1
|
Esparza J. The illness of empress Maria Theresa as a trigger for the adoption of variolation in Austria (1768). Vaccine 2025; 58:127253. [PMID: 40378550 DOI: 10.1016/j.vaccine.2025.127253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
In 1767, Austrian Empress Maria Theresa contracted smallpox and survived, but the disease had already claimed the lives of several members of her family. These personal losses renewed her interest in preventive measures against smallpox. Although initially skeptical, she authorized her physician, Gerard van Swieten, to explore the emerging practice of variolation. In 1768, Habsburg children were variolated by Jan Ingen-Housz-a landmark event in Austrian public health. To commemorate these events, the empire issued medals that not only celebrate scientific progress but also promote the state's commitment to the well-being of its people. Variolation-the deliberate inoculation with smallpox matter to induce immunity-originated in Asia in the 16th century and spread through the Ottoman Empire before reaching Western Europe in 1721. Though often overshadowed in historical accounts by later developments, variolation was a crucial precursor to modern vaccination. In Austria, it paved the way for the first Jennerian vaccination (the inoculation of cowpox), administered in 1799 by Dr. Paskal Joseph Ritter Ferro-less than a year after Edward Jenner's groundbreaking publication in 1798. Smallpox was ultimately declared eradicated in 1980, but this achievement rested on earlier innovations, including variolation.
Collapse
Affiliation(s)
- José Esparza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Esparza J. Introduction of the smallpox vaccine in Napoleonic France, as recorded in contemporary medals. Vaccine 2024; 42:3578-3584. [PMID: 38704259 DOI: 10.1016/j.vaccine.2024.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
The smallpox vaccine developed by Jenner in 1798 was successfully introduced in France in 1800 with the support of Napoleon Bonaparte. The medals and tokens (coin-like medals) issued to encourage early-day vaccination activities are described in the context of the changing political situation in that country. In 1800 a private society of subscribers, led by the Duke of La Rochefoucauld-Liancourt was created, along with a Vaccine Committee charged with evaluating the safety and efficacy of vaccination before deciding if vaccination should be extended to the entire population. The Vaccine Committee published a positive report in 1803, and in 1804, the Ministry of the Interior established the "Society for the extinction of smallpox in France by means of the propagation of the vaccine". The creation of the Society made smallpox vaccination an official activity of the empire, facilitating collaboration between government agencies. The vaccine institution, established by Napoleon in 1804, continued its functions until 1820 when the Royal Academy of Medicine was created and took over those functions. This case exemplifies the collaboration that was needed between science and politics to rapidly bring the recently developed smallpox vaccine to the needed population.
Collapse
Affiliation(s)
- José Esparza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Zuo K, Gao W, Wu Z, Zhang L, Wang J, Yuan X, Li C, Xiang Q, Lu L, Liu H. Evolution of Virology: Science History through Milestones and Technological Advancements. Viruses 2024; 16:374. [PMID: 38543740 PMCID: PMC10975421 DOI: 10.3390/v16030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/23/2024] Open
Abstract
The history of virology, which is marked by transformative breakthroughs, spans microbiology, biochemistry, genetics, and molecular biology. From the development of Jenner's smallpox vaccine in 1796 to 20th-century innovations such as ultrafiltration and electron microscopy, the field of virology has undergone significant development. In 1898, Beijerinck laid the conceptual foundation for virology, marking a pivotal moment in the evolution of the discipline. Advancements in influenza A virus research in 1933 by Richard Shope furthered our understanding of respiratory pathogens. Additionally, in 1935, Stanley's determination of viruses as solid particles provided substantial progress in the field of virology. Key milestones include elucidation of reverse transcriptase by Baltimore and Temin in 1970, late 20th-century revelations linking viruses and cancer, and the discovery of HIV by Sinoussi, Montagnier, and Gallo in 1983, which has since shaped AIDS research. In the 21st century, breakthroughs such as gene technology, mRNA vaccines, and phage display tools were achieved in virology, demonstrating its potential for integration with molecular biology. The achievements of COVID-19 vaccines highlight the adaptability of virology to global health.
