rooijakkers S, Peschel A. Staphylococcus aureus Depends on Eap Proteins for Preventing Degradation of Its Phenol-Soluble Modulin Toxins by Neutrophil Serine Proteases. Front Immunol 2021; 12:701093. [PMID: 34552584 PMCID: PMC8451722 DOI: 10.3389/fimmu.2021.701093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophil granulocytes act as a first line of defense against pathogenic staphylococci. However, Staphylococcus aureus has a remarkable capacity to survive neutrophil killing, which distinguishes it from the less-pathogenic Staphylococcus epidermidis. Both species release phenol-soluble modulin (PSM) toxins, which activate the neutrophil formyl-peptide receptor 2 (FPR2) to promote neutrophil influx and phagocytosis, and which disrupt neutrophils or their phagosomal membranes at high concentrations. We show here that the neutrophil serine proteases (NSPs) neutrophil elastase, cathepsin G and proteinase 3, which are released into the extracellular space or the phagosome upon neutrophil FPR2 stimulation, effectively degrade PSMs thereby preventing their capacity to activate and destroy neutrophils. Notably, S. aureus, but not S. epidermidis, secretes potent NSP-inhibitory proteins, Eap, EapH1, EapH2, which prevented the degradation of PSMs by NSPs. Accordingly, a S. aureus mutant lacking all three NSP inhibitory proteins was less effective in activating and destroying neutrophils and it survived less well in the presence of neutrophils than the parental strain. We show that Eap proteins promote pathology via PSM-mediated FPR2 activation since murine intraperitoneal infection with the S. aureus parental but not with the NSP inhibitors mutant strain, led to a significantly higher bacterial load in the peritoneum and kidneys of mFpr2-/- compared to wild-type mice. These data demonstrate that NSPs can very effectively detoxify some of the most potent staphylococcal toxins and that the prominent human pathogen S. aureus has developed efficient inhibitors to preserve PSM functions. Preventing PSM degradation during infection represents an important survival strategy to ensure FPR2 activation.
Collapse
Affiliation(s)
- Dorothee Kretschmer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Ricarda Breitmeyer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Cordula Gekeler
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Marco Lebtig
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Katja Schlatterer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Mulugeta Nega
- Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany.,Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Mark Stahl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Daphne Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Suzan Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Andreas Peschel
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| |
Collapse
|
29
|
Schistocins: Novel antimicrobial peptides encrypted in the Schistosoma mansoni Kunitz Inhibitor SmKI-1. Biochim Biophys Acta Gen Subj 2021; 1865:129989. [PMID: 34389467 DOI: 10.1016/j.bbagen.2021.129989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Here we describe a new class of cryptides (peptides encrypted within a larger protein) with antimicrobial properties, named schistocins, derived from SmKI-1, a key protein in Shistosoma mansoni survival. This is a multi-functional protein with biotechnological potential usage as a therapeutic molecule in inflammatory diseases and to control schistosomiasis. METHODS We used our algorithm enCrypted, to perform an in silico proteolysis of SmKI-1 and a screening for potential antimicrobial activity. The selected peptides were chemically synthesized, tested in vitro and evaluated by both structural (CD, NMR) and biophysical (ITC) studies to access their structure-function relationship. RESULTS EnCrypted was capable of predicting AMPs in SmKI-1. Our biophysical analyses described a membrane-induced conformational change from random coil-to-α-helix and a peptide-membrane equilibrium for all schistocins. Our structural data allowed us to suggest a well-known mode of peptide-membrane interaction in which electrostatic attraction between the cationic peptides and anionic membranes results in the bilayer disordering. Moreover, the NMR exchange H/D data with the higher entropic contribution observed for the peptide-membrane interaction showed that shistocins have different orientations upon the membrane. CONCLUSIONS This work demonstrate the robustness for using the physicochemical features of predicted peptides in the identification of new bioactive cryptides besides the relevance of combining these analyses with biophysical methods to understand the peptide-membrane affinity and improve further algorithms. GENERAL SIGNIFICANCE Bioprospecting cryptides can be conducted through data mining of protein databases demonstrating the success of our strategy. The peptides-based agents derived from SmKI-1 might have high impact for system-biology and biotechnology.
Collapse
|
30
|
Qokoyi NK, Masamba P, Kappo AP. Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development. Vaccines (Basel) 2021; 9:762. [PMID: 34358178 PMCID: PMC8310332 DOI: 10.3390/vaccines9070762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
Proteins hardly function in isolation; they form complexes with other proteins or molecules to mediate cell signaling and control cellular processes in various organisms. Protein interactions control mechanisms that lead to normal and/or disease states. The use of competitive small molecule inhibitors to disrupt disease-relevant protein-protein interactions (PPIs) holds great promise for the development of new drugs. Schistosome invasion of the human host involves a variety of cross-species protein interactions. The pathogen expresses specific proteins that not only facilitate the breach of physical and biochemical barriers present in skin, but also evade the immune system and digestion of human hemoglobin, allowing for survival in the host for years. However, only a small number of specific protein interactions between the host and parasite have been functionally characterized; thus, in-depth understanding of the molecular mechanisms of these interactions is a key component in the development of new treatment methods. Efforts are now focused on developing a schistosomiasis vaccine, as a proposed better strategy used either alone or in combination with Praziquantel to control and eliminate this disease. This review will highlight protein interactions in schistosomes that can be targeted by specific PPI inhibitors for the design of an alternative treatment to Praziquantel.
