1
|
Giorgio RT, Helaine S. Antibiotic-recalcitrant Salmonella during infection. Nat Rev Microbiol 2025; 23:276-287. [PMID: 39558126 DOI: 10.1038/s41579-024-01124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Antibiotic-recalcitrant infections, defined as the prolonged carriage of pathogenic bacteria even in the presence of antibiotics, are often caused by bacteria that are genetically susceptible to the drug. These recalcitrant bacteria fail to proliferate in the presence of antibiotics but remain viable such that they may recolonize their niche following antibiotic withdrawal. Significant progress has been made in our understanding of antibiotic-recalcitrant Salmonella, which are thought to be the source of infection relapse. In recent years, it has been shown that recalcitrant bacteria manipulate host immune defences and could directly contribute to the spread of antimicrobial resistance. In this Review, we provide an overview of what is currently known about the antibiotic recalcitrance of Salmonella during infection and highlight knowledge gaps requiring additional research in the future.
Collapse
Affiliation(s)
- Rachel T Giorgio
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Xie M, Chen K, Heng H, Chan EWC, Chen S. Antimicrobial effect of sulconazole in combination with glucose/trehalose against carbapenem-resistant hypervirulent Klebsiella pneumoniae persisters. Microbiol Res 2025; 292:128006. [PMID: 39671810 DOI: 10.1016/j.micres.2024.128006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
The emergence and rapid dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) pose a serious threat to public health. Antibiotic treatment failure of K. pneumoniae infections has been largely attributed to acquisition of antibiotic resistance and bacterial biofilm caused by the presence of antibiotic persisters. There is an urgent need for novel antimicrobial agents or therapy strategies to manage infections caused by these notorious pathogens. In this study, we screened a collection of compounds that can dissipate bacterial proton motive force (PMF) and intermediate metabolites that can suppress antibiotic tolerance, and identified an antifungal drug sulconazole which can act in combination with glucose or trehalose to exert strong antibacterial effect against starvation-induced CR-hvKP persisters. Investigation of underlying mechanisms showed that sulconazole alone caused dissipation of transmembrane PMF, and sulconazole used in combination with glucose or trehalose could significantly inhibit the efflux activity, reduce NADH and ATP levels, and cause intracellular accumulation of reactive oxygen species (ROS) in CR-hvKP persisters, eventually resulting in bacterial cell death. These findings suggest that the sulconazole and glucose/trehalose combination is highly effective in eradicating multidrug-resistant and hypervirulent K. pneumoniae persisters, and may be used in development of a feasible strategy for treatment of chronic and recurrent K. pneumoniae infections.
Collapse
Affiliation(s)
- Miaomiao Xie
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China
| | - Kaichao Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China
| | - Heng Heng
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
3
|
Li W, Tao Z, Zhou M, Jiang H, Wang L, Ji B, Zhao Y. Antibiotic adjuvants against multidrug-resistant Gram-negative bacteria: important component of future antimicrobial therapy. Microbiol Res 2024; 287:127842. [PMID: 39032266 DOI: 10.1016/j.micres.2024.127842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The swift emergence and propagation of multidrug-resistant (MDR) bacterial pathogens constitute a tremendous global health crisis. Among these pathogens, the challenge of antibiotic resistance in Gram-negative bacteria is particularly pressing due to their distinctive structure, such as highly impermeable outer membrane, overexpressed efflux pumps, and mutations. Several strategies have been documented to combat MDR Gram-negative bacteria, including the structural modification of existing antibiotics, the development of antimicrobial adjuvants, and research on novel targets that MDR bacteria are sensitive to. Drugs functioning as adjuvants to mitigate resistance to existing antibiotics may play a pivotal role in future antibacterial therapy strategies. In this review, we provide a brief overview of potential antibacterial adjuvants against Gram-negative bacteria and their mechanisms of action, and discuss the application prospects and potential for bacterial resistance to these adjuvants, along with strategies to reduce this risk.
Collapse
Affiliation(s)
- Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Zhen Tao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Motan Zhou
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Huilin Jiang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Liudi Wang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Bingjie Ji
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
4
|
Bing C, Mengjuan A, Xinyu M, Chixin Z, Xinyao T, Yan S, Zhi L. Efflux pump inhibitor chlorpromazine effectively increases the susceptibility of Escherichia coli to antimicrobial peptide Brevinin-2CE. Future Microbiol 2024; 19:771-782. [PMID: 38683168 PMCID: PMC11290751 DOI: 10.2217/fmb-2023-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 05/01/2024] Open
Abstract
Aim: The response of E. coli ATCC8739 to Brevinin-2CE (B2CE) was evaluated as a strategy to prevent the development of antimicrobial peptide (AMP)-resistant bacteria. Methods: Gene expression levels were detected by transcriptome sequencing and RT-PCR. Target genes were knocked out using CRISPR-Cas9. MIC was measured to evaluate strain resistance. Results: Expression of acrZ and sugE were increased with B2CE stimulation. ATCC8739ΔacrZ and ATCC8739ΔsugE showed twofold and fourfold increased sensitivity, respectively. The survival rate of ATCC8739 was reduced in the presence of B2CE/chlorpromazine (CPZ). Combinations of other AMPs with CPZ also showed antibacterial effects. Conclusion: The results indicate that combinations of AMPs/efflux pump inhibitors (EPIs) may be a potential approach to combat resistant bacteria.
Collapse
Affiliation(s)
- Cao Bing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - An Mengjuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Ma Xinyu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Zhu Chixin
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Tan Xinyao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Sun Yan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Li Zhi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| |
Collapse
|
5
|
Elfaky MA, Okairy HM, Abdallah HM, Koshak AE, Mohamed GA, Ibrahim SR, Alzain AA, Hegazy WA, Khafagy ES, Seleem NM. Assessing the antibacterial potential of 6-gingerol: Combined experimental and computational approaches. Saudi Pharm J 2024; 32:102041. [PMID: 38558886 PMCID: PMC10981156 DOI: 10.1016/j.jsps.2024.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The rise of antibiotic resistance in bacteria is becoming a global concern, particularly due to the dwindling supply of new antibiotics. This situation mandates the discovery of new antimicrobial candidates. Plant-derived natural compounds have historically played a crucial role in the development of antibiotics, serving as a rich source of substances possessing antimicrobial properties. Numerous studies have supported the reputation of 6-gingerol, a prominent compound found in the ginger family, for its antibacterial properties. In this study, the antibacterial activities of 6-gingerol were evaluated against Gram-negative bacteria, Acinetobacter baumannii and Klebsiella pneumoniae, with a particular focus on the clinically significant Gram-negative Pseudomonas aeruginosa and Gram-positive bacteria Staphylococcus aureus. Furthermore, the anti-virulence activities were assessed in vitro, in vivo, and in silico. The current findings showed that 6-gingerol's antibacterial activity is due to its significant effect on the disruption of the bacterial cell membrane and efflux pumps, as it significantly decreased the efflux and disrupted the cell membrane of S. aureus and P. aeruginosa. Furthermore, 6-gingerol significantly decreased the biofilm formation and production of virulence factors in S. aureus and P. aeruginosa in concentrations below MICs. The anti-virulence properties of 6-gingerol could be attributed to its capacity to disrupt bacterial virulence-regulating systems; quorum sensing (QS). 6-Gingerol was found to interact with QS receptors and downregulate the genes responsible for QS. In addition, molecular docking, and molecular dynamics (MD) simulation results indicated that 6-gingerol showed a comparable binding affinity to the co-crystalized ligands of different P. aeruginosa QS targets as well as stable interactions during 100 ns MD simulations. These findings suggest that 6-gingerol holds promise as an anti-virulence agent that can be combined with antibiotics for the treatment of severe infections.