Collapse
Affiliation(s)
- Kunlan Zuo
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei 230026, China; (K.Z.); (W.G.); (Z.W.); (L.Z.); (J.W.); (X.Y.); (C.L.); (Q.X.)
| | - Wanying Gao
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei 230026, China; (K.Z.); (W.G.); (Z.W.); (L.Z.); (J.W.); (X.Y.); (C.L.); (Q.X.)
| | - Zongzhen Wu
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei 230026, China; (K.Z.); (W.G.); (Z.W.); (L.Z.); (J.W.); (X.Y.); (C.L.); (Q.X.)
| | - Lei Zhang
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei 230026, China; (K.Z.); (W.G.); (Z.W.); (L.Z.); (J.W.); (X.Y.); (C.L.); (Q.X.)
| | - Jiafeng Wang
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei 230026, China; (K.Z.); (W.G.); (Z.W.); (L.Z.); (J.W.); (X.Y.); (C.L.); (Q.X.)
| | - Xuefan Yuan
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei 230026, China; (K.Z.); (W.G.); (Z.W.); (L.Z.); (J.W.); (X.Y.); (C.L.); (Q.X.)
| | - Chun Li
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei 230026, China; (K.Z.); (W.G.); (Z.W.); (L.Z.); (J.W.); (X.Y.); (C.L.); (Q.X.)
| | - Qiangyu Xiang
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei 230026, China; (K.Z.); (W.G.); (Z.W.); (L.Z.); (J.W.); (X.Y.); (C.L.); (Q.X.)
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China;
| | - Huan Liu
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei 230026, China; (K.Z.); (W.G.); (Z.W.); (L.Z.); (J.W.); (X.Y.); (C.L.); (Q.X.)
- State Key Laboratory of Virology, Wuhan 430072, China
| |
Collapse
|
4
|
Siddalingaiah N, Dhanya K, Lodha L, Pattanaik A, Mani RS, Ma A. Tracing the journey of poxviruses: insights from history. Arch Virol 2024; 169:37. [PMID: 38280957 DOI: 10.1007/s00705-024-05971-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/29/2024]
Abstract
The historical significance of the poxviruses is profound, largely due to the enduring impact left by smallpox virus across many centuries. The elimination of smallpox is a remarkable accomplishment in the history of science and medicine, with centuries of devoted efforts resulting in the development and widespread administration of smallpox vaccines. This review provides insight into the pivotal historical events involving medically significant poxviruses. Understanding the remarkable saga of combatting smallpox is crucial, serving as a guidepost for potential future encounters with poxvirus infections. There is a continual need for vigilant observation of poxvirus evolution and spillover from animals to humans, considering the expansive range of susceptible hosts. The recent occurrence of monkeypox cases in non-endemic countries stands as a stark reminder of the ease with which infections can be disseminated through international travel and trade. This backdrop encourages introspection about our journey and the current status of poxvirus research.
Collapse
Affiliation(s)
- Nayana Siddalingaiah
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - K Dhanya
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Lonika Lodha
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Amrita Pattanaik
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Reeta S Mani
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Ashwini Ma
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
| |
Collapse
|
5
|
Souza ARV, Brinkmann A, Esparza J, Nitsche A, Damaso CR. Gene duplication, gene loss, and recombination events with variola virus shaped the complex evolutionary path of historical American horsepox-based smallpox vaccines. mBio 2023; 14:e0188723. [PMID: 37729584 PMCID: PMC10653919 DOI: 10.1128/mbio.01887-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Modern smallpox vaccines, such as those used against mpox, are made from vaccinia viruses, but it is still unknown whether cowpox, horsepox, or vaccinia viruses were used in the early 20th century or earlier. The mystery began to be solved when the genomes of six historical smallpox vaccines used in the United States from 1850 to 1902 were determined. Our work analyzed in detail the genomes of these six historical vaccines, revealing a complex genomic structure. Historical vaccines are highly similar to horsepox in the core of their genomes, but some are closer to the structure of vaccinia virus at the ends of the genome. One of the vaccines is a recombinant virus with parts of variola virus recombined into its genome. Our data add valuable information for understanding the evolutionary path of current smallpox vaccines and the genetic makeup of the potentially extinct group of horsepox viruses.
