1
|
Witwit H, de la Torre JC. Mammarenavirus Z Protein Myristoylation and Oligomerization Are Not Required for Its Dose-Dependent Inhibitory Effect on vRNP Activity. BIOCHEM 2025; 5:10. [PMID: 40520408 PMCID: PMC12163724 DOI: 10.3390/biochem5020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Background/Objectives N-Myristoyltransferase inhibitors (NMTi) represent a novel antiviral strategy against mammarenaviruses such as Lassa and Junin viruses. The Z matrix protein inhibits viral ribonucleoprotein (vRNP) activity in a dose-dependent manner. Here, we investigated whether Z-mediated vRNP inhibition depends on Z myristoylation or oligomerization. Methods We used HEK293T cells transfected with wild-type (WT) or G2A-mutated Z constructs in LCMV minigenome (MG) assays. Cells were treated with the NMTi IMP-1088 and the proteasome inhibitor MG132. Z protein expression, vRNP activity, and VLP production were analyzed by immunofluorescence, western blotting, and colocalization analyses. Results IMP-1088 treatment led to proteasome-mediated degradation of Z, reducing its inhibition of vRNP activity, which was restored by MG132. The non-myristoylated Z G2A mutant retained vRNP inhibitory activity but showed impaired oligomerization and budding capacity. These findings demonstrate that Z-mediated vRNP inhibition is independent of myristoylation and oligomerization. Conclusions Z myristoylation and oligomerization are not required for its inhibitory vRNP activity. Targeting Z myristoylation with NMTi impairs virus assembly and budding without affecting Z-mediated inhibition of vRNP activity, supporting the development of NMTi as a promising broad-spectrum antiviral strategy against mammarenaviruses.
Collapse
Affiliation(s)
- Haydar Witwit
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Juan C. de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Alam F, Li Y, Vogt MR. Parechovirus: neglected for too long? J Virol 2025; 99:e0184624. [PMID: 40130875 PMCID: PMC11998499 DOI: 10.1128/jvi.01846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Parechoviruses are non-enveloped, positive-sense, single-stranded RNA viruses that have been isolated from multiple vertebrate species. Infection with these etiologic agents of typically mild childhood respiratory and gastrointestinal illness in humans is nearly universal, and a subset of infected neonates and infants develop severe neurologic diseases. Rodent parechoviruses cause myocarditis, encephalitis, and perinatal death in multiple rodent species. The key steps of the viral life cycle, clinical characteristics, and global burden of these viruses are not well characterized yet, particularly for nonhuman parechoviruses. Here, we review the history of human and nonhuman parechovirus isolation, global seroprevalence and distribution, viral biology, and evolution, considering these factors might contribute to host specificity, virulence, tissue tropism, pathogenesis, host immunity, and population dynamics.
Collapse
Affiliation(s)
- Fahmida Alam
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - You Li
- Department of Pediatrics, Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew R. Vogt
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pediatrics, Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Witwit H, Cubitt B, Khafaji R, Castro EM, Goicoechea M, Lorenzo MM, Blasco R, Martinez-Sobrido L, de la Torre JC. Repurposing Drugs for Synergistic Combination Therapies to Counteract Monkeypox Virus Tecovirimat Resistance. Viruses 2025; 17:92. [PMID: 39861882 PMCID: PMC11769280 DOI: 10.3390/v17010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
The ongoing monkeypox (mpox) disease outbreak has spread to multiple countries in Central Africa and evidence indicates it is driven by a more virulent clade I monkeypox virus (MPXV) strain than the clade II strain associated with the 2022 global mpox outbreak, which led the WHO to declare this mpox outbreak a public health emergency of international concern. The FDA-approved small molecule antiviral tecovirimat (TPOXX) is recommended to treat mpox cases with severe symptoms, but the limited efficacy of TPOXX and the emergence of TPOXX resistant MPXV variants has challenged this medical practice of care and highlighted the urgent need for alternative therapeutic strategies. In this study we have used vaccinia virus (VACV) as a surrogate of MPXV to assess the antiviral efficacy of combination therapy of TPOXX together with mycophenolate mofetil (MMF), an FDA-approved immunosuppressive agent that we have shown to inhibit VACV and MPXV, or the N-myristoyltransferase (NMT) inhibitor IMP-1088. Both MMF and IMP-1088 drugs exhibited strong dose-dependent antiviral activity against VACV and mpox, and potent synergistic effects in conjunction with TPOXX. Our findings support combination therapy of direct-acting (TPOXX) and host-targeted (MMF and IMP-1088) antivirals as a promising approach to treat mpox and prevent the emergence and spread of TPOXX-resistant MPXV variants.