Collapse
Affiliation(s)
- Mahmoud A. Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hassan M. Okairy
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman E. Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R.M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Wael A.H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Noura M. Seleem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
6
|
Minero GAS, Larsen PB, Hoppe ME, Meyer RL. Bacterial efflux pumps excrete SYTO™ dyes and lead to false-negative staining results. Analyst 2024; 149:2232-2235. [PMID: 38445898 DOI: 10.1039/d3an02112b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Multidrug efflux pumps excrete a range of small molecules from bacterial cells. In this study, we show that bacterial efflux pumps have affinity for a range of SYTO™ dyes that are commonly used to label bacteria. Efflux pump activity will there lead to false negative results from bacterial staining and SYTO™ dyes should be used with caution on live samples.
Collapse
Affiliation(s)
| | - Peter Bundgaard Larsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Marie Eline Hoppe
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
- Department of Biology, Aarhus University, Ny Munkegade 114, 8000 Aarhus, Denmark
| |
Collapse
|
7
|
Dombach JL, Christensen GL, Allgood SC, Quintana JLJ, Detweiler CS. Inhibition of multiple staphylococcal growth states by a small molecule that disrupts membrane fluidity and voltage. mSphere 2024; 9:e0077223. [PMID: 38445864 PMCID: PMC10964410 DOI: 10.1128/msphere.00772-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
New molecular approaches to disrupting bacterial infections are needed. The bacterial cell membrane is an essential structure with diverse potential lipid and protein targets for antimicrobials. While rapid lysis of the bacterial cell membrane kills bacteria, lytic compounds are generally toxic to whole animals. In contrast, compounds that subtly damage the bacterial cell membrane could disable a microbe, facilitating pathogen clearance by the immune system with limited compound toxicity. A previously described small molecule, D66, terminates Salmonella enterica serotype Typhimurium (S. Typhimurium) infection of macrophages and reduces tissue colonization in mice. The compound dissipates bacterial inner membrane voltage without rapid cell lysis under broth conditions that permeabilize the outer membrane or disable efflux pumps. In standard media, the cell envelope protects Gram-negative bacteria from D66. We evaluated the activity of D66 in Gram-positive bacteria because their distinct envelope structure, specifically the absence of an outer membrane, could facilitate mechanism of action studies. We observed that D66 inhibited Gram-positive bacterial cell growth, rapidly increased Staphylococcus aureus membrane fluidity, and disrupted membrane voltage while barrier function remained intact. The compound also prevented planktonic staphylococcus from forming biofilms and a disturbed three-dimensional structure in 1-day-old biofilms. D66 furthermore reduced the survival of staphylococcal persister cells and of intracellular S. aureus. These data indicate that staphylococcal cells in multiple growth states germane to infection are susceptible to changes in lipid packing and membrane conductivity. Thus, agents that subtly damage bacterial cell membranes could have utility in preventing or treating disease.IMPORTANCEAn underutilized potential antibacterial target is the cell membrane, which supports or associates with approximately half of bacterial proteins and has a phospholipid makeup distinct from mammalian cell membranes. Previously, an experimental small molecule, D66, was shown to subtly damage Gram-negative bacterial cell membranes and to disrupt infection of mammalian cells. Here, we show that D66 increases the fluidity of Gram-positive bacterial cell membranes, dissipates membrane voltage, and inhibits the human pathogen Staphylococcus aureus in several infection-relevant growth states. Thus, compounds that cause membrane damage without lysing cells could be useful for mitigating infections caused by S. aureus.
Collapse
Affiliation(s)
- Jamie L. Dombach
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Grace L. Christensen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Samual C. Allgood
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
8
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
9
|
Allgood SC, Su CC, Crooks AL, Meyer CT, Zhou B, Betterton MD, Barbachyn MR, Yu EW, Detweiler CS. Bacterial efflux pump modulators prevent bacterial growth in macrophages and under broth conditions that mimic the host environment. mBio 2023; 14:e0249223. [PMID: 37921493 PMCID: PMC10746280 DOI: 10.1128/mbio.02492-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Bacterial efflux pumps are critical for resistance to antibiotics and for virulence. We previously identified small molecules that inhibit efflux pumps (efflux pump modulators, EPMs) and prevent pathogen replication in host cells. Here, we used medicinal chemistry to increase the activity of the EPMs against pathogens in cells into the nanomolar range. We show by cryo-electron microscopy that these EPMs bind an efflux pump subunit. In broth culture, the EPMs increase the potency (activity), but not the efficacy (maximum effect), of antibiotics. We also found that bacterial exposure to the EPMs appear to enable the accumulation of a toxic metabolite that would otherwise be exported by efflux pumps. Thus, inhibitors of bacterial efflux pumps could interfere with infection not only by potentiating antibiotics, but also by allowing toxic waste products to accumulate within bacteria, providing an explanation for why efflux pumps are needed for virulence in the absence of antibiotics.
Collapse
Affiliation(s)
- Samual C. Allgood
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Amy L. Crooks
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Christian T. Meyer
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
- Duet Biosystems, Nashville, Tennessee, USA
- Antimicrobial Research Consortium (ARC) Labs, Boulder, Colorado, USA
| | - Bojun Zhou
- Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Meredith D. Betterton
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Physics, University of Colorado, Boulder, Colorado, USA
- Center for Computational Biology, Flatiron Institute, New York, New York, USA
| | | | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Corrella S. Detweiler
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
10
|
Pisoni LA, Semple SJ, Liu S, Sykes MJ, Venter H. Combined Structure- and Ligand-Based Approach for the Identification of Inhibitors of AcrAB-TolC in Escherichia coli. ACS Infect Dis 2023; 9:2504-2522. [PMID: 37888944 DOI: 10.1021/acsinfecdis.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The inhibition of efflux pumps is a promising approach to combating multidrug-resistant bacteria. We have developed a combined structure- and ligand-based model, using OpenEye software, for the identification of inhibitors of AcrB, the inner membrane protein component of the AcrAB-TolC efflux pump in Escherichia coli. From a database of 1391 FDA-approved drugs, 23 compounds were selected to test for efflux inhibition in E. coli. Seven compounds, including ivacaftor (25), butenafine (19), naftifine (27), pimozide (30), thioridazine (35), trifluoperazine (37), and meloxicam (26), enhanced the activity of at least one antimicrobial substrate and inhibited the efflux pump-mediated removal of the substrate Nile Red from cells. Ivacaftor (25) inhibited efflux dose dependently, had no effect on an E. coli strain with genomic deletion of the gene encoding AcrB, and did not damage the bacterial outer membrane. In the presence of a sub-minimum inhibitory concentration (MIC) of the outer membrane permeabilizer colistin, ivacaftor at 1 μg/mL reduced the MICs of erythromycin and minocycline by 4- to 8-fold. The identification of seven potential AcrB inhibitors shows the merits of a combined structure- and ligand-based approach to virtual screening.