Collapse
Affiliation(s)
- Aline R. V. Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Annika Brinkmann
- Centre for Biological Threats and Special Pathogens 1 – Highly Pathogenic Viruses & German Consultant Laboratory for Poxviruses & WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - José Esparza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens 1 – Highly Pathogenic Viruses & German Consultant Laboratory for Poxviruses & WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Clarissa R. Damaso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Perdiguero B, Pérez P, Marcos-Villar L, Albericio G, Astorgano D, Álvarez E, Sin L, Elena Gómez C, García-Arriaza J, Esteban M. Highly attenuated poxvirus-based vaccines against emerging viral diseases. J Mol Biol 2023:168173. [PMID: 37301278 DOI: 10.1016/j.jmb.2023.168173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Although one member of the poxvirus family, variola virus, has caused one of the most devastating human infections worldwide, smallpox, the knowledge gained over the last 30 years on the molecular, virological and immunological mechanisms of these viruses has allowed the use of members of this family as vectors for the generation of recombinant vaccines against numerous pathogens. In this review, we cover different aspects of the history and biology of poxviruses with emphasis on their application as vaccines, from first- to fourth-generation, against smallpox, monkeypox, emerging viral diseases highlighted by the World Health Organization (COVID-19, Crimean-Congo haemorrhagic fever, Ebola and Marburg virus diseases, Lassa fever, Middle East respiratory syndrome and severe acute respiratory syndrome, Nipah and other henipaviral diseases, Rift Valley fever and Zika), as well as against one of the most concerning prevalent virus, the Human Immunodeficiency Virus, the causative agent of AcquiredImmunodeficiency Syndrome. We discuss the implications in human health of the 2022 monkeypox epidemic affecting many countries, and the rapid prophylactic and therapeutic measures adopted to control virus dissemination within the human population. We also describe the preclinical and clinical evaluation of the Modified Vaccinia virus Ankara and New York vaccinia virus poxviral strains expressing heterologous antigens from the viral diseases listed above. Finally, we report different approaches to improve the immunogenicity and efficacy of poxvirus-based vaccine candidates, such as deletion of immunomodulatory genes, insertion of host-range genes and enhanced transcription of foreign genes through modified viral promoters. Some future prospects are also highlighted.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Sin
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
7
|
Brinkmann A, Kohl C, Pape K, Bourquain D, Thürmer A, Michel J, Schaade L, Nitsche A. Extensive ITR expansion of the 2022 Mpox virus genome through gene duplication and gene loss. Virus Genes 2023:10.1007/s11262-023-02002-1. [PMID: 37256469 DOI: 10.1007/s11262-023-02002-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023]
Abstract
Poxviruses are known to evolve slower than RNA viruses with only 1-2 mutations/genome/year. Rather than single mutations, rearrangements such as gene gain and loss, which have been discussed as a possible driver for host adaption, were described in poxviruses. In 2022 and 2023 the world is being challenged by the largest global outbreak so far of Mpox virus, and the virus seems to have established itself in the human community for an extended period of time. Here, we report five Mpox virus genomes from Germany with extensive gene duplication and loss, leading to the expansion of the ITR regions from 6400 to up to 24,600 bp. We describe duplications of up to 18,200 bp to the opposed genome end, and deletions at the site of insertion of up to 16,900 bp. Deletions and duplications of genes with functions of supposed immune modulation, virulence and host adaption as B19R, B21R, B22R and D10L are described. In summary, we highlight the need for monitoring rearrangements of the Mpox virus genome rather than for monitoring single mutations only.