Collapse
Affiliation(s)
- Haydar Witwit
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roaa Khafaji
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Miguel Goicoechea
- Division of Infectious Diseases, Scripps Health, San Diego, CA 92103, USA
| | | | - Rafael Blasco
- Departamento de Biotecnología, INIA CSIC, 28040 Madrid, Spain
| | | | - Juan C. de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Carnec X, Borges-Cardoso V, Reynard S, Kowalski H, Gaillard JC, Mateo M, Armengaud J, Baize S. Targeting n-myristoyltransferases promotes a pan-Mammarenavirus inhibition through the degradation of the Z matrix protein. PLoS Pathog 2024; 20:e1012715. [PMID: 39625987 DOI: 10.1371/journal.ppat.1012715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/19/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024] Open
Abstract
Several Old World and New World Mammarenavirus are responsible for hemorrhagic fever in humans. These enveloped viruses have a bi-segmented ambisense RNA genome that encodes four proteins. All Mammarenavirus identified to date share a common dependency on myristoylation: the addition of the C14 myristic acid on the N-terminal G2 residue on two of their proteins. The myristoylation of the Z matrix protein is required for viral particle budding, while the myristoylation of the signal peptide to the envelope glycoproteins is important for the entry mechanism. Using Mopeia virus as a model, we characterized the interaction of the Z matrix protein with the N-Myristoyltransferases (NMT) 1 and 2, the two enzymes responsible for myristoylation in mammals. While both enzymes were capable to interact with Z, we showed that only NMT1 was important for the production of viral progeny, the endogenous expression of NMT2 being insufficient to make up for NMT1 in its absence. Using the high affinity inhibitors of NMTs, IMP1088 and DDD85646, we demonstrated a strong, dose dependent and specific inhibition at the nanomolar range for all Mammarenavirus tested, including the highly pathogenic Lassa, Machupo, Junin and Lujo viruses. Mechanistically, IMP1088 and DDD85646 blocked the interaction between Z and both NMTs, preventing myristoylation and further viral particle formation, egress and spread. Unexpectedly, we found that the matrix protein devoid of myristate, despite being fully translated, did not accumulate as the other viral proteins in infected cells but was instead degraded in a proteasome- and autophagy-independent manner. These molecules represent a new broad-spectrum class of inhibitors against Mammarenavirus.
Collapse
Affiliation(s)
- Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Virginie Borges-Cardoso
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Jean-Charles Gaillard
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Commissariat à l'Energie Atomique et aux Energies Alternatives, Bagnols sur Cèze, France
| | - Mathieu Mateo
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Commissariat à l'Energie Atomique et aux Energies Alternatives, Bagnols sur Cèze, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
5
|
Witwit H, Betancourt CA, Cubitt B, Khafaji R, Kowalski H, Jackson N, Ye C, Martinez-Sobrido L, de la Torre JC. Cellular N-Myristoyl Transferases Are Required for Mammarenavirus Multiplication. Viruses 2024; 16:1362. [PMID: 39339839 PMCID: PMC11436053 DOI: 10.3390/v16091362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The mammarenavirus matrix Z protein plays critical roles in virus assembly and cell egress. Meanwhile, heterotrimer complexes of a stable signal peptide (SSP) together with glycoprotein subunits GP1 and GP2, generated via co-and post-translational processing of the surface glycoprotein precursor GPC, form the spikes that decorate the virion surface and mediate virus cell entry via receptor-mediated endocytosis. The Z protein and the SSP undergo N-terminal myristoylation by host cell N-myristoyltransferases (NMT1 and NMT2), and G2A mutations that prevent myristoylation of Z or SSP have been shown to affect the Z-mediated virus budding and GP2-mediated fusion activity that is required to complete the virus cell entry process. In the present work, we present evidence that the validated on-target specific pan-NMT inhibitor DDD85646 exerts a potent antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) that correlates with reduced Z budding activity and GP2-mediated fusion activity as well as with proteasome-mediated degradation of the Z protein. The potent anti-mammarenaviral activity of DDD85646 was also observed with the hemorrhagic-fever-causing Junin (JUNV) and Lassa (LASV) mammarenaviruses. Our results support the exploration of NMT inhibition as a broad-spectrum antiviral against human pathogenic mammarenaviruses.