Collapse
Affiliation(s)
- Lily A Pisoni
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Susan J Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Sida Liu
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew J Sykes
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
11
|
Akshay SD, Deekshit VK, Mohan Raj J, Maiti B. Outer Membrane Proteins and Efflux Pumps Mediated Multi-Drug Resistance in Salmonella: Rising Threat to Antimicrobial Therapy. ACS Infect Dis 2023; 9:2072-2092. [PMID: 37910638 DOI: 10.1021/acsinfecdis.3c00408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Despite colossal achievements in antibiotic therapy in recent decades, drug-resistant pathogens have remained a leading cause of death and economic loss globally. One such WHO-critical group pathogen is Salmonella. The extensive and inappropriate treatments for Salmonella infections have led from multi-drug resistance (MDR) to extensive drug resistance (XDR). The synergy between efflux-mediated systems and outer membrane proteins (OMPs) may favor MDR in Salmonella. Differential expression of the efflux system and OMPs (influx) and positional mutations are the factors that can be correlated to the development of drug resistance. Insights into the mechanism of influx and efflux of antibiotics can aid in developing a structurally stable molecule that can be proficient at escaping from the resistance loops in Salmonella. Understanding the strategic responsibilities and developing policies to address the surge of drug resistance at the national, regional, and global levels are the needs of the hour. In this Review, we attempt to aggregate all the available research findings and delineate the resistance mechanisms by dissecting the involvement of OMPs and efflux systems. Integrating major OMPs and the efflux system's differential expression and positional mutation in Salmonella may provide insight into developing strategic therapies for one health application.
Collapse
Affiliation(s)
- Sadanand Dangari Akshay
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Juliet Mohan Raj
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore-575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore-575018, India
| |
Collapse
|
12
|
Moreno-Chamba B, Salazar-Bermeo J, Navarro-Simarro P, Narváez-Asensio M, Martínez-Madrid MC, Saura D, Martí N, Valero M. Autoinducers modulation as a potential anti-virulence target of bacteria by phenolic compounds. Int J Antimicrob Agents 2023; 62:106937. [PMID: 37517626 DOI: 10.1016/j.ijantimicag.2023.106937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/05/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE The goal of this study was to determine the effects of phenolic extracts from grape (GrPE), pomegranate (PoPE), and persimmon (PePE) by-products on bacterial virulence activities such as biofilms, motility, energy-dependent efflux pumps, and β-lactamase activity, which are modulated primarily by quorum sensing (QS), defining their potential applications. METHOD The microdilution method was used to determine the minimum inhibitory concentration (MIC) and sub-inhibitory concentrations (SICs) of the extracts against reference pathogenic bacteria. The antibacterial mode of action was determined by labelling bacterial cells in in vivo cell-tracking experiments. RESULTS Antibiograms showed that PoPE inhibited bacteria at lower concentrations, and PePE had a stronger effect against Klebsiella pneumoniae. Both extracts caused significant cell membrane damage (CMD), whereas GrPE did not. At SICs, all extracts showed anti-QS activity, especially PePE, which inhibited violacein and pyocyanin production at 1/128 × MIC. Additionally, QS autoinducers found in Chromobacterium violaceum and Pseudomonas aeruginosa were modulated by the extracts; PePE showed the highest modulation. Antibiofilm assays revealed that GrPE, at MIC and 2 × MIC, acted as a potent antibiofilm agent against biofilms of Pseudomonas putida, Bacillus cereus, and Staphylococcus aureus, which was related to disruption of swarming motility by GrPE. All extracts, especially PoPE, exerted a potent effect against the activation of efflux pumps of P. aeruginosa as well as β-lactamase activity in K. pneumoniae. CONCLUSION Results suggest that the anti-virulence potential of the extracts may be related to their effect as extracellular autoinducer modulators. This study allowed to define potential applications of these extracts.
Collapse
Affiliation(s)
- Bryan Moreno-Chamba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain; Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain; Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Pablo Navarro-Simarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain
| | - Marta Narváez-Asensio
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain
| | - María Concepción Martínez-Madrid
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain
| | - Nuria Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain
| | - Manuel Valero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), Alicante, Spain.
| |
Collapse
|
13
|
Allgood SC, Su CC, Crooks AL, Meyer CT, Zhou B, Betterton MD, Barbachyn MR, Yu EW, Detweiler CS. Bacterial Efflux Pump Modulators Prevent Bacterial Growth in Macrophages and Under Broth Conditions that Mimic the Host Environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558466. [PMID: 37786697 PMCID: PMC10541609 DOI: 10.1101/2023.09.20.558466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
New approaches for combatting microbial infections are needed. One strategy for disrupting pathogenesis involves developing compounds that interfere with bacterial virulence. A critical molecular determinant of virulence for Gram-negative bacteria are efflux pumps of the resistance-nodulation-division (RND) family, which includes AcrAB-TolC. We previously identified small molecules that bind AcrB, inhibit AcrAB-TolC, and do not appear to damage membranes. These efflux pump modulators (EPMs) were discovered in an in-cell screening platform called SAFIRE (Screen for Anti-infectives using Fluorescence microscopy of IntracellulaR Enterobacteriaceae). SAFIRE identifies compounds that disrupt the growth of a Gram-negative human pathogen, Salmonella enterica serotype Typhimurium (S. Typhimurium) in macrophages. We used medicinal chemistry to iteratively design ~200 EPM35 analogs and test them for activity in SAFIRE, generating compounds with nanomolar potency. Analogs were demonstrated to bind AcrB in a substrate binding pocket by cryo-electron microscopy (cryo-EM). Despite having amphipathic structures, the EPM analogs do not disrupt membrane voltage, as monitored by FtsZ localization to the cell septum. The EPM analogs had little effect on bacterial growth in standard Mueller Hinton Broth. However, under broth conditions that mimic the micro-environment of the macrophage phagosome, acrAB is required for growth, the EPM analogs are bacteriostatic, and increase the potency of antibiotics. These data suggest that under macrophage-like conditions the EPM analogs prevent the export of a toxic bacterial metabolite(s) through AcrAB-TolC. Thus, compounds that bind AcrB could disrupt infection by specifically interfering with the export of bacterial toxic metabolites, host defense factors, and/or antibiotics.