Collapse
Affiliation(s)
| | | | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa; (N.K.Q.); (P.M.)
| |
Collapse
|
31
|
Chauhan A, Sharma A, Tripathi JK, Sun Y, Sukumran P, Singh BB, Mishra BB, Sharma J. Helminth derived factors inhibit neutrophil extracellular trap formation and inflammation in bacterial peritonitis. Sci Rep 2021; 11:12718. [PMID: 34135384 PMCID: PMC8209178 DOI: 10.1038/s41598-021-92001-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023] Open
Abstract
Despite their protective antimicrobial function, neutrophil extracellular traps (NETs) have been implicated in propagation of inflammatory responses in several disease conditions including sepsis. Highly diffusible exogenous ROS produced under such inflammatory conditions, can induce exuberant NETs, thus making inhibition of NETs desirable in inflammatory diseases. Here we report that helminth parasite excretory/secretory factors termed as parasitic ligands (PL) inhibit ROS-induced NETs by blocking the activation of nonselective calcium permeable channel Transient Receptor Potential Melastatin 2 (TRPM2). Therapeutic implication of PL mediated blockage of NET formation was tested in preclinical model of septic peritonitis, where PL treatment regulated neutrophil cell death modalities including NET formation and mitigated neutrophil mediated inflammatory response. This translated into improved survival and reduced systemic and local bacterial load in infected mice. Overall, our results posit PL as an important biological regulator of neutrophil functions with implications to a variety of inflammatory diseases including peritonitis.
Collapse
Affiliation(s)
- Arun Chauhan
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND, 58202-9037, USA
| | - Atul Sharma
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND, 58202-9037, USA
- Department of Critical Care, Division of Anesthesiology, Critical Care and Pain Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 110, Houston, TX, 77030-4009, USA
| | - Jitendra K Tripathi
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND, 58202-9037, USA
- Department of Geriatrics, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND, 58202-9037, USA
| | - Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Pramod Sukumran
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Bibhuti B Mishra
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND, 58202-9037, USA.
| | - Jyotika Sharma
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND, 58202-9037, USA.
- Department of Critical Care, Division of Anesthesiology, Critical Care and Pain Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 110, Houston, TX, 77030-4009, USA.
| |
Collapse
|
32
|
Guo H, Chen S, Xie M, Zhou C, Zheng M. The complex roles of neutrophils in APAP-induced liver injury. Cell Prolif 2021; 54:e13040. [PMID: 33942422 PMCID: PMC8168408 DOI: 10.1111/cpr.13040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/25/2021] [Accepted: 03/21/2021] [Indexed: 12/15/2022] Open
Abstract
Acetaminophen (APAP) is a widely applied drug for the alleviation of pain and fever, which is also a dose‐depedent toxin. APAP‐induced acute liver injury has become one of the primary causes of liver failure which is an increasingly serious threat to human health. Neutrophils are the major immune cells in human serving as the first barrier against the invasion of pathogen. It has been reported that neutrophils patriciate in the occurrence and development of APAP‐induced liver injury. However, evolving evidences suggest that neutrophils also contribute to tissue repair and actively orchestrate resolution of inflammation. Here, we addressed the complex roles in APAP‐induced liver injury on the basis of brief introduction of neutrophil's activation, recruitment and migration.
Collapse
Affiliation(s)
- Huiting Guo
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Shiwei Chen
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Mingjie Xie
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Cheng Zhou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
33
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
34
|
Lothstein KE, Gause WC. Mining Helminths for Novel Therapeutics. Trends Mol Med 2021; 27:345-364. [PMID: 33495068 PMCID: PMC9884063 DOI: 10.1016/j.molmed.2020.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023]
Abstract
Helminths are an emerging source of therapeutics for dysregulated inflammatory diseases. Excretory/secretory (ES) molecules, released during infection, are responsible for many of these immunomodulatory effects and are likely to have evolved as a means for parasite survival in the host. While the mechanisms of action of these molecules have not been fully defined, evidence demonstrates that they target various pathways in the immune response, ranging from initiation to effector cell modulation. These molecules are applied in controlling specific effector mechanisms of type 1 and type 2 immune responses. Recently, studies have further focused on their therapeutic potential in specific disease models. Here we review recent findings on ES molecule modulation of immune functions, specifically highlighting their clinical implications for future use in inflammatory disease therapeutics.