Collapse
Affiliation(s)
- Haydar Witwit
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (H.W.); (C.A.B.); (B.C.); (R.K.)
| | - Carlos Alberto Betancourt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (H.W.); (C.A.B.); (B.C.); (R.K.)
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (H.W.); (C.A.B.); (B.C.); (R.K.)
| | - Roaa Khafaji
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (H.W.); (C.A.B.); (B.C.); (R.K.)
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| | - Nathaniel Jackson
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (N.J.); (L.M.-S.)
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (N.J.); (L.M.-S.)
| | | | - Juan C. de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (H.W.); (C.A.B.); (B.C.); (R.K.)
| |
Collapse
|
6
|
Witwit H, Betancourt C, Cubitt B, Khafaji R, Kowalski H, Jackson N, Ye C, Martinez-Sobrido L, de la Torre JC. Cellular N-myristoyl transferases Are Required for Mammarenavirus Multiplication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606235. [PMID: 39211253 PMCID: PMC11361045 DOI: 10.1101/2024.08.01.606235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammarenavirus matrix Z protein plays critical roles in virus assembly and cell egress, whereas heterotrimer complexes of a stable signal peptide (SSP) together with glycoprotein subunits GP1 and GP2, generated via co-and post-translational processing of the surface glycoprotein precursor GPC, form the spikes that decorate the virion surface and mediate virus cell entry via receptor-mediated endocytosis. The Z protein and SSP undergo N-terminal myristoylation by host cell N-myristoyltransferases (NMT1 and NMT2), and G2A mutations that prevent myristoylation of Z or SSP have been shown to affect Z mediated virus budding and GP2 mediated fusion activity required to complete the virus cell entry process. In the present work, we present evidence that the validated on-target specific pan NMT inhibitor DDD85464 exerts a potent antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) that correlated with reduced Z budding activity and GP2 mediated fusion activity, as well as proteasome mediated degradation of the Z protein. The potent anti-mammarenaviral activity of DDD85646 was also observed with the hemorrhagic fever causing mammarenaviruses Junin (JUNV) and Lassa (LASV) viruses. Our results support exploration of NMT inhibition as a broad-spectrum antiviral against human pathogenic mammarenaviruses.
Collapse
|
7
|
Xiao P, Meng L, Cui X, Liu X, Qin L, Meng F, Cai X, Kong D, An T, Wang H. VP0 Myristoylation Is Essential for Senecavirus A Replication. Pathogens 2024; 13:601. [PMID: 39057827 PMCID: PMC11280471 DOI: 10.3390/pathogens13070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Many picornaviruses require the myristoylation of capsid proteins for viral replication. Myristoylation is a site-specific lipidation to the N-terminal G residue of viral proteins, which is catalyzed by the ubiquitous eukaryotic enzyme N-myristoyltransferase (NMT) by allocating the myristoyl group to the N-terminal G residue. IMP-1088 and DDD85646 are two inhibitors that can deprive NMT biological functions. Whether Senecavirus A (SVA) uses NMT to modify VP0 and regulate viral replication remains unclear. Here, we found that NMT inhibitors could inhibit SVA replication. NMT1 knock-out in BHK-21 cells significantly suppressed viral replication. In contrast, the overexpression of NMT1 in BHK-21 cells benefited viral replication. These results indicated that VP0 is a potential NMT1 substrate. Moreover, we found that the myristoylation of SVA VP0 was correlated to the subcellular distribution of this protein in the cytoplasm. Further, we evaluated which residues at the N-terminus of VP0 are essential for viral replication. The substitution of N-terminal G residue, the myristoylation site of VP0, produced a nonviable virus. The T residue at the fifth position of the substrates facilitates the binding of the substrates to NMT. And our results showed that the T residue at the fifth position of VP0 played a positive role in SVA replication. Taken together, we demonstrated that SVA VP0 myristoylation plays an essential role in SVA replication.