Collapse
Affiliation(s)
- Annika Brinkmann
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| | - Claudia Kohl
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Katharina Pape
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Daniel Bourquain
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Andrea Thürmer
- Genome Sequencing and Genomic Epidemiology, Methodology and Research Infrastructure, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Janine Michel
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| |
Collapse
|
8
|
Bruneau RC, Tazi L, Rothenburg S. Cowpox Viruses: A Zoo Full of Viral Diversity and Lurking Threats. Biomolecules 2023; 13:325. [PMID: 36830694 PMCID: PMC9953750 DOI: 10.3390/biom13020325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Cowpox viruses (CPXVs) exhibit the broadest known host range among the Poxviridae family and have caused lethal outbreaks in various zoo animals and pets across 12 Eurasian countries, as well as an increasing number of human cases. Herein, we review the history of how the cowpox name has evolved since the 1700s up to modern times. Despite early documentation of the different properties of CPXV isolates, only modern genetic analyses and phylogenies have revealed the existence of multiple Orthopoxvirus species that are currently constrained under the CPXV designation. We further chronicle modern outbreaks in zoos, domesticated animals, and humans, and describe animal models of experimental CPXV infections and how these can help shaping CPXV species distinctions. We also describe the pathogenesis of modern CPXV infections in animals and humans, the geographic range of CPXVs, and discuss CPXV-host interactions at the molecular level and their effects on pathogenicity and host range. Finally, we discuss the potential threat of these viruses and the future of CPXV research to provide a comprehensive review of CPXVs.
Collapse
Affiliation(s)
| | | | - Stefan Rothenburg
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Maneze D, Salamonson Y, Grollman M, Montayre J, Ramjan L. Mandatory COVID-19 vaccination for healthcare workers: A discussion paper. Int J Nurs Stud 2023; 138:104389. [PMID: 36462385 PMCID: PMC9709452 DOI: 10.1016/j.ijnurstu.2022.104389] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The devastating effects of COVID-19 sparked debates among professionals in the fields of health, law, and bioethics regarding policies on mandatory vaccination for healthcare workers. Suboptimal vaccine uptake among healthcare workers had been implicated in the increased risk of nosocomial spread of COVID infection and absenteeism among healthcare workers, impacting the quality of patient care. However, mandatory vaccine policies were also seen to encroach on the autonomy of healthcare workers. AIMS AND OBJECTIVES To synthesise the arguments for and against mandatory vaccination for healthcare workers (HCWs) and its long-term impact on the healthcare workforce, through an analysis of texts and opinions of professionals from different fields of study. METHODS This is a systematic review of opinions published in peer-reviewed journals. After initial search in Cochrane and JBI systematic review databases to ensure no previous review had been done, five databases were searched (PsychInfo, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Medline and Scopus). Inclusion criteria were: 1) focused on COVID-19; 2) healthcare workers specific; 3) specific to mandatory vaccination; 4) opinion piece with an identified author; and 5) in English. EXCLUSION 1) focus on other vaccine preventable diseases, not COVID-19 and 2) discussion on mandatory vaccination not-specific to healthcare workers. The Joanna Briggs Critical Appraisal tool for Text and Opinions was used to assess quality. Data were synthesised in the summary table. RESULTS The review included 28 opinion and viewpoint articles. Of these, 12 (43 %) adopted a pro-mandatory vaccination stance, 13 (46 %) were neutral or had presented arguments from both sides of the debate and only three (11 %) were against. The overall arguments among those who were pro-, neutral and anti-mandatory COVID-19 vaccination were underpinned by ethical, moral and legal principles of such a mandate on a vulnerable healthcare workforce. This review highlighted the polarised opinions concerning choices, human rights, professional responsibilities and personal risks (i.e. health risks, losing a job) with the introduction of vaccination mandate. However, the articles found in this review discussed mandatory vaccination of healthcare workers in the USA, Europe and Australia only. CONCLUSION The review underscores the need to balance the rights of the public to safe and quality care with the rights and moral obligations of healthcare workers during a public health emergency. This can be achieved when policies and mandates are guided by reliable scientific evidence which are flexible in considering legal and ethical dilemmas. TWEETABLE ABSTRACT To mandate or not to mandate COVID-19 vaccination for healthcare workers: A synthesis of published opinions in health, law, and bioethics.