Collapse
Affiliation(s)
- Katherine E Lothstein
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - William C Gause
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
35
|
Malta KK, Silva TP, Palazzi C, Neves VH, Carmo LAS, Cardoso SJ, Melo RCN. Changing our view of the Schistosoma granuloma to an ecological standpoint. Biol Rev Camb Philos Soc 2021; 96:1404-1420. [PMID: 33754464 DOI: 10.1111/brv.12708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Schistosomiasis, a neglected parasitic tropical disease that has plagued humans for centuries, remains a major public health burden. A primary challenge to understanding schistosomiasis is deciphering the most remarkable pathological feature of this disease, the granuloma - a highly dynamic and self-organized structure formed by both host and parasite components. Granulomas are considered a remarkable example of how parasites evolved with their hosts to establish complex and intimate associations. However, much remains unclear regarding life within the granuloma, and strategies to restrain its development are still lacking. Here we explore current information on the hepatic Schistosoma mansoni granuloma in the light of Ecology and propose that this intricate structure acts as a real ecosystem. The schistosomal granuloma is formed by cells (biotic component), protein scaffolds, fibres, and chemical compounds (abiotic components) with inputs/outputs of energy and matter, as complex as in classical ecosystems. We review the distinct cell populations ('species') within the granuloma and examine how they integrate with each other and interact with their microenvironment to form a multifaceted cell community in different space-time frames. The colonization of the hepatic tissue to form granulomas is explained from the point of view of an ecological succession whereby a community is able to modify its physical environment, creating conditions and resources for ecosystem construction. Remarkably, the granuloma represents a dynamic evolutionary system that undergoes progressive changes in the 'species' that compose its community over time. In line with ecological concepts, we examine the granuloma not only as a place where a community of cells is settled (spatial niche or habitat) but also as a site in which the functional activities of these combined populations occur in an orchestrated way in response to microenvironmental gradients such as cytokines and egg antigens. Finally, we assert how the levels of organization of cellular components in a granuloma as conventionally defined by Cell Biology can fit perfectly into a hierarchical structure of biological systems as defined by Ecology. By rethinking the granuloma as an integrating and evolving ecosystem, we draw attention to the inner workings of this structure that are central to the understanding of schistosomiasis and could guide its future treatment.
Collapse
Affiliation(s)
- Kássia K Malta
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Cinthia Palazzi
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Vitor H Neves
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Lívia A S Carmo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Department of Medicine, Federal University of Alagoas, Rodovia AL-115, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Simone J Cardoso
- Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
36
|
Schistosoma mansoni alter transcription of immunomodulatory gene products following in vivo praziquantel exposure. PLoS Negl Trop Dis 2021; 15:e0009200. [PMID: 33657133 PMCID: PMC7959349 DOI: 10.1371/journal.pntd.0009200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/15/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Control of the neglected tropical disease schistosomiasis relies almost entirely on praziquantel (PZQ) monotherapy. How PZQ clears parasite infections remains poorly understood. Many studies have examined the effects of PZQ on worms cultured in vitro, observing outcomes such as muscle contraction. However, conditions worms are exposed to in vivo may vary considerably from in vitro experiments given the short half-life of PZQ and the importance of host immune system engagement for drug efficacy in animal models. Here, we investigated the effects of in vivo PZQ exposure on Schistosoma mansoni. Measurement of pro-apoptotic caspase activation revealed that worm death occurs only after parasites shift from the mesenteric vasculature to the liver, peaking 24 hours after drug treatment. This indicates that PZQ is not directly schistocidal, since PZQ’s half-life is ~2 hours in humans and ~30 minutes in mice, and focuses attention on parasite interactions with the host immune system following the shift of worms to the liver. RNA-Seq of worms harvested from mouse livers following sub-lethal PZQ treatment revealed drug-evoked changes in the expression of putative immunomodulatory and anticoagulant gene products. Several of these gene products localized to the schistosome esophagus and may be secreted into the host circulation. These include several Kunitz-type protease inhibitors, which are also found in the secretomes of other blood feeding animals. These transcriptional changes may reflect mechanisms of parasite immune-evasion in response to chemotherapy, given the role of complement-mediated attack and the host innate/humoral immune response in parasite elimination. One of these isoforms, SmKI-1, has been shown to exhibit immunomodulatory and anti-coagulant properties. These data provide insight into the effect of in vivo PZQ exposure on S. mansoni, and the transcriptional response of parasites to the stress of chemotherapy. The disease schistosomiasis is caused by parasitic worms that live within the circulatory system. While this disease infects over 200 million people worldwide, treatment relies almost entirely on one drug, praziquantel, whose mechanism is poorly understood. In this study, we analyzed the effects of praziquantel treatment on the gene expression of parasites harvested from mice treated with praziquantel chemotherapy. Despite the rapid action of the drug on worms in vitro, we found that key outcomes in vivo (measurement of cell death and changes in gene expression) occurred relatively late (12+ hours after drug administration). We found that worms increased the expression of immunomodulatory gene products in response to praziquantel, including a Kunitz-type protease inhibitor that localized to the worm esophagus and may be secreted to the external host environment. These are an intriguing class of proteins, because they display anti-coagulant and immunomodulatory properties. Up-regulation of these gene products may reflect a parasite mechanism of immune-evasion in response to chemotherapy. This research provides insight into the mechanism of praziquantel by observing the effect of this drug on worms within the context of the host immune system.