Collapse
Affiliation(s)
- Peiyu Xiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Liang Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Xingyang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Xinran Liu
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA;
| | - Lei Qin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Fandan Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin 150069, China
| | - Dongni Kong
- Institute of Veterinary Drug Control, No. 8 Nandajie, Zhongguancun, Haidian, Beijing 100081, China;
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| |
Collapse
|
8
|
Abstract
N-myristoyltransferase 1 (NMT1) is an indispensable eukaryotic enzyme that catalyses the transfer of myristoyl groups to the amino acid terminal residues of numerous proteins. This catalytic process is required for the growth and development of many eukaryotes and viruses. Elevated expression and activity of NMT1 is observed to varying degrees in a variety of tumour types (e.g. colon, lung and breast tumours). Furthermore, an elevated level of NMT1 in tumours is associated with poor survival. Therefore, a relationship exists between NMT1 and tumours. In this review, we discuss the underlying mechanisms by which NMT1 is associated with tumour development from the perspective of oncogene signalling, involvement in cellular metabolism, and endoplasmic reticulum stress. Several NMT inhibitors used in cancer treatment are introduced. The review will provide some directions for future research.Key MessagesElevated expression and activity of NMT1 is observed to varying degrees in a variety of tumour types which creates the possibility of targeting NMT1 in tumours.NMT1-mediated myristoylation plays a pivotal role in cancer cell metabolism and may be particularly relevant to cancer metastasis and drug resistance. These insights can be used to direct potential therapeutic avenues for NMT1 inhibitors.
Collapse
Affiliation(s)
- Hong Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xu
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Galitska G, Jassey A, Wagner MA, Pollack N, Miller K, Jackson WT. Enterovirus D68 capsid formation and stability requires acidic compartments. mBio 2023; 14:e0214123. [PMID: 37819109 PMCID: PMC10653823 DOI: 10.1128/mbio.02141-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The respiratory picornavirus enterovirus D68 is a causative agent of acute flaccid myelitis, a childhood paralysis disease identified in the last decade. Poliovirus, another picornavirus associated with paralytic disease, is a fecal-oral virus that survives acidic environments when passing from host to host. Here, we follow up on our previous work showing a requirement for acidic intracellular compartments for maturation cleavage of poliovirus particles. Enterovirus D68 requires acidic vesicles for an earlier step, assembly, and maintenance of viral particles themselves. These data have strong implications for the use of acidification blocking treatments to combat enterovirus diseases.