Collapse
Affiliation(s)
- Samual C Allgood
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Amy L Crooks
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Christian T Meyer
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- Duet Biosystems, Nashville, TN, USA
- Antimicrobial Research Consortium (ARC) Labs, Boulder, CO, USA
| | - Bojun Zhou
- Department of Physics, University of Colorado, Boulder, CO, USA
| | - Meredith D Betterton
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Corrella S Detweiler
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
14
|
Pun M, Khazanov N, Galsurker O, Kerem Z, Senderowitz H, Yedidia I. Inhibition of AcrAB-TolC enhances antimicrobial activity of phytochemicals in Pectobacterium brasiliense. FRONTIERS IN PLANT SCIENCE 2023; 14:1161702. [PMID: 37229130 PMCID: PMC10203483 DOI: 10.3389/fpls.2023.1161702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Introduction The eons-long co-evolvement of plants and bacteria led to a plethora of interactions between the two kingdoms, in which bacterial pathogenicity is counteracted by plant-derived antimicrobial defense molecules. In return, efflux pumps (EP) form part of the resistance mechanism employed by bacteria to permit their survival in this hostile chemical environment. In this work we study the effect of combinations of efflux pump inhibitors (EPIs) and plant-derived phytochemicals on bacterial activity using Pectobacteriun brasiliense 1692 (Pb1692) as a model system. Methods We measured the minimal inhibitory concentration (MIC) of two phytochemicals, phloretin (Pht) and naringenin (Nar), and of one common antibiotic ciprofloxacin (Cip), either alone or in combinations with two known inhibitors of the AcrB EP of Escherichia coli, a close homolog of the AcrAB-TolC EP of Pb1692. In addition, we also measured the expression of genes encoding for the EP, under similar conditions. Results Using the FICI equation, we observed synergism between the EPIs and the phytochemicals, but not between the EPIs and the antibiotic, suggesting that EP inhibition potentiated the antimicrobial activity of the plant derived compounds, but not of Cip. Docking simulations were successfully used to rationalize these experimental results. Discussion Our findings suggest that AcrAB-TolC plays an important role in survival and fitness of Pb1692 in the plant environment and that its inhibition is a viable strategy for controlling bacterial pathogenicity.
Collapse
Affiliation(s)
- Manoj Pun
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Ortal Galsurker
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
| | - Zohar Kerem
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Iris Yedidia
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
| |
Collapse
|
15
|
Villanueva JA, Crooks AL, Nagy TA, Quintana JLJ, Dalebroux ZD, Detweiler CS. Salmonella enterica Infections Are Disrupted by Two Small Molecules That Accumulate within Phagosomes and Differentially Damage Bacterial Inner Membranes. mBio 2022; 13:e0179022. [PMID: 36135367 PMCID: PMC9601186 DOI: 10.1128/mbio.01790-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Gram-negative bacteria have a robust cell envelope that excludes or expels many antimicrobial agents. However, during infection, host soluble innate immune factors permeabilize the bacterial outer membrane. We identified two small molecules that exploit outer membrane damage to access the bacterial cell. In standard microbiological media, neither compound inhibited bacterial growth nor permeabilized bacterial outer membranes. In contrast, at micromolar concentrations, JAV1 and JAV2 enabled the killing of an intracellular human pathogen, Salmonella enterica serovar Typhimurium. S. Typhimurium is a Gram-negative bacterium that resides within phagosomes of cells from the monocyte lineage. Under broth conditions that destabilized the lipopolysaccharide layer, JAV2 permeabilized the bacterial inner membrane and was rapidly bactericidal. In contrast, JAV1 activity was more subtle: JAV1 increased membrane fluidity, altered reduction potential, and required more time than JAV2 to disrupt the inner membrane barrier and kill bacteria. Both compounds interacted with glycerophospholipids from Escherichia coli total lipid extract-based liposomes. JAV1 preferentially interacted with cardiolipin and partially relied on cardiolipin production for activity, whereas JAV2 generally interacted with lipids and had modest affinity for phosphatidylglycerol. In mammalian cells, neither compound significantly altered mitochondrial membrane potential at concentrations that killed S. Typhimurium. Instead, JAV1 and JAV2 became trapped within acidic compartments, including macrophage phagosomes. Both compounds improved survival of S. Typhimurium-infected Galleria mellonella larvae. Together, these data demonstrate that JAV1 and JAV2 disrupt bacterial inner membranes by distinct mechanisms and highlight how small, lipophilic, amine-substituted molecules can exploit host soluble innate immunity to facilitate the killing of intravesicular pathogens. IMPORTANCE Innovative strategies for developing new antimicrobials are needed. Combining our knowledge of host-pathogen interactions and relevant drug characteristics has the potential to reveal new approaches to treating infection. We identified two compounds with antibacterial activity specific to infection and with limited host cell toxicity. These compounds appeared to exploit host innate immunity to access the bacterium and differentially damage the bacterial inner membrane. Further, both compounds accumulated within Salmonella-containing and other acidic vesicles, a process known as lysosomal trapping, which protects the host and harms the pathogen. The compounds also increased host survival in an insect infection model. This work highlights the ability of host innate immunity to enable small molecules to act as antibiotics and demonstrates the feasibility of antimicrobial targeting of the inner membrane. Additionally, this study features the potential use of lysosomal trapping to enhance the activities of compounds against intravesicular pathogens.
Collapse
Affiliation(s)
- Joseph A. Villanueva
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Amy L. Crooks
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Toni A. Nagy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary D. Dalebroux
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
16
|
Dombach JL, Quintana JLJ, Allgood SC, Nagy TA, Gustafson DL, Detweiler CS. A small molecule that disrupts S. Typhimurium membrane voltage without cell lysis reduces bacterial colonization of mice. PLoS Pathog 2022; 18:e1010606. [PMID: 35687608 PMCID: PMC9223311 DOI: 10.1371/journal.ppat.1010606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/23/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022] Open
Abstract
As pathogenic bacteria become increasingly resistant to antibiotics, antimicrobials with mechanisms of action distinct from current clinical antibiotics are needed. Gram-negative bacteria pose a particular problem because they defend themselves against chemicals with a minimally permeable outer membrane and with efflux pumps. During infection, innate immune defense molecules increase bacterial vulnerability to chemicals by permeabilizing the outer membrane and occupying efflux pumps. Therefore, screens for compounds that reduce bacterial colonization of mammalian cells have the potential to reveal unexplored therapeutic avenues. Here we describe a new small molecule, D66, that prevents the survival of a human Gram-negative pathogen in macrophages. D66 inhibits bacterial growth under conditions wherein the bacterial outer membrane or efflux pumps are compromised, but not in standard microbiological media. The compound disrupts voltage across the bacterial inner membrane at concentrations that do not permeabilize the inner membrane or lyse cells. Selection for bacterial clones resistant to D66 activity suggested that outer membrane integrity and efflux are the two major bacterial defense mechanisms against this compound. Treatment of mammalian cells with D66 does not permeabilize the mammalian cell membrane but does cause stress, as revealed by hyperpolarization of mitochondrial membranes. Nevertheless, the compound is tolerated in mice and reduces bacterial tissue load. These data suggest that the inner membrane could be a viable target for anti-Gram-negative antimicrobials, and that disruption of bacterial membrane voltage without lysis is sufficient to enable clearance from the host.