Collapse
Affiliation(s)
- Della Maneze
- University of Wollongong, School of Nursing, Wollongong, NSW, Australia; Western Sydney University, School of Nursing and Midwifery, Australia; South Western Sydney Local Health District, Multicultural Health Service, Australia; Australian Centre for Integration of Oral Health (ACIOH), Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia.
| | - Yenna Salamonson
- University of Wollongong, School of Nursing, Wollongong, NSW, Australia; Western Sydney University, School of Nursing and Midwifery, Australia; Australian Centre for Integration of Oral Health (ACIOH), Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia.
| | - Maxwell Grollman
- University of California, Los Angeles, Institute for Society and Genetics, Los Angeles, CA, USA.
| | - Jed Montayre
- Western Sydney University, School of Nursing and Midwifery, Australia; Australian Centre for Integration of Oral Health (ACIOH), Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia.
| | - Lucie Ramjan
- Western Sydney University, School of Nursing and Midwifery, Australia; Australian Centre for Integration of Oral Health (ACIOH), Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia.
| |
Collapse
|
10
|
Noyce RS, Westfall LW, Fogarty S, Gilbert K, Mpanju O, Stillwell H, Esparza J, Daugherty B, Koide F, Evans DH, Lederman S. Single Dose of Recombinant Chimeric Horsepox Virus (TNX-801) Vaccination Protects Macaques from Lethal Monkeypox Challenge. Viruses 2023; 15:v15020356. [PMID: 36851570 PMCID: PMC9965234 DOI: 10.3390/v15020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The ongoing global Monkeypox outbreak that started in the spring of 2022 has reinforced the importance of protecting the population using live virus vaccines based on the vaccinia virus (VACV). Smallpox also remains a biothreat and although some U.S. military personnel are immunized with VACV, safety concerns limit its use in other vulnerable groups. Consequently, there is a need for an effective and safer, single dose, live replicating vaccine against both viruses. One potential approach is to use the horsepox virus (HPXV) as a vaccine. Contemporary VACV shares a common ancestor with HPXV, which from the time of Edward Jenner and through the 19th century, was extensively used to vaccinate against smallpox. However, it is unknown if early HPXV-based vaccines exhibited different safety and efficacy profiles compared to modern VACV. A deeper understanding of HPXV as a vaccine platform may allow the construction of safer and more effective vaccines against the poxvirus family. In a proof-of-concept study, we vaccinated cynomolgus macaques with TNX-801, a recombinant chimeric horsepox virus (rcHPXV), and showed that the vaccine elicited protective immune responses against a lethal challenge with monkeypox virus (MPXV), strain Zaire. The vaccine was well tolerated and protected animals from the development of lesions and severe disease. These encouraging data support the further development of TNX-801.
Collapse
Affiliation(s)
- Ryan S. Noyce
- Department of Medical Microbiology & Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | | | | | | | | | - José Esparza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | - David H. Evans
- Department of Medical Microbiology & Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Seth Lederman
- Tonix Pharmaceuticals, Dartmouth, MA 02748, USA
- Correspondence:
| |
Collapse
|
11
|
Cruz NVG, Luques MN, Castiñeiras TMPP, Costa Ferreira Jr O, Peralta RHS, da Costa LJ, Damaso CR. Genomic Characterization of the Historical Smallpox Vaccine Strain Wyeth Isolated from a 1971 Seed Vial. Viruses 2022; 15:83. [PMID: 36680123 PMCID: PMC9864299 DOI: 10.3390/v15010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
The Wyeth strain of vaccinia virus (VACV) produced by Wyeth Pharmaceuticals was supposedly used to manufacture the old freeze-dried American smallpox vaccine, Dryvax, until its discontinuation in 2008. Although the genomic sequences of numerous Dryvax clones have been reported, data on VACV-Wyeth genomes are still lacking. Genomic analysis of old VACV strains is relevant to understand the evolutionary relationships of smallpox vaccines, particularly with the recent resumption of smallpox vaccination in certain population groups as an attempt to control the worldwide monkeypox outbreak. Here we analyzed the complete genome sequences of three VACV-Wyeth clonal isolates obtained from a single seed vial donated to the Brazilian eradication program in the 1970s. Wyeth clones show >99.3% similarity to each other and >95.3% similarity with Dryvax clones, mapping together in clade I of the vaccinia group. Although the patterns of SNPs and INDELs comparing Dryvax and Wyeth clones are overall uniform, important differences were detected particularly at the ends of the genome. In addition, we detected recombinant events of clone Wyeth A111 and the Dryvax clone Acam2000, suggesting that other regions of the genomes may have similar patchy patterns of recombination. A small-scale serological survey using VACV-Wyeth as antigen in ELISA assays revealed that 63 of the 65 individuals born before the end of smallpox vaccination in Brazil still have anti-VACV IgG antibodies, demonstrating the usefulness of the VACV-Wyeth strain in future extended serological studies of the Brazilian population.