Collapse
Affiliation(s)
- Ganna Galitska
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alagie Jassey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael A. Wagner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Noah Pollack
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Katelyn Miller
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - William T. Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Chang YH. Impact of Protein N α-Modifications on Cellular Functions and Human Health. Life (Basel) 2023; 13:1613. [PMID: 37511988 PMCID: PMC10381334 DOI: 10.3390/life13071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Most human proteins are modified by enzymes that act on the α-amino group of a newly synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and expose the second amino acid for further modification by enzymes responsible for myristoylation, acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the initiator methionine and sometimes the acetylated methionine can be removed, followed by further modifications. These modifications at the protein N-termini play critical roles in cellular protein localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently, the dysregulation of these modifications could significantly change the development and progression status of certain human diseases. The focus of this review is to highlight recent progress in our understanding of the roles of these modifications in regulating protein functions and how these enzymes have been used as potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Medical School, Saint Louis, MO 63104, USA
| |
Collapse
|
11
|
Kim JY, Lee JH, Yang JM, Lee SY, Park SY, Jin JS, Kim D, Park JW, Park JH, Park SH, Ko YJ. Production of Foot-and-Mouth Disease Type O and A Vaccine Antigens on a Pilot Scale and Determination of Optimal Amount of Antigen for Monovalent Vaccines. Vaccines (Basel) 2023; 11:1156. [PMID: 37514972 PMCID: PMC10383391 DOI: 10.3390/vaccines11071156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly infectious disease affecting cloven-hoofed animals and causes significant economic losses to the livestock industry. The Type O PanAsia-2 (O PA-2) vaccine strain is protective against a wide range of serotype O FMD virus (FMDV) strains in East Asia, and A22 Iraq/24/64 (A22 IRQ) is the most widely used vaccine strain in FMD vaccine antigen banks. The aim of this study was to produce antigens from O PA-2 and A22 IRQ viruses using a 100 L bioreactor and evaluate the protective efficacy of varying antigen concentrations in pigs. More than 2 μg/mL of the antigen was recovered from the O PA-2 and A22 IRQ virus-infected supernatants. Further, inactivation of O PA-2 and A22 IRQ by binary ethyleneimine revealed that the viral titers decreased below 10-7 TCID50/mL within 13 h and 9 h, respectively. The O PA-2 and A22 IRQ vaccines, containing 10 μg and 5 μg of antigen, respectively, provided protection against homologous viruses in pigs. This is the first report demonstrating that the antigens obtained from the pilot-scale production of O PA-2 and A22 IRQ are viable candidate vaccines. These results will pave the way for industrial-scale FMD vaccine production in South Korea.
Collapse
Affiliation(s)
- Jae Young Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Ji-Hye Lee
- Department of Research and Development, FVC, Gimcheon-si 39660, Republic of Korea
| | - Jong Min Yang
- Department of Research and Development, FVC, Gimcheon-si 39660, Republic of Korea
| | - Seo-Yong Lee
- Department of Development, SNC Bio, Hanam-si 12930, Republic of Korea
| | - Sun Young Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Jong Sook Jin
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Dohyun Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Jung-Won Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Sang Hyun Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Young-Joon Ko
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
12
|
Galitska G, Jassey A, Wagner MA, Pollack N, Jackson WT. Enterovirus D68 capsid formation and stability requires acidic compartments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544695. [PMID: 37398138 PMCID: PMC10312662 DOI: 10.1101/2023.06.12.544695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Enterovirus D68 (EV-D68), a picornavirus traditionally associated with respiratory infections, has recently been linked to a polio-like paralytic condition known as acute flaccid myelitis (AFM). EV-D68 is understudied, and much of the field's understanding of this virus is based on studies of poliovirus. For poliovirus, we previously showed that low pH promotes virus capsid maturation, but here we show that, for EV-D68, inhibition of compartment acidification during a specific window of infection causes a defect in capsid formation and maintenance. These phenotypes are accompanied by radical changes in the infected cell, with viral replication organelles clustering in a tight juxtanuclear grouping. Organelle acidification is critical during a narrow window from 3-4hpi, which we have termed the "transition point," separating translation and peak RNA replication from capsid formation, maturation and egress. Our findings highlight that acidification is crucial only when vesicles convert from RNA factories to virion crucibles.