Collapse
|
37
|
Mu Y, McManus DP, Hou N, Cai P. Schistosome Infection and Schistosome-Derived Products as Modulators for the Prevention and Alleviation of Immunological Disorders. Front Immunol 2021; 12:619776. [PMID: 33692793 PMCID: PMC7937812 DOI: 10.3389/fimmu.2021.619776] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Parasitic helminths, comprising the flatworms (tapeworms and flukes) and nematodes (roundworms), have plagued humans persistently over a considerable period of time. It is now known that the degree of exposure to these and other pathogens inversely correlates with the incidence of both T helper 1 (Th1)-mediated autoimmunity and Th2-mediated allergy. Accordingly, there has been recent increased interest in utilizing active helminth worm infections and helminth-derived products for the treatment of human autoimmune and inflammatory diseases and to alleviate disease severity. Indeed, there is an accumulating list of novel helminth derived molecules, including proteins, peptides, and microRNAs, that have been shown to exhibit therapeutic potential in a variety of disease models. Here we consider the blood-dwelling schistosome flukes, which have evolved subtle immune regulatory mechanisms that promote parasite survival but at the same time minimize host tissue immunopathology. We review and discuss the recent advances in using schistosome infection and schistosome-derived products as therapeutics to treat or mitigate human immune-related disorders, including allergic asthma, arthritis, colitis, diabetes, sepsis, cystitis, and cancer.
Collapse
Affiliation(s)
- Yi Mu
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Hambrook JR, Hanington PC. Immune Evasion Strategies of Schistosomes. Front Immunol 2021; 11:624178. [PMID: 33613562 PMCID: PMC7889519 DOI: 10.3389/fimmu.2020.624178] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Human schistosomes combat the unique immune systems of two vastly different hosts during their indirect life cycles. In gastropod molluscs, they face a potent innate immune response composed of variable immune recognition molecules and highly phagocytic hemocytes. In humans, a wide variety of innate and adaptive immune processes exist in proximity to these parasites throughout their lifespan. To survive and thrive as the second most common parasitic disease in humans, schistosomes have evolved many techniques to avoid and combat these targeted host responses. Among these techniques are molecular mimicry of host antigens, the utilization of an immune resistant outer tegument, the secretion of several potent proteases, and targeted release of specific immunomodulatory factors affecting immune cell functions. This review seeks to describe these key immune evasion mechanisms, among others, which schistosomes use to survive in both of their hosts. After diving into foundational observational studies of the processes mediating the establishment of schistosome infections, more recent transcriptomic and proteomic studies revealing crucial components of the host/parasite molecular interface are discussed. In order to combat this debilitating and lethal disease, a comprehensive understanding of schistosome immune evasion strategies is necessary for the development of novel therapeutics and treatment plans, necessitating the discussion of the numerous ways in which these parasitic flatworms overcome the immune responses of both hosts.
Collapse
Affiliation(s)
- Jacob R Hambrook
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
39
|
S. mansoni SmKI-1 Kunitz-domain: Leucine point mutation at P1 site generates enhanced neutrophil elastase inhibitory activity. PLoS Negl Trop Dis 2021; 15:e0009007. [PMID: 33465126 PMCID: PMC7846107 DOI: 10.1371/journal.pntd.0009007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/29/2021] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The Schistosoma mansoni SmKI-1 protein is composed of two domains: a Kunitz-type serine protease inhibitor motif (KD) and a C-terminus domain with no similarity outside the genera. Our previous work has demonstrated that KD plays an essential role in neutrophil elastase (NE) binding blockage, in neutrophil influx and as a potential anti-inflammatory molecule. In order to enhance NE blocking capacity, we analyzed the KD sequence from a structure-function point of view and designed specific point mutations in order to enhance NE affinity. We substituted the P1 site residue at the reactive site for a leucine (termed RL-KD), given its central role for KD's inhibition to NE. We have also substituted a glutamic acid that strongly interacts with the P1 residue for an alanine, to help KD to be buried on NE S1 site (termed EA-KD). KD and the mutant proteins were evaluated in silico by molecular docking to human NE, expressed in Escherichia coli and tested towards its NE inhibitory activity. Both mutated proteins presented enhanced NE inhibitory activity in vitro and RL-KD presented the best performance. We further tested RL-KD in vivo in an experimental model of monosodium urate (MSU)-induced acute arthritis. RL-KD showed reduced numbers of total cells and neutrophils in the mouse knee cavity when compared to KD. Nevertheless, both RL-KD and KD reduced mice hypernociception in a similar fashion. In summary, our results demonstrated that both mutated proteins showed enhanced NE inhibitory activity in vitro. However, RL-KD had a prominent effect in diminishing inflammatory parameters in vivo.