Collapse
Affiliation(s)
- Jamie L. Dombach
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail: (JLD); (CSD)
| | - Joaquin LJ Quintana
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Samual C. Allgood
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Toni A. Nagy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Daniel L. Gustafson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail: (JLD); (CSD)
| |
Collapse
|
17
|
Xu C, Dong N, Chen K, Yang X, Zeng P, Hou C, Chi Chan EW, Yao X, Chen S. Bactericidal, anti-biofilm, and anti-virulence activity of vitamin C against carbapenem-resistant hypervirulent Klebsiella pneumoniae. iScience 2022; 25:103894. [PMID: 35243252 PMCID: PMC8873610 DOI: 10.1016/j.isci.2022.103894] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Affiliation(s)
- Chen Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xuemei Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ping Zeng
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Corresponding author
| |
Collapse
|
18
|
Liu X, Wu Y, Mao C, Shen J, Zhu K. Host-acting antibacterial compounds combat cytosolic bacteria. Trends Microbiol 2022; 30:761-777. [DOI: 10.1016/j.tim.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 01/25/2023]
|
19
|
Li Y, Cross TS, Dörr T. Analysis of AcrB in Klebsiella pneumoniae reveals natural variants promoting enhanced multidrug resistance. Res Microbiol 2022; 173:103901. [PMID: 34863884 PMCID: PMC9035133 DOI: 10.1016/j.resmic.2021.103901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022]
Abstract
Infections caused by Klebsiella pneumoniae are often difficult to manage due to the high frequency of multidrug resistance, often conferred by efflux pumps. In this study, we analyzed sequence variations of the major RND family multidrug efflux pump AcrB from 387 assembled K. pneumoniae genomes. We confirm that AcrB is a highly-conserved efflux pump in K. pneumoniae, and identified several variants that were prevalent in clinical isolates. Molecular dynamics analyses on two of these variants (L118M and S966A) suggested conformational changes that may correlate with increased drug efflux capabilities. The L118M change resulted in enhanced protein rigidity while the flexibility of drug binding pockets was stable or increased, and the interactions between the proximal pockets and water molecules were stronger. For S966A, the significantly enlarged proximal pocket suggested higher drug accommodation ability. Consistent with these predictions, the L118M and S966A variants conferred a slightly increased ability to grow in the presence of tetracycline and to survive cefoxitin exposure when overexpressed. In summary, our results suggest that the emergence of enhanced-function AcrB variants may be a potential risk for increased antibiotic resistance in clinical K. pneumoniae isolates.
Collapse
Affiliation(s)
- Ying Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA; College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| | - Trevor S Cross
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA; Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA; Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
A Novel Dibenzoxazepine Attenuates Intracellular Salmonella Typhimurium Oxidative Stress Resistance. Microbiol Spectr 2021; 9:e0151921. [PMID: 34851152 PMCID: PMC8635125 DOI: 10.1128/spectrum.01519-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is the leading cause of invasive nontyphoidal salmonellosis. Additionally, the emergence of multidrug-resistant S. Typhimurium has further increased the difficulty of controlling its infection. Previously, we showed that an antipsychotic drug, loxapine, suppressed intracellular Salmonella in macrophages. To exploit loxapine's antibacterial activity, we simultaneously evaluated the anti-intracellular Salmonella activity and cytotoxicity of newly synthesized loxapine derivatives using an image-based high-content assay. We identified that SW14 exhibits potent suppressive effects on intramacrophagic S. Typhimurium with an 50% effective concentration (EC50) of 0.5 μM. SW14 also sensitized intracellular Salmonella to ciprofloxacin and cefixime and effectively controlled intracellular multidrug- and fluoroquinolone-resistant S. Typhimurium strains. However, SW14 did not affect bacterial growth in standard microbiological broth or minimal medium that mimics the phagosomal environment. Cellular autophagy blockade by 3-methyladenine (3-MA) or shATG7 elevated the susceptibility of intracellular Salmonella to SW14. Finally, reactive oxygen species (ROS) scavengers reduced the antibacterial efficacy of SW14, but the ROS levels in SW14-treated macrophages were not elevated. SW14 decreased the resistance of outer membrane-compromised S. Typhimurium to H2O2. Collectively, our data indicated that the structure of loxapine can be further optimized to develop new antibacterial agents by targeting bacterial resistance to host oxidative-stress defense. IMPORTANCE The incidence of diseases caused by pathogenic bacteria with resistance to common antibiotics is consistently increasing. In addition, Gram-negative bacteria are particularly difficult to treat with antibiotics, especially those that can invade and proliferate intracellularly. In order to find a new antibacterial compound against intracellular Salmonella, we established a cell-based high-content assay and identified SW14 from the derivatives of the antipsychotic drug loxapine. Our data indicate that SW14 has no effect on free bacteria in the medium but can suppress the intracellular proliferation of multidrug-resistant (MDR) S. Typhimurium in macrophages. We also found that SW14 can suppress the resistance of outer membrane compromised Salmonella to H2O2, and its anti-intracellular Salmonella activity can be reversed by reactive oxygen species (ROS) scavengers. Together, the findings suggest that SW14 might act via a virulence-targeted mechanism and that its structure has the potential to be further developed as a new therapeutic against MDR Salmonella.
Collapse
|
21
|
Zaknoon F, Meir O, Mor A. Mechanistic Studies of Antibiotic Adjuvants Reducing Kidney's Bacterial Loads upon Systemic Monotherapy. Pharmaceutics 2021; 13:pharmaceutics13111947. [PMID: 34834362 PMCID: PMC8621570 DOI: 10.3390/pharmaceutics13111947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/01/2022] Open
Abstract
We describe the design and attributes of a linear pentapeptide-like derivative (C14(ω5)OOc10O) screened for its ability to elicit bactericidal competences of plasma constituents against Gram-negative bacteria (GNB). In simpler culture media, the lipopeptide revealed high aptitudes to sensitize resilient GNB to hydrophobic and/or efflux-substrate antibiotics, whereas in their absence, C14(ω5)OOc10O only briefly delayed bacterial proliferation. Instead, at low micromolar concentrations, the lipopeptide has rapidly lowered bacterial proton and ATP levels, although significantly less than upon treatment with its bactericidal analog. Mechanistic studies support a two-step scenario providing a plausible explanation for the lipopeptide’s biological outcomes against GNB: initially, C14(ω5)OOc10O permeabilizes the outer membrane similarly to polymyxin B, albeit in a manner not necessitating as much LPS-binding affinity. Subsequently, C14(ω5)OOc10O would interact with the inner membrane gently yet intensively enough to restrain membrane-protein functions such as drug efflux and/or ATP generation, while averting the harsher inner membrane perturbations that mediate the fatal outcome associated with bactericidal peers. Preliminary in vivo studies where skin wound infections were introduced in mice, revealed a significant efficacy in affecting bacterial viability upon topical treatment with creams containing C14(ω5)OOc10O, whereas synergistic combination therapies were able to secure the pathogen’s eradication. Further, capitalizing on the finding that C14(ω5)OOc10O plasma-potentiating concentrations were attainable in mice blood at sub-maximal tolerated doses, we used a urinary tract infection model to acquire evidence for the lipopeptide’s systemic capacity to reduce the kidney’s bacterial loads. Collectively, the data establish the role of C14(ω5)OOc10O as a compelling antibacterial potentiator and suggest its drug-like potential.
Collapse
|
22
|
Abstract
Accumulation of phosphorylated intermediates during cellular metabolism can have wide-ranging toxic effects on many organisms, including humans and the pathogens that infect them. These toxicities can be induced by feeding an upstream metabolite (a sugar, for instance) while simultaneously blocking the appropriate metabolic pathway with either a mutation or an enzyme inhibitor. Here, we survey the toxicities that can arise in the metabolism of glucose, galactose, fructose, fructose-asparagine, glycerol, trehalose, maltose, mannose, mannitol, arabinose, and rhamnose. Select enzymes in these metabolic pathways may serve as novel therapeutic targets. Some are conserved broadly among prokaryotes and eukaryotes (e.g., glucose and galactose) and are therefore unlikely to be viable drug targets. However, others are found only in bacteria (e.g., fructose-asparagine, rhamnose, and arabinose), and one is found in fungi but not in humans (trehalose). We discuss what is known about the mechanisms of toxicity and how resistance is achieved in order to identify the prospects and challenges associated with targeted exploitation of these pervasive metabolic vulnerabilities.