Collapse
Affiliation(s)
- Ganna Galitska
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA
| | - Alagie Jassey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA
| | - Michael A Wagner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA
| | - Noah Pollack
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA
| | - William T Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Real-Hohn A, Groznica M, Kontaxis G, Zhu R, Chaves OA, Vazquez L, Hinterdorfer P, Kowalski H, Blaas D. Stabilization of the Quadruplex-Forming G-Rich Sequences in the Rhinovirus Genome Inhibits Uncoating-Role of Na + and K . Viruses 2023; 15:1003. [PMID: 37112983 PMCID: PMC10141139 DOI: 10.3390/v15041003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Rhinoviruses (RVs) are the major cause of common cold, a respiratory disease that generally takes a mild course. However, occasionally, RV infection can lead to serious complications in patients debilitated by other ailments, e.g., asthma. Colds are a huge socioeconomic burden as neither vaccines nor other treatments are available. The many existing drug candidates either stabilize the capsid or inhibit the viral RNA polymerase, the viral proteinases, or the functions of other non-structural viral proteins; however, none has been approved by the FDA. Focusing on the genomic RNA as a possible target for antivirals, we asked whether stabilizing RNA secondary structures might inhibit the viral replication cycle. These secondary structures include G-quadruplexes (GQs), which are guanine-rich sequence stretches forming planar guanine tetrads via Hoogsteen base pairing with two or more of them stacking on top of each other; a number of small molecular drug candidates increase the energy required for their unfolding. The propensity of G-quadruplex formation can be predicted with bioinformatics tools and is expressed as a GQ score. Synthetic RNA oligonucleotides derived from the RV-A2 genome with sequences corresponding to the highest and lowest GQ scores indeed exhibited characteristics of GQs. In vivo, the GQ-stabilizing compounds, pyridostatin and PhenDC3, interfered with viral uncoating in Na+ but not in K+-containing phosphate buffers. The thermostability studies and ultrastructural imaging of protein-free viral RNA cores suggest that Na+ keeps the encapsulated genome more open, allowing PDS and PhenDC3 to diffuse into the quasi-crystalline RNA and promote the formation and/or stabilization of GQs; the resulting conformational changes impair RNA unraveling and release from the virion. Preliminary reports have been published.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center of Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, 1030 Vienna, Austria; (M.G.)
| | - Martin Groznica
- Center of Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, 1030 Vienna, Austria; (M.G.)
- Institut Pasteur, CEDEX 15, 75724 Paris, France
| | - Georg Kontaxis
- Vienna Biocenter, Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna BioCenter 5, 1030 Vienna, Austria;
| | - Rong Zhu
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria; (R.Z.)
| | - Otávio Augusto Chaves
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC/Fiocruz), Av. Brasil, 4365, Rio de Janeiro 21040-360, Brazil
| | - Leonardo Vazquez
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC/Fiocruz), Av. Brasil, 4365, Rio de Janeiro 21040-360, Brazil
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria; (R.Z.)
| | - Heinrich Kowalski
- Center of Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, 1030 Vienna, Austria; (M.G.)
| | - Dieter Blaas
- Center of Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, 1030 Vienna, Austria; (M.G.)
| |
Collapse
|
14
|
Heat Shock Protein 60 Is Involved in Viral Replication Complex Formation and Facilitates Foot and Mouth Virus Replication by Stabilizing Viral Nonstructural Proteins 3A and 2C. mBio 2022; 13:e0143422. [PMID: 36106732 PMCID: PMC9601101 DOI: 10.1128/mbio.01434-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The maintenance of viral protein homeostasis depends on the machinery of the infected host cells, giving us an insight into the interplay between host and virus. Accumulating evidence suggests that heat shock protein 60 (HSP60), as one molecular chaperone, is involved in regulating virus infection. However, the role of HSP60 during foot-and-mouth disease virus (FMDV) replication and its specific mechanisms have not been reported. We demonstrate that HSP60 modulates the FMDV life cycle. HSP60 plays a role at the postentry stage of the viral life cycle, including RNA replication and mRNA translation; however, HSP60 does not affect viral replication of Seneca Valley virus (SVA) or encephalomyocarditis virus (EMCV). We found that HSP60 is involved in FMDV replication complex (RC) formation. Furthermore, our results indicate that HSP60 interacts with FMDV nonstructural proteins 3A and 2C, key elements of the viral replication complex. We also show that HSP60 regulates the stability of 3A and 2C via caspase-dependent and autophagy-lysosome-dependent degradation, thereby promoting FMDV RNA synthesis and mRNA translation mediated by the RC. Additionally, we determined that the apical domain of HSP60 is responsible for interacting with 3A and 2C. The N terminus of 3A and ATPase domain of 2C are involved in binding to HSP60. Importantly, HSP60 depletion potently reduced FMDV pathogenicity in infected mice. Altogether, this study demonstrates a specific role of HSP60 in promoting FMDV replication. Furthermore, targeting host HSP60 will help us design the FMDV-specific antiviral drugs.