Collapse
Affiliation(s)
- Nádia Vaez G. Cruz
- Instituto de Biologia do Exército, Rio de Janeiro 20911-270, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Matheus Nobrega Luques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Terezinha Marta Pereira P. Castiñeiras
- Núcleo de Enfrentamento e Estudo de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Orlando Costa Ferreira Jr
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Luciana J. da Costa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Clarissa R. Damaso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
12
|
Genetic ancestry and population structure of vaccinia virus. NPJ Vaccines 2022; 7:92. [PMID: 35953491 PMCID: PMC9372083 DOI: 10.1038/s41541-022-00519-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/28/2022] [Indexed: 12/12/2022] Open
Abstract
Vaccinia virus (VACV) was used for smallpox eradication, but its ultimate origin remains unknown. The genetic relationships among vaccine stocks are also poorly understood. We analyzed 63 vaccine strains with different origin, as well horsepox virus (HPXV). Results indicated the genetic diversity of VACV is intermediate between variola and cowpox viruses, and that mutation contributed more than recombination to VACV evolution. STRUCTURE identified 9 contributing subpopulations and showed that the lowest drift was experienced by the ancestry components of Tian Tan and HPXV/Mütter/Mulford genomes. Subpopulations that experienced very strong drift include those that contributed the ancestry of MVA and IHD-W, in good agreement with the very long passage history of these vaccines. Another highly drifted population contributed the full ancestry of viruses sampled from human/cattle infections in Brazil and, partially, to IOC clones, strongly suggesting that the recurrent infections in Brazil derive from the spillback of IOC to the feral state.
Collapse
|
13
|
Harbour JC, Lyski ZL, Schell JB, Thomas A, Messer WB, Slifka MK, Nolz JC. Cellular and Humoral Immune Responses in Mice Immunized with Vaccinia Virus Expressing the SARS-CoV-2 Spike Protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2596-2604. [PMID: 33972374 PMCID: PMC8165000 DOI: 10.4049/jimmunol.2100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
The COVID-19 pandemic is a global health emergency, and the development of a successful vaccine will ultimately be required to prevent the continued spread and seasonal recurrence of this disease within the human population. However, very little is known about either the quality of the adaptive immune response or the viral Ag targets that will be necessary to prevent the spread of the infection. In this study, we generated recombinant Vaccinia virus expressing the full-length spike protein from SARS-CoV-2 (VacV-S) to evaluate the cellular and humoral immune response mounted against this viral Ag in mice. Both CD8+ and CD4+ T cells specific to the SARS-CoV-2 spike protein underwent robust expansion, contraction, and persisted for at least 40 d following a single immunization with VacV-S. Vaccination also caused the rapid emergence of spike-specific IgG-neutralizing Abs. Interestingly, both the cellular and humoral immune responses strongly targeted the S1 domain of spike following VacV-S immunization. Notably, immunization with VacV-expressing spike conjugated to the MHC class II invariant chain, a strategy previously reported by us and others to enhance the immunogenicity of antigenic peptides, did not promote stronger spike-specific T cell or Ab responses in vivo. Overall, these findings demonstrate that an immunization approach using VacV or attenuated versions of VacV expressing the native, full-length SARS-CoV-2 spike protein could be used for further vaccine development to prevent the spread of COVID-19.