Collapse
|
23
|
McLeod JR, Harvey PA, Detweiler CS. An Oral Fluorouracil Prodrug, Capecitabine, Mitigates a Gram-Positive Systemic Infection in Mice. Microbiol Spectr 2021; 9:e0027521. [PMID: 34190602 PMCID: PMC8419118 DOI: 10.1128/spectrum.00275-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 01/11/2023] Open
Abstract
New classes of antibiotics are needed to fight bacterial infections, and repurposing existing drugs as antibiotics may enable rapid deployment of new treatments. Screens for antibacterials have been traditionally performed in standard laboratory media, but bacterial pathogens experience very different environmental conditions during infection, including nutrient limitation. To introduce the next generation of researchers to modern drug discovery methods, we developed a course-based undergraduate research experience (CURE) in which undergraduate students screened a library of FDA-approved drugs for their ability, in a nutrient-poor medium, to prevent the growth of the human Gram-negative bacterial pathogen Salmonella enterica serovar Typhimurium. The nine drugs identified all disrupt DNA metabolism in bacteria and eukaryotes. One of the hit compounds, capecitabine, is a well-tolerated oncology drug that is administered orally, a preferred treatment route. We demonstrated that capecitabine is more effective at inhibiting S. Typhimurium growth in nutrient-limited than in standard rich microbiological broth, an explanation for why the antibiotic activity of this compound has not been previously recognized. Capecitabine is enzymatically converted to the active pyrimidine analogue, fluorouracil (5-FU), and Gram-positive bacteria, including Staphylococcus aureus, are significantly more sensitive to 5-FU than Gram-negative bacteria. We therefore tested capecitabine for efficacy in a murine model of S. aureus peritonitis. Oral capecitabine administration reduced the colonization of tissues and increased animal survival in a dose-responsive manner. Since capecitabine is inexpensive, orally available, and relatively safe, it may have utility for treatment of intractable Gram-positive bacterial infections. IMPORTANCE As bacterial infections become increasingly insensitive to antibiotics, whether established, off-patent drugs could treat infections becomes an important question. At the same time, basic research has revealed that during infection, mammals starve pathogens for nutrients and, in response, bacteria dramatically alter their biology. Therefore, it may be fruitful to search for drugs that could be repurposed as antibiotics using bacteria grown with limited nutrients. This approach, executed with undergraduate student researchers, identified nine drugs known to interfere with the production and/or function of DNA. We further explored one of these drugs, capecitabine, a well-tolerated human oncology drug. Oral administration of capecitabine reduced infection with the human pathogen Staphylococcus aureus and increased survival in mice. These data suggest that capecitabine has potential as a therapy for patients with otherwise untreatable bacterial infections.
Collapse
Affiliation(s)
- Jack R. McLeod
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Pamela A. Harvey
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Corrella S. Detweiler
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
24
|
Loss of RND-type multidrug efflux pumps triggers iron starvation and lipid A modifications in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:e0059221. [PMID: 34252310 DOI: 10.1128/aac.00592-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transporters belonging to the Resistance-Nodulation-Division (RND) superfamily of proteins are invariably present in the genomes of Gram-negative bacteria and are largely responsible for the intrinsic antibiotic resistance of these organisms. The number of genes encoding RND transporters per genome vary from one to sixteen and correlates with environmental versatilities of bacterial species. Pseudomonas aeruginosa PAO1 strain, a ubiquitous nosocomial pathogen, possesses twelve RND pumps, which are implicated in development of clinical multidrug resistance and known to contribute to virulence, quorum sensing and many other physiological functions. In this study, we analyzed how P. aeruginosa physiology adapts to the lack of RND-mediated efflux activities. A combination of transcriptomics, metabolomics, genetic and analytical approaches showed that the P. aeruginosa PΔ6 strain lacking six best characterized RND pumps activates a specific adaptation response that involves significant changes in abundance and activities of several transport systems, quorum sensing, iron acquisition and lipid A modifications. Our results demonstrate that these cells accumulate large quantities of pseudomonas quorum signal (PQS), which triggers iron starvation and activation of siderophore biosynthesis and acquisition pathways. The accumulation of iron in turn activates lipid A modification and membrane protection pathways. A transcriptionally regulated RND pump MuxABC-OpmB contributes to these transformations by controlling concentrations of coumarins. Our results suggest that these changes reduce the permeability barrier of the outer membrane and are needed to protect the cell envelope of efflux-deficient P. aeruginosa.
Collapse
|
25
|
Zgurskaya HI, Malloci G, Chandar B, Vargiu AV, Ruggerone P. Bacterial efflux transporters' polyspecificity - a gift and a curse? Curr Opin Microbiol 2021; 61:115-123. [PMID: 33940284 DOI: 10.1016/j.mib.2021.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022]
Abstract
All mechanisms of clinical antibiotic resistance benefit from activities of polyspecific efflux pumps acting to reduce intracellular accumulation of toxins and antibiotics. In Gram-negative bacteria, the major polyspecific efflux transporters belong to the Resistance-Nodulation-cell Division (RND) superfamily of proteins, which are capable of expelling thousands of structurally diverse compounds. Recent structural and functional advances generated novel insights into mechanisms underlying the biochemical versatility of RND transporters. This opinion article reviews these mechanisms and discusses implications of the polyspecificity of RND transporters for bacterial survival and for the development of efflux pump inhibitors effective in clinics.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, United States.
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, 09042 Monserrato (Cagliari), Italy
| | - Brinda Chandar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, United States
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, 09042 Monserrato (Cagliari), Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, 09042 Monserrato (Cagliari), Italy
| |
Collapse
|
26
|
Anandamide alters the membrane properties, halts the cell division and prevents drug efflux in multidrug resistant Staphylococcus aureus. Sci Rep 2021; 11:8690. [PMID: 33888802 PMCID: PMC8062478 DOI: 10.1038/s41598-021-88099-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/08/2021] [Indexed: 02/02/2023] Open
Abstract
Antibiotic resistance is a serious public health problem throughout the world. Overcoming methicillin and multidrug-resistant Staphylococcus aureus (MRSA/MDRSA) infections has become a challenge and there is an urgent need for new therapeutic approaches. We have previously demonstrated that the endocannabinoid Anandamide (AEA) can sensitize MRSA to antibiotics. Here we have studied the mechanism of action using a MDRSA clinical isolate that are sensitized by AEA to methicillin and norfloxacin. We found that AEA treatment halts the growth of both antibiotic-sensitive and antibiotic-resistant S. aureus. The AEA-treated bacteria become elongated and the membranes become ruffled with many protrusions. AEA treatment also leads to an increase in the percentage of bacteria having a complete septum, suggesting that the cell division is halted at this stage. The latter is supported by cell cycle analysis that shows an accumulation of bacteria in the G2/M phase after AEA treatment. We further observed that AEA causes a dose-dependent membrane depolarization that is partly relieved upon time. Nile red staining of the bacterial membranes indicates that AEA alters the membrane structures. Importantly, 4'-6-diamidino-2-phenylindole (DAPI) accumulation assay and ethidium bromide efflux (EtBr) assay unveiled that AEA leads to a dose-dependent drug accumulation by inhibiting drug efflux. In conclusion, our study demonstrates that AEA interferes with cell division, alters the membrane properties of MDRSA, and leads to increased intracellular drug retention, which can contribute to the sensitization of MDRSA to antibiotics.