Collapse
|
15
|
Kakkanas A, Karamichali E, Koufogeorgou EI, Kotsakis SD, Georgopoulou U, Foka P. Targeting the YXXΦ Motifs of the SARS Coronaviruses 1 and 2 ORF3a Peptides by In Silico Analysis to Predict Novel Virus-Host Interactions. Biomolecules 2022; 12:1052. [PMID: 36008946 PMCID: PMC9405953 DOI: 10.3390/biom12081052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/08/2023] Open
Abstract
The emerging SARS-CoV and SARS-CoV-2 belong to the family of "common cold" RNA coronaviruses, and they are responsible for the 2003 epidemic and the current pandemic with over 6.3 M deaths worldwide. The ORF3a gene is conserved in both viruses and codes for the accessory protein ORF3a, with unclear functions, possibly related to viral virulence and pathogenesis. The tyrosine-based YXXΦ motif (Φ: bulky hydrophobic residue-L/I/M/V/F) was originally discovered to mediate clathrin-dependent endocytosis of membrane-spanning proteins. Many viruses employ the YXXΦ motif to achieve efficient receptor-guided internalisation in host cells, maintain the structural integrity of their capsids and enhance viral replication. Importantly, this motif has been recently identified on the ORF3a proteins of SARS-CoV and SARS-CoV-2. Given that the ORF3a aa sequence is not fully conserved between the two SARS viruses, we aimed to map in silico structural differences and putative sequence-driven alterations of regulatory elements within and adjacently to the YXXΦ motifs that could predict variations in ORF3a functions. Using robust bioinformatics tools, we investigated the presence of relevant post-translational modifications and the YXXΦ motif involvement in protein-protein interactions. Our study suggests that the predicted YXXΦ-related features may confer specific-yet to be discovered-functions to ORF3a proteins, significant to the new virus and related to enhanced propagation, host immune regulation and virulence.
Collapse
Affiliation(s)
- Athanassios Kakkanas
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Eirini Karamichali
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Efthymia Ioanna Koufogeorgou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Stathis D. Kotsakis
- Laboratory of Bacteriology, Hellenic Pasteur Institute, 115-21 Athens, Greece;
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Pelagia Foka
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| |
Collapse
|
16
|
Deng JZ, Rustandi RR, Barbacci D, Swartz AR, Gulasarian A, Loughney JW. Reverse-Phase Ultra-Performance Chromatography Method for Oncolytic Coxsackievirus Viral Protein Separation and Empty to Full Capsid Quantification. Hum Gene Ther 2022; 33:765-775. [PMID: 35387488 PMCID: PMC9347376 DOI: 10.1089/hum.2022.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Oncolytic virus immunotherapy is emerging as a novel therapeutic approach for cancer treatment. Immunotherapy clinical drug candidate V937 is currently in phase I/II clinical trials and consists of a proprietary formulation of Coxsackievirus A21 (CVA21), which specifically infects and lyses cells with overexpressed ICAM-1 receptors in a range of tumors. Mature Coxsackievirus virions, consisting of four structural virion proteins, (VPs) VP1, VP2, VP3, and VP4, and the RNA genome, are the only viral particles capable of being infectious. In addition to mature virions, empty procapsids with VPs, VP0, VP1, and VP3, and other virus particles are produced in V937 production cell culture. Viral protein VP0 is cleaved into VP2 and VP4 after RNA genome encapsidation to form mature virions. Clearance of viral particles containing VP0, and quantification of viral protein distribution are important in V937 downstream processing. Existing analytical methods for the characterization of viral proteins and particles may lack sensitivity or are low throughput. We developed a sensitive and robust reverse-phase ultra-performance chromatography method to separate, identify, and quantify all five CVA21 VPs. Quantification of virus capsid concentration and empty/full capsid ratio was achieved with good linearity, accuracy, and precision. ClinicalTrials.gov ID: NCT04521621 and NCT04152863.