Collapse
Affiliation(s)
- Jake C Harbour
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Zoe L Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - John B Schell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR
| | - Archana Thomas
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
- Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, OR
- Program in Epidemiology, Oregon Health & Science University-Portland State University School of Public Health, Oregon Health & Science University, Portland, OR
| | - Mark K Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR;
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR; and
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
| |
Collapse
|
14
|
Thomson OP, MacMillan A, Draper-Rodi J, Vaucher P, Ménard M, Vaughan B, Morin C, Alvarez G, Sampath KK, Cerritelli F, Shaw R, Cymet TC, Bright P, Hohenschurz-Schmidt D, Vogel S. Opposing vaccine hesitancy during the COVID-19 pandemic - A critical commentary and united statement of an international osteopathic research community. INT J OSTEOPATH MED 2021; 39:A1-A6. [PMID: 33623534 PMCID: PMC7893309 DOI: 10.1016/j.ijosm.2021.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Oliver P Thomson
- University College of Osteopathy, 275 Borough High St, London, SE1 1JE, UK
| | - Andrew MacMillan
- University College of Osteopathy, 275 Borough High St, London, SE1 1JE, UK
| | - Jerry Draper-Rodi
- University College of Osteopathy, 275 Borough High St, London, SE1 1JE, UK
| | - Paul Vaucher
- Foundation COME Collaboration, Pescara, Italy.,HES-SO University of Applied Sciences and Arts Western Switzerland, School of Health Sciences Fribourg, Rue des Arsenaux 16a, CH-1700, Fribourg, Switzerland
| | - Mathieu Ménard
- Foundation COME Collaboration, Pescara, Italy.,Institut d'Ostéopathie de Rennes - Bretagne, Campus Rennes Atalante Ker-Lann, 50 rue Blaise Pascal, 35170, Bruz, France
| | - Brett Vaughan
- Department of Medical Education, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Australia
| | - Chantal Morin
- Foundation COME Collaboration, Pescara, Italy.,Centre Ostéopathique du Québec, Montréal, Canada.,Faculty of Medicine and Health Sciences, School of Rehabilitation, Université de Sherbrooke, Sherbrooke, Canada
| | - Gerard Alvarez
- Foundation COME Collaboration, Pescara, Italy.,Spain National Centre, Foundation COME Collaboration, Barcelona, Spain.,Iberoamerican Cochrane Centre-Biomedical Research Institute Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Kesava Kovanur Sampath
- Centre for Health and Social Practice, Waikato Institute of Technology, Hamilton, Waikato, New Zealand
| | | | - Robert Shaw
- Scandinavian College of Osteopathy, Gothenburg, Sweden
| | - Tyler C Cymet
- Medical Education, American Association of Colleges of Osteopathic Medicine, Bethesda, USA
| | - Philip Bright
- European School of Osteopathy, Boxley House, Maidstone, Kent, UK
| | | | - Steven Vogel
- University College of Osteopathy, 275 Borough High St, London, SE1 1JE, UK
| |
Collapse
|
15
|
Brinkmann A, Souza ARV, Esparza J, Nitsche A, Damaso CR. Re-assembly of nineteenth-century smallpox vaccine genomes reveals the contemporaneous use of horsepox and horsepox-related viruses in the USA. Genome Biol 2020; 21:286. [PMID: 33272280 PMCID: PMC7716468 DOI: 10.1186/s13059-020-02202-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022] Open
Abstract
According to a recent article published in Genome Biology, Duggan and coworkers sequenced and partially assembled five genomes of smallpox vaccines from the nineteenth century. No information regarding the ends of genomes was presented, and they are important to understand the evolutionary relationship of the different smallpox vaccine genomes during the centuries. We re-assembled the genomes, which include the largest genomes in the vaccinia lineage and one true horsepox strain. Moreover, the assemblies reveal a diverse genetic structure in the genome ends. Our data emphasize the concurrent use of horsepox and horsepox-related viruses as the smallpox vaccine in the nineteenth century.
Collapse
Affiliation(s)
- Annika Brinkmann
- Centre for Biological Threats and Special Pathogens 1 - Highly Pathogenic Viruses & German Consultant Laboratory for Poxviruses & WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Aline R V Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - CCS, Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - José Esparza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens 1 - Highly Pathogenic Viruses & German Consultant Laboratory for Poxviruses & WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Clarissa R Damaso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - CCS, Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
16
|
Esparza J, Lederman S, Nitsche A, Damaso CR. Early smallpox vaccine manufacturing in the United States: Introduction of the "animal vaccine" in 1870, establishment of "vaccine farms", and the beginnings of the vaccine industry. Vaccine 2020; 38:4773-4779. [PMID: 32473878 PMCID: PMC7294234 DOI: 10.1016/j.vaccine.2020.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
For the first 80-90 years after Jenner's discovery of vaccination in 1796, the main strategy used to disseminate and maintain the smallpox vaccine was arm-to-arm vaccination, also known as Jennerian or humanized vaccination. A major advance occurred after 1860 with the development of what was known as "animal vaccine", which referred to growing vaccine material from serial propagation in calves before use in humans. The use of "animal vaccine" had several advantages over arm-to-arm vaccination: it would not transmit syphilis or other human diseases, it ensured a supply of vaccine even in the absence of the spontaneous occurrence of cases of cowpox or horsepox, and it allowed the production of large amounts of vaccine. The "animal vaccine" concept was introduced in the United States in 1870 by Henry Austin Martin. Very rapidly a number of "vaccine farms" were established in the U.S. and produced large quantities of "animal vaccine". These "vaccine farms" were mostly established by medical doctors who saw an opportunity to respond to an increasing demand of smallpox vaccine from individuals and from health authorities, and to make a profit. The "vaccine farms" evolved from producing only smallpox "animal vaccine" to manufacturing several other biologics, including diphtheria- and other antitoxins. Two major incidents of tetanus contamination happened in 1901, which led to the promulgation of the Biologics Control Act of 1902. The US Secretary of the Treasury issued licenses to produce and sell biologicals, mainly vaccines and antitoxins. Through several mergers and acquisitions, the initial biologics licensees eventually evolved into some of the current major American industrial vaccine companies. An important aspect that was never clarified was the source of the vaccine stocks used to manufacture the smallpox "animal vaccines". Most likely, different smallpox vaccine stocks were repeatedly introduced from Europe, resulting in polyclonal vaccines that are now recognized as "variants" more appropriately than "strains". Further, clonal analysis of modern "animal vaccines" indicate that they are probably derived from complex recombinational events between different strains of vaccinia and horsepox. Modern sequencing technologies are now been used by us to study old smallpox vaccine specimens in an effort to better understand the origin and evolution of the vaccines that were used to eradicate the smallpox.
Collapse
Affiliation(s)
- José Esparza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens 1 - Highly Pathogenic Viruses & German Consultant Laboratory for Poxviruses & WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Clarissa R Damaso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Esparza J. Three different paths to introduce the smallpox vaccine in early 19th century United States. Vaccine 2020; 38:2741-2745. [PMID: 32057569 DOI: 10.1016/j.vaccine.2020.01.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 01/24/2020] [Indexed: 11/28/2022]
Abstract
The ancient technique of variolation (inoculation of the smallpox) which was introduced in the United States in 1721 was replaced by vaccination (inoculation of the cowpox) soon after the procedure was published by Edward Jenner in 1798. Benjamin Waterhouse is recognized as the introducer of smallpox vaccination in the United States having conducted the first vaccination in Boston on 8 July 1800, although other American physicians also played an important role in extending vaccination in the East Coast of the United States. A different route of introduction brought the smallpox vaccine from Mexico to New Mexico (March 1805) and Texas (April 1806) which at that time where part of the Viceroyalty of New Spain. The vaccine was brought to California in 1817 by Russian merchants who obtained it in Peru, where the vaccine had arrived in 1806 with the Spanish Philanthropic Expedition of the Vaccine. It took almost 150 years of vaccination efforts before the last natural outbreak of smallpox occurred in the United States in 1949.
Collapse
Affiliation(s)
- José Esparza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Esparza J. Early vaccine advocacy: Medals honoring Edward Jenner issued during the 19th century. Vaccine 2019; 38:1450-1456. [PMID: 31839464 DOI: 10.1016/j.vaccine.2019.11.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
The results from the first vaccination experiments published by Edward Jenner in 1798 were widely disseminated and consequently Jennerian vaccination was rapidly introduced in Europe and elsewhere. One of the reasons for the rapid spread of vaccination was that Jenner championed the procedure as a public health tool and not just as a mean to achieve individual protection. Vaccination was promoted by the highest levels of government in Germany where the vaccine was introduced in 1799 and also in France, where the vaccine arrived in 1800. Medals were used to promote vaccination both rewarding parents of vaccinated children as well as meritorious vaccinators. The first medal mentioning the name of Jenner was minted in Germany in 1803 followed by others, minted in Germany, Italy, France and England. Numerous other vaccine medals were made during the 19th century as an early and little known approach to advocating for vaccination.
Collapse
Affiliation(s)
- José Esparza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|