Collapse
|
27
|
An Analysis of the Novel Fluorocycline TP-6076 Bound to Both the Ribosome and Multidrug Efflux Pump AdeJ from Acinetobacter baumannii. mBio 2021; 13:e0373221. [PMID: 35100868 PMCID: PMC8805024 DOI: 10.1128/mbio.03732-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Antibiotic resistance among bacterial pathogens continues to pose a serious global health threat. Multidrug-resistant (MDR) strains of the Gram-negative organism Acinetobacter baumannii utilize a number of resistance determinants to evade current antibiotics. One of the major resistance mechanisms employed by these pathogens is the use of multidrug efflux pumps. These pumps extrude xenobiotics directly out of bacterial cells, resulting in treatment failures when common antibiotics are administered. Here, the structure of the novel tetracycline antibiotic TP-6076, bound to both the Acinetobacter drug efflux pump AdeJ and the ribosome from Acinetobacter baumannii, using single-particle cryo-electron microscopy (cryo-EM), is elucidated. In this work, the structure of the AdeJ-TP-6076 complex is solved, and we show that AdeJ utilizes a network of hydrophobic interactions to recognize this fluorocycline. Concomitant with this, we elucidate three structures of TP-6076 bound to the A. baumannii ribosome and determine that its binding is stabilized largely by electrostatic interactions. We then compare the differences in binding modes between TP-6076 and the related tetracycline antibiotic eravacycline in both targets. These differences suggest that modifications to the tetracycline core may be able to alter AdeJ binding while maintaining interactions with the ribosome. Together, this work highlights how different mechanisms are used to stabilize the binding of tetracycline-based compounds to unique bacterial targets and provides guidance for the future clinical development of tetracycline antibiotics. IMPORTANCE Treatment of antibiotic-resistant organisms such as A. baumannii represents an ongoing issue for modern medicine. The multidrug efflux pump AdeJ serves as a major resistance determinant in A. baumannii through its action of extruding antibiotics from the cell. In this work, we use cryo-EM to show how AdeJ recognizes the experimental tetracycline antibiotic TP-6076 and prevents this drug from interacting with the A. baumannii ribosome. Since AdeJ and the ribosome use different binding modes to stabilize interactions with TP-6076, exploiting these differences may guide future drug development for combating antibiotic-resistant A. baumannii and potentially other strains of MDR bacteria.
Collapse
|
28
|
Shcherbakov AA, Hisao G, Mandala VS, Thomas NE, Soltani M, Salter EA, Davis JH, Henzler-Wildman KA, Hong M. Structure and dynamics of the drug-bound bacterial transporter EmrE in lipid bilayers. Nat Commun 2021; 12:172. [PMID: 33420032 PMCID: PMC7794478 DOI: 10.1038/s41467-020-20468-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
The dimeric transporter, EmrE, effluxes polyaromatic cationic drugs in a proton-coupled manner to confer multidrug resistance in bacteria. Although the protein is known to adopt an antiparallel asymmetric topology, its high-resolution drug-bound structure is so far unknown, limiting our understanding of the molecular basis of promiscuous transport. Here we report an experimental structure of drug-bound EmrE in phospholipid bilayers, determined using 19F and 1H solid-state NMR and a fluorinated substrate, tetra(4-fluorophenyl) phosphonium (F4-TPP+). The drug-binding site, constrained by 214 protein-substrate distances, is dominated by aromatic residues such as W63 and Y60, but is sufficiently spacious for the tetrahedral drug to reorient at physiological temperature. F4-TPP+ lies closer to the proton-binding residue E14 in subunit A than in subunit B, explaining the asymmetric protonation of the protein. The structure gives insight into the molecular mechanism of multidrug recognition by EmrE and establishes the basis for future design of substrate inhibitors to combat antibiotic resistance.
Collapse
Affiliation(s)
- Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Grant Hisao
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI, 53706, USA
| | - Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Nathan E Thomas
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI, 53706, USA
| | - Mohammad Soltani
- Department of Chemistry, University of South Alabama, Mobile, AL, 36688, USA
| | - E A Salter
- Department of Chemistry, University of South Alabama, Mobile, AL, 36688, USA
| | - James H Davis
- Department of Chemistry, University of South Alabama, Mobile, AL, 36688, USA
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
29
|
A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids. PLoS Pathog 2020; 16:e1009119. [PMID: 33290418 PMCID: PMC7748285 DOI: 10.1371/journal.ppat.1009119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/18/2020] [Accepted: 11/01/2020] [Indexed: 01/01/2023] Open
Abstract
Infections caused by Gram-negative bacteria are difficult to fight because these pathogens exclude or expel many clinical antibiotics and host defense molecules. However, mammals have evolved a substantial immune arsenal that weakens pathogen defenses, suggesting the feasibility of developing therapies that work in concert with innate immunity to kill Gram-negative bacteria. Using chemical genetics, we recently identified a small molecule, JD1, that kills Salmonella enterica serovar Typhimurium (S. Typhimurium) residing within macrophages. JD1 is not antibacterial in standard microbiological media, but rapidly inhibits growth and curtails bacterial survival under broth conditions that compromise the outer membrane or reduce efflux pump activity. Using a combination of cellular indicators and super resolution microscopy, we found that JD1 damaged bacterial cytoplasmic membranes by increasing fluidity, disrupting barrier function, and causing the formation of membrane distortions. We quantified macrophage cell membrane integrity and mitochondrial membrane potential and found that disruption of eukaryotic cell membranes required approximately 30-fold more JD1 than was needed to kill bacteria in macrophages. Moreover, JD1 preferentially damaged liposomes with compositions similar to E. coli inner membranes versus mammalian cell membranes. Cholesterol, a component of mammalian cell membranes, was protective in the presence of neutral lipids. In mice, intraperitoneal administration of JD1 reduced tissue colonization by S. Typhimurium. These observations indicate that during infection, JD1 gains access to and disrupts the cytoplasmic membrane of Gram-negative bacteria, and that neutral lipids and cholesterol protect mammalian membranes from JD1-mediated damage. Thus, it may be possible to develop therapeutics that exploit host innate immunity to gain access to Gram-negative bacteria and then preferentially damage the bacterial cell membrane over host membranes.