Collapse
Affiliation(s)
- James Z. Deng
- Vaccine Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Richard R. Rustandi
- Vaccine Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Damon Barbacci
- Vaccine Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Andrew R. Swartz
- Vaccine Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Amanda Gulasarian
- Vaccine Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - John W. Loughney
- Vaccine Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
17
|
Kelly JT, Swanson J, Newman J, Groppelli E, Stonehouse NJ, Tuthill TJ. Membrane Interactions and Uncoating of Aichi Virus, a Picornavirus That Lacks a VP4. J Virol 2022; 96:e0008222. [PMID: 35293769 PMCID: PMC9006896 DOI: 10.1128/jvi.00082-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/31/2022] [Indexed: 01/15/2023] Open
Abstract
Kobuviruses are an unusual and poorly characterized genus within the picornavirus family and can cause gastrointestinal enteric disease in humans, livestock, and pets. The human kobuvirus Aichi virus (AiV) can cause severe gastroenteritis and deaths in children below the age of 5 years; however, this is a very rare occurrence. During the assembly of most picornaviruses (e.g., poliovirus, rhinovirus, and foot-and-mouth disease virus), the capsid precursor protein VP0 is cleaved into VP4 and VP2. However, kobuviruses retain an uncleaved VP0. From studies with other picornaviruses, it is known that VP4 performs the essential function of pore formation in membranes, which facilitates transfer of the viral genome across the endosomal membrane and into the cytoplasm for replication. Here, we employ genome exposure and membrane interaction assays to demonstrate that pH plays a critical role in AiV uncoating and membrane interactions. We demonstrate that incubation at low pH alters the exposure of hydrophobic residues within the capsid, enhances genome exposure, and enhances permeabilization of model membranes. Furthermore, using peptides we demonstrate that the N terminus of VP0 mediates membrane pore formation in model membranes, indicating that this plays an analogous function to VP4. IMPORTANCE To initiate infection, viruses must enter a host cell and deliver their genome into the appropriate location. The picornavirus family of small nonenveloped RNA viruses includes significant human and animal pathogens and is also a model to understand the process of cell entry. Most picornavirus capsids contain the internal protein VP4, generated from cleavage of a VP0 precursor. During entry, VP4 is released from the capsid. In enteroviruses this forms a membrane pore, which facilitates genome release into the cytoplasm. Due to high levels of sequence similarity, it is expected to play the same role for other picornaviruses. Some picornaviruses, such as Aichi virus, retain an intact VP0, and it is unknown how these viruses rearrange their capsids and induce membrane permeability in the absence of VP4. Here, we have used Aichi virus as a model VP0 virus to test for conservation of function between VP0 and VP4. This could enhance understanding of pore function and lead to development of novel therapeutic agents that block entry.
Collapse
Affiliation(s)
| | - Jessica Swanson
- The Pirbright Institute, Pirbright, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Elisabetta Groppelli
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
18
|
Agoni C, Salifu EY, Enslin G, Kwofie SK, Soliman ME. Dual-Inhibition of Human N-Myristoyltransferase Subtypes Halts Common Cold Pathogenesis: Atomistic Perspectives from the Case of IMP-1088. Chem Biodivers 2022; 19:e202100748. [PMID: 34936193 DOI: 10.1002/cbdv.202100748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022]
Abstract
The pharmacological inhibition of human N-myristoyltransferase (HsNMT) has emerged as an efficient strategy to completely prevent the replication process of rhinoviruses, a potential treatment for the common cold. This was corroborated by the recent discovery of compound IMP-1088, a novel inhibitor that demonstrated a dual-inhibitory