Collapse
|
40
|
Rebello KM, Borges JN, Teixeira A, Perales J, Santos CP. Proteomic analysis of Ascocotyle longa (Trematoda: Heterophyidae) metacercariae. Mol Biochem Parasitol 2020; 239:111311. [PMID: 32745491 DOI: 10.1016/j.molbiopara.2020.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
Abstract
Ascocotyle longa is parasitic trematode with wide distribution throughout America, Europe, Africa, and Middle East. Despite the fact that this fish-borne pathogen has been considered an agent of human heterophyiasis in Brazil, the molecules involved in the host-parasite interaction remain unknown. The present study reports the proteome profile of A. longa metacercariae collected from the fish Mugil liza from Brazil. This infective stage for humans, mammals and birds was analyzed using nLC-MS/MS approach. We identified a large repertoire of proteins, which are mainly involved in energy metabolism and cell structure. Peptidases and immunogenic proteins were also identified, which might play roles in host-parasite interface. Our data provided unprecedented insights into the biology of A. longa and represent a first step to understand the natural host-parasite interaction. Moreover, as the first proteome characterized in this trematode, it will provide an important resource for future studies.
Collapse
Affiliation(s)
- Karina M Rebello
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Juliana N Borges
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Teixeira
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Cláudia P Santos
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
41
|
Mishra M. Evolutionary Aspects of the Structural Convergence and Functional Diversification of Kunitz-Domain Inhibitors. J Mol Evol 2020; 88:537-548. [PMID: 32696206 DOI: 10.1007/s00239-020-09959-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/04/2020] [Indexed: 11/28/2022]
Abstract
Kunitz-type domains are ubiquitously found in natural systems as serine protease inhibitors or animal toxins in venomous animals. Kunitz motif is a cysteine-rich peptide chain of ~ 60 amino acid residues with alpha and beta fold, stabilized by three conserved disulfide bridges. An extensive dataset of amino acid variations is found on sequence analysis of various Kunitz peptides. Kunitz peptides show diverse biological activities like inhibition of proteases of other classes and/or adopting a new function of blocking or modulating the ion channels. Based on the amino acid residues at the functional site of various Kunitz-type inhibitors, it is inferred that this 'flexibility within the structural rigidity' is responsible for multiple biological activities. Accelerated evolution of functional sites in response to the co-evolving molecular targets of the hosts of venomous animals or parasites, gene sharing, and gene duplication have been discussed as the most likely mechanisms responsible for the functional heterogeneity of Kunitz-domain inhibitors.
Collapse
Affiliation(s)
- Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
42
|
The Potential Role of Schistosome-Associated Factors as Therapeutic Modulators of the Immune System. Infect Immun 2020; 88:IAI.00754-19. [PMID: 32341115 DOI: 10.1128/iai.00754-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The parasites and eggs of helminths, including schistosomes, are associated with factors that can modulate the nature and outcomes of host immune responses, particularly enhancing type 2 immunity and impairing the effects of type 1 and type 17 immunity. The main species of schistosomes that cause infection in humans are capable of generating a microenvironment that allows survival of the parasite by evasion of the immune response. Schistosome infections are associated with beneficial effects on chronic immune disorders, including allergies, autoimmune diseases, and alloimmune responses. Recently, there has been increasing research interest in the role of schistosomes in immunoregulation during human infection, and the mechanisms underlying these roles continue to be investigated. Further studies may identify potential opportunities to develop new treatments for immune disease. In this review, we provide an update on the advances in our understanding of schistosome-associated modulation of the cells of the innate and adaptive immune systems as well as the potential role of schistosome-associated factors as therapeutic modulators of immune disorders, including allergies, autoimmune diseases, and transplant immunopathology. We also discuss potential opportunities for targeting schistosome-induced immunoregulation for future translation to the clinical setting.
Collapse
|
43
|
L S Alves C, F Santiago L, B R Santana M, C P Figueiredo B, B Morais S, C Oliveira S, G C Pacheco L, M Alcantara-Neves N, S Pinheiro C. Immunomodulatory properties of Schistosoma mansoni proteins Sm200 and SmKI-1 in vitro and in a murine model of allergy to the mite Blomia tropicalis. Mol Immunol 2020; 124:91-99. [PMID: 32544656 DOI: 10.1016/j.molimm.2020.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
The prevalence of allergic diseases in Brazil is one of the biggest in the world. Among these pathologies, we highlight asthma as one of the most importance. Asthma is characterized as a chronic inflammatory disease of airways, associated with hyperresponsiveness. Many environmental factors can trigger asthma symptoms, among them house dust mites can stimulate hypersensitivity type I reaction. The most common in house dust mite, in tropical countries, are Dermatophagoides pteronysinus and Blomia tropicalis. Several studies have shown that helminths, especially Schistosoma mansoni, lead to reduction of symptoms of atopy and allergic diseases. Therefore, the present study aims to evaluate the ability of recombinant S. mansoni proteins Sm200, and SmKI-1 to induce immunomodulation in vitro, using peripheral blood mononuclear cells (PBMCs) from atopic and non-atopic individuals, stimulated or not with B. tropicalis extract, and in vivo, in a murine model of allergy to the mite B. tropicalis. As results, we observed that the fragment called rSm200-3 and the protein rSmKI-1 stood out for their immunomodulatory potential, stimulating IL-10 production by human PBMCs in vitro. When these proteins were associated with B. tropicalis extract, it was observed the reduction of the production of the cytokine IL-5, with a statistically significant difference in non-atopic individual's cells. In vivo, both proteins presented similar results, with a reduction of IL-5 and IL-4 levels in lung homogenates and of serum IgE. SmKI-1 was also able to decrease the levels of EPO in lung homogenates and in BAL. These results showed that both proteins were able to downmodulate Th2 cells on human PBMCs, and in a murine model of allergy. However, SmKI-1 also reduced significantly the levels of EPO in BAL and lungs showing that this protein may be a good candidate to be used as a possible replacement or in conjunction with pharmacotherapy in individuals with unregulated immune response in asthma.
Collapse
Affiliation(s)
- Camile L S Alves
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | - Leonardo F Santiago
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | - Marina B R Santana
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | | | - Suellen B Morais
- Institute of Biological Science - ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sergio C Oliveira
- Institute of Biological Science - ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis G C Pacheco
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil
| | | | - Carina S Pinheiro
- Institute of Health Science - ICS, Federal University of Bahia, Salvador, Brazil.
| |
Collapse
|
44
|
The role of the adaptor molecule STING during Schistosoma mansoni infection. Sci Rep 2020; 10:7901. [PMID: 32404867 PMCID: PMC7220917 DOI: 10.1038/s41598-020-64788-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Schistosomiasis is a human parasitic disease responsible for serious consequences for public health, as well as severe socioeconomic impacts in developing countries. Here, we provide evidence that the adaptor molecule STING plays an important role in Schistosoma mansoni infection. S. mansoni DNA is sensed by cGAS leading to STING activation in murine embryonic fibroblasts (MEFs). Sting-/- and C57BL/6 (WT) mice were infected with schistosome cercariae in order to assess parasite burden and liver pathology. Sting-/- mice showed worm burden reduction but no change in the number of eggs or granuloma numbers and area when compared to WT animals. Immunologically, a significant increase in IFN-γ production by the spleen cells was observed in Sting-/- animals. Surprisingly, Sting-/- mice presented an elevated percentage of neutrophils in lungs, bronchoalveolar lavage, and spleens. Moreover, Sting-/- neutrophils exhibited increased survival rate, but similar ability to kill schistosomula in vitro when stimulated with IFN-γ when compared to WT cells. Finally, microbiota composition was altered in Sting-/- mice, revealing a more inflammatory profile when compared to WT animals. In conclusion, this study demonstrates that STING signaling pathway is important for S. mansoni DNA sensing and the lack of this adaptor molecule leads to enhanced resistance to infection.
Collapse
|
45
|
Xu Z, Yan Y, Cao J, Zhou Y, Zhang H, Xu Q, Zhou J. A family of serine protease inhibitors (serpins) and its expression profiles in the ovaries of Rhipicephalus haemaphysaloides. INFECTION GENETICS AND EVOLUTION 2020; 84:104346. [PMID: 32360539 DOI: 10.1016/j.meegid.2020.104346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022]
Abstract
Serpins are evolutionarily conserved serine protease inhibitors found in many organisms. In arthropods, serpins are involved in feeding, development, oviposition, anti-coagulation and innate immune responses. We characterized of 11 serpins in the tick Rhipicephalus haemaphysaloides. These serpins have orthologous genes in other ticks, as indicated by phylogenetic analysis. Analysis of the reactive center loop and hinge regions of the protein sequences indicated that RHS7 encodes proteins that may lack proteinase inhibitor activity. All R. haemaphysaloides serpins had high amino acid sequence identities to Rhipicephalus microplus serpins. Tissue and temporal transcriptional profiling of eight R. haemaphysaloides serpins located in the ovaries demonstrated that they are transcribed during feeding and oviposition. These suggested their participation in the regulation of tick physiology. Immune serum from rabbits repeatedly infested with larvae, nymphs and adults of R. haemaphysaloides can recognize multiple recombinant serpins, respectively. After gene silencing, the blood feeding to repletion time was significantly longer and the 24 h attachment rate was significantly lower in the RHS3 and RHS7 knock down groups. The RHS9 and RHS11 silenced ticks had significant reduction in repletion time and egg-laying rate. Egg hatchability was significantly decreased in RHS4, RHS5 and RHS9 silenced ticks. All groups had significant reductions in engorged body weight. This study increases information on the serpins of R. haemaphysaloides and suggests that some RHSs are potential targets for development of tick vaccines.
Collapse
Affiliation(s)
- Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yijie Yan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Qianming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
46
|
Liu R, Cheng WJ, Ye F, Zhang YD, Zhong QP, Dong HF, Tang HB, Jiang H. Comparative Transcriptome Analyses of Schistosoma japonicum Derived From SCID Mice and BALB/c Mice: Clues to the Abnormality in Parasite Growth and Development. Front Microbiol 2020; 11:274. [PMID: 32218772 PMCID: PMC7078119 DOI: 10.3389/fmicb.2020.00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis, caused by the parasitic flatworms called schistosomes, remains one of the most prevailing parasitic diseases in the world. The prodigious oviposition of female worms after maturity is the main driver of pathology due to infection, yet our understanding about the regulation of development and reproduction of schistosomes is limited. Here, we comparatively profiled the transcriptome of Schistosoma japonicum recovered from SCID and BALB/c mice, which were collected 35 days post-infection, when prominent morphological abnormalities could be observed in schistosomes from SCID mice, by performing RNA-seq analysis. Of the 11,183 identified genes, 62 differentially expressed genes (DEGs) with 39 upregulated and 23 downregulated messenger RNAs (mRNAs) were found in male worms from SCID mice (S_M) vs. male worms from BALB/c mice (B_M), and 240 DEGs with 152 upregulated and 88 downregulated mRNAs were found in female worms from SCID mice (S_F) vs. female worms from BALB/c mice (B_F). We also tested nine DEGs with a relatively higher expression abundance in the gonads of the worms (ovary, vitellaria, or testis), suggesting their potential biological significance in the development and reproduction of the parasites. Gene ontology (GO) enrichment analysis revealed that GO terms such as “microtubule-based process,” “multicellular organismal development,” and “Rho protein signal transduction” were significantly enriched in the DEGs in S_F vs. B_F, whereas GO terms such as “oxidation–reduction process,” “response to stress,” and “response to DNA damage stimulus” were significantly enriched in the DEGs in S_M vs. B_M. These results revealed that the differential expression of some important genes might contribute to the morphological abnormalities of worms in SCID mice. Furthermore, we selected one DEG, the mitochondrial prohibitin complex protein 1 (Phb1), to perform double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) in vivo targeting the worms in BALB/c mice, and we found that it was essential for the growth and reproductive development of both male and female S. japonicum worms. Taken together, these results provided a wealth of information on the differential gene expression profiles of schistosomes from SCID mice when compared with those from BALB/c mice, which were potentially involved in regulating the growth and development of schistosomes. These findings contributed to an understanding of parasite biology and provided a rich resource for the exploitation of antischistosomal intervention targets.
Collapse
Affiliation(s)
- Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Jun Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Feng Ye
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yao-Dan Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qin-Ping Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui-Fen Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hong-Bin Tang
- Laboratory Animal Center, School of Medicine, Wuhan University, Wuhan, China
| | - Hong Jiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
47
|
Lee KY, Lee YL, Chiang MH, Wang HY, Chen CY, Lin CH, Chen YC, Fan CK, Cheng PC. Schistosoma egg antigens suppress LPS-induced inflammation in human IMR-90 cells by modulation of JAK/STAT1 signaling. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:501-513. [PMID: 32033858 DOI: 10.1016/j.jmii.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/09/2019] [Accepted: 12/22/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND The regulation of the balance between inflammatory and anti-inflammatory events during the treatment of pulmonary infection is very important. Soluble Schistosoma egg antigens (SEA) can effectively inhibit the expression of cytokines during hepatic acute inflammation. However, the mechanisms by which these proteins suppress the inflammatory responses in lung cells remain unclear. The purpose of this study was to investigate the ability of SEA to inhibit pulmonary inflammation. METHODS The effects of SEA were investigated in LPS-treated lung IMR-90 cells. The involvement of the JAK/STAT-1 signaling pathway in these effects was evaluated by employing CBA assays, quantitative polymerase chain reaction, and western blotting experiments. RESULTS Pretreatment of IMR-90 cells with appropriate concentrations of SEA protected cells against the cytotoxic effects of LPS-induced inflammation in a time-dependent manner. SEA pretreatment significantly attenuated the LPS-induced activation of the JAK/STAT1 signaling pathway, including the upregulation of JAK1/2 and STAT1, as well as the production of inflammatory cytokines. The level of phosphorylated STAT1 gradually declined in response to increasing concentrations of SEA. Based on these findings, we hypothesize that SEA-induced anti-inflammatory effects initiate with the downregulation of the IFN-γ-JAK-STAT1 signaling pathway, resulting in the attenuation of LPS-induced inflammation in IMR-90 cells. CONCLUSION Our study is the first to demonstrate the anti-inflammatory activity of SEA in an in vitro model of pulmonary inflammation, involving the modulation of JAK/STAT1 signaling. We propose SEA as potential therapeutic or preventive agents for the selective suppression of STAT1 and the control of inflammatory response in lung IMR-90 cells.
Collapse
Affiliation(s)
- Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Lin Lee
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hsiu Chiang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yang Wang
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for International Tropical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chong-Yu Chen
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chang-Hong Lin
- The Affiliated Senior High School of National Taiwan Normal University, Taipei, Taiwan
| | - Ying-Chou Chen
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Drug Metabolism and Pharmacokinetics, Development Center for Biotechnology, Taipei, Taiwan
| | - Chia-Kwung Fan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for International Tropical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for International Tropical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
48
|
Shotgun proteomics of Strongyloides venezuelensis infective third stage larvae: Insights into host-parasite interaction and novel targets for diagnostics. Mol Biochem Parasitol 2019; 235:111249. [PMID: 31881239 DOI: 10.1016/j.molbiopara.2019.111249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Strongyloides venezuelensis is an important alternative source of antigen for the serologic diagnosis of human strongyloidiasis. Proteomics techniques applied to the analysis of the protein content of infective third stage larvae (iL3) of S. venezuelensis provide a powerful tool for the discovery of new candidates for immunodiagnosis. This study presents an overview of the protein iL3 S. venezuelensis focusing on the diagnosis of strongyloidiasis. A total of 877 proteins were identified by shotgun proteomics. Many of these proteins are involved in different cellular processes, metabolic as well as structural maintenance. Our results point to a catalog of possible diagnostic targets for human strongyloidiasis and highlight the need for evaluation of uncharacterized proteins, especially the proteins within the CAP domain, transthyretin, and BTPI inhibitor domains, as a repertoire as yet unexplored in the context of strongyloidiasis diagnostic markers. We believe that the protein profile presented in this shotgun analysis extends our understanding of the protein composition within the Strongyloides genus, opening up new perspectives for research on biomarkers that may help with the diagnosis of human strongyloidiasis. Data are available via ProteomeXchange with identifier PXD013703.
Collapse
|
49
|
Identification and Characterization of ShSPI, a Kazal-Type Elastase Inhibitor from the Venom of Scolopendra Hainanum. Toxins (Basel) 2019; 11:toxins11120708. [PMID: 31817486 PMCID: PMC6950245 DOI: 10.3390/toxins11120708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022] Open
Abstract
Elastase is a globular glycoprotein and belongs to the chymotrypsin family. It is involved in several inflammatory cascades on the basis of cleaving the important connective tissue protein elastin, and is strictly regulated to a balance by several endogenous inhibitors. When elastase and its inhibitors are out of balance, severe diseases will develop, especially those involved in the cardiopulmonary system. Much attention has been attracted in seeking innovative elastase inhibitors and various advancements have been taken on clinical trials of these inhibitors. Natural functional peptides from venomous animals have been shown to have anti-protease properties. Here, we identified a kazal-type serine protease inhibitor named ShSPI from the cDNA library of the venom glands of Scolopendra hainanum. ShSPI showed significant inhibitory effects on porcine pancreatic elastase and human neutrophils elastase with Ki values of 225.83 ± 20 nM and 12.61 ± 2 nM, respectively. Together, our results suggest that ShSPI may be an excellent candidate to develop a drug for cardiopulmonary diseases.
Collapse
|
50
|
Hernández-Goenaga J, López-Abán J, Protasio AV, Vicente Santiago B, del Olmo E, Vanegas M, Fernández-Soto P, Patarroyo MA, Muro A. Peptides Derived of Kunitz-Type Serine Protease Inhibitor as Potential Vaccine Against Experimental Schistosomiasis. Front Immunol 2019; 10:2498. [PMID: 31736947 PMCID: PMC6838133 DOI: 10.3389/fimmu.2019.02498] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022] Open
Abstract
Schistosomiasis is a significant public health problem in sub-Saharan Africa, China, Southeast Asia, and regions of South and Central America affecting about 189 million people. Kunitz-type serine protease inhibitors have been identified as important players in the interaction of other flatworm parasites with their mammalian hosts. They are involved in host blood coagulation, fibrinolysis, inflammation, and ion channel blocking, all of them critical biological processes, which make them interesting targets to develop a vaccine. Here, we evaluate the protective efficacy of chemically synthesized T- and B-cell peptide epitopes derived from a kunitz protein from Schistosoma mansoni. Putative kunitz-type protease inhibitor proteins were identified in the S. mansoni genome, and their expression was analyzed by RNA-seq. Gene expression analyses showed that the kunitz protein Smp_147730 (Syn. Smp_311670) was dramatically and significantly up-regulated in schistosomula and adult worms when compared to the invading cercariae. T- and B-cell epitopes were predicted using bioinformatics tools, chemically synthesized, and formulated in the Adjuvant Adaptation (ADAD) vaccination system. BALB/c mice were vaccinated and challenged with S. mansoni cercariae. Kunitz peptides were highly protective in vaccinated BALB/c mice showing significant reductions in recovery of adult females (89-91%) and in the numbers of eggs trapped in the livers (77-81%) and guts (57-77%) of mice. Moreover, liver lesions were significantly reduced in vaccinated mice (64-65%) compared to infected control mice. The vaccination regime was well-tolerated with both peptides. We propose the use of these peptides, alone or in combination, as reliable candidates for vaccination against schistosomiasis.
Collapse
Affiliation(s)
- Juan Hernández-Goenaga
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Anna V. Protasio
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Belén Vicente Santiago
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Esther del Olmo
- Department of Pharmaceutical Chemistry, IBSAL-CIETUS, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Magnolia Vanegas
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| |
Collapse
|