Collapse
|
30
|
Honeycutt JD, Wenner N, Li Y, Brewer SM, Massis LM, Brubaker SW, Chairatana P, Owen SV, Canals R, Hinton JCD, Monack DM. Genetic variation in the MacAB-TolC efflux pump influences pathogenesis of invasive Salmonella isolates from Africa. PLoS Pathog 2020; 16:e1008763. [PMID: 32834002 PMCID: PMC7446830 DOI: 10.1371/journal.ppat.1008763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023] Open
Abstract
The various sub-species of Salmonella enterica cause a range of disease in human hosts. The human-adapted Salmonella enterica serovar Typhi enters the gastrointestinal tract and invades systemic sites to cause enteric (typhoid) fever. In contrast, most non-typhoidal serovars of Salmonella are primarily restricted to gut tissues. Across Africa, invasive non-typhoidal Salmonella (iNTS) have emerged with an ability to spread beyond the gastrointestinal tract and cause systemic bloodstream infections with increased morbidity and mortality. To investigate this evolution in pathogenesis, we compared the genomes of African iNTS isolates with other Salmonella enterica serovar Typhimurium and identified several macA and macB gene variants unique to African iNTS. MacAB forms a tripartite efflux pump with TolC and is implicated in Salmonella pathogenesis. We show that macAB transcription is upregulated during macrophage infection and after antimicrobial peptide exposure, with macAB transcription being supported by the PhoP/Q two-component system. Constitutive expression of macAB improves survival of Salmonella in the presence of the antimicrobial peptide C18G. Furthermore, these macAB variants affect replication in macrophages and influence fitness during colonization of the murine gastrointestinal tract. Importantly, the infection outcome resulting from these macAB variants depends upon both the Salmonella Typhimurium genetic background and the host gene Nramp1, an important determinant of innate resistance to intracellular bacterial infection. The variations we have identified in the MacAB-TolC efflux pump in African iNTS may reflect evolution within human host populations that are compromised in their ability to clear intracellular Salmonella infections.
Collapse
Affiliation(s)
- Jared D. Honeycutt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yan Li
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Susan M. Brewer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Liliana M. Massis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sky W. Brubaker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Phoom Chairatana
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siân V. Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
31
|
Nagy TA, Crooks AL, Quintana JLJ, Detweiler CS. Clofazimine Reduces the Survival of Salmonella enterica in Macrophages and Mice. ACS Infect Dis 2020; 6:1238-1249. [PMID: 32272013 DOI: 10.1021/acsinfecdis.0c00023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistant pathogens are on the rise, and new treatments are needed for bacterial infections. Efforts toward antimicrobial discovery typically identify compounds that prevent bacterial growth in microbiological media. However, the microenvironments to which pathogens are exposed during infection differ from rich media and alter the biology of the pathogen. We and others have therefore developed screening platforms that identify compounds that disrupt pathogen growth within cultured mammalian cells. Our platform focuses on Gram-negative bacterial pathogens, which are of particular clinical concern. We screened a panel of 707 drugs to identify those with efficacy against Salmonella enterica Typhimurium growth within macrophages. One of the drugs identified, clofazimine (CFZ), is an antibiotic used to treat mycobacterial infections that is not recognized for potency against Gram-negative bacteria. We demonstrated that in macrophages CFZ enabled the killing of S. Typhimurium at single digit micromolar concentrations, and in mice, CFZ reduced tissue colonization. We confirmed that CFZ does not inhibit the growth of S. Typhimurium and E. coli in standard microbiological media. However, CFZ prevents bacterial replication under conditions consistent with the microenvironment of macrophage phagosomes, in which S. Typhimurium resides during infection: low pH, low magnesium and phosphate, and the presence of certain cationic antimicrobial peptides. These observations suggest that in macrophages and mice the efficacy of CFZ against S. Typhimurium is facilitated by multiple aspects of soluble innate immunity. Thus, systematic screens of existing drugs for infection-based potency are likely to identify unexpected opportunities for repurposing drugs to treat difficult pathogens.
Collapse
Affiliation(s)
- Toni A. Nagy
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Amy L. Crooks
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Corrella S. Detweiler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
32
|
Detweiler CS. Infection-based chemical screens uncover host-pathogen interactions. Curr Opin Microbiol 2020; 54:43-50. [PMID: 32036306 DOI: 10.1016/j.mib.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Bacterial pathogens must resist host innate immunity to cause disease. While Gram-negative bacteria have a protective outer membrane, this membrane is subject to host-induced damage that makes these pathogens vulnerable. We developed a high content screening platform that identifies compounds that cause the killing of the bacterial pathogen Salmonella enterica in macrophages. This platform enables the rapid discovery of compounds that work in concert with the macrophage to prevent pathogen survival, as most hit compounds are not active in standard microbiological media and are not pro-drugs. We describe within the platform and the compounds it has found, and consider how they may help us discover new ways to fight infection.
Collapse
Affiliation(s)
- Corrella S Detweiler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
33
|
Autophagy Induction by a Small Molecule Inhibits Salmonella Survival in Macrophages and Mice. Antimicrob Agents Chemother 2019:AAC.01536-19. [PMID: 31591121 PMCID: PMC6879225 DOI: 10.1128/aac.01536-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica is a natural bacterial pathogen of humans and animals that causes systemic infection or gastroenteritis. During systemic infection, Salmonella generally resides within professional phagocytes, typically macrophages, whereas gastroenteritis is caused by infection of epithelial cells. We are only beginning to understand which host pathways contribute to Salmonella survival in particular cell types. Salmonella enterica is a natural bacterial pathogen of humans and animals that causes systemic infection or gastroenteritis. During systemic infection, Salmonella generally resides within professional phagocytes, typically macrophages, whereas gastroenteritis is caused by infection of epithelial cells. We are only beginning to understand which host pathways contribute to Salmonella survival in particular cell types. We therefore sought to identify compounds that perturb Salmonella-host interactions using a chemical genetics approach. We found one small molecule, D61, that reduces Salmonella load in cell line and primary macrophages but has no effect on Salmonella growth in epithelial cells or rich medium. We determined that in macrophages, D61 induces LC3II, a marker of the autophagy pathway, and promotes aggregation of LC3II near Salmonella. We found that D61 antibacterial activity depends on the VPS34 complex and on ATG5. D61 also reduced Salmonella load in the spleens and livers of infected mice. Lastly, we demonstrate that D61 antibacterial activity in macrophages is synergistic with the antibiotic chloramphenicol but that this synergy is largely independent of the known autophagy-stimulating activity of chloramphenicol. Thus, a small molecule has antibacterial activity specifically in macrophages and mice based on the promotion of bacterial degradation by autophagy. These observations demonstrate the potential therapeutic utility of stimulating autophagy in cells and animals to curb infection.
Collapse
|
34
|
Ellis MJ, Tsai CN, Johnson JW, French S, Elhenawy W, Porwollik S, Andrews-Polymenis H, McClelland M, Magolan J, Coombes BK, Brown ED. A macrophage-based screen identifies antibacterial compounds selective for intracellular Salmonella Typhimurium. Nat Commun 2019; 10:197. [PMID: 30643129 PMCID: PMC6331611 DOI: 10.1038/s41467-018-08190-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
Salmonella Typhimurium (S. Tm) establishes systemic infection in susceptible hosts by evading the innate immune response and replicating within host phagocytes. Here, we sought to identify inhibitors of intracellular S. Tm replication by conducting parallel chemical screens against S. Tm growing in macrophage-mimicking media and within macrophages. We identify several compounds that inhibit Salmonella growth in the intracellular environment and in acidic, ion-limited media. We report on the antimicrobial activity of the psychoactive drug metergoline, which is specific against intracellular S. Tm. Screening an S. Tm deletion library in the presence of metergoline reveals hypersensitization of outer membrane mutants to metergoline activity. Metergoline disrupts the proton motive force at the bacterial cytoplasmic membrane and extends animal survival during a systemic S. Tm infection. This work highlights the predictive nature of intracellular screens for in vivo efficacy, and identifies metergoline as a novel antimicrobial active against Salmonella.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
| | - Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
| | - Jarrod W Johnson
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
| | - Shawn French
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
| | - Wael Elhenawy
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697-4025, USA
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697-4025, USA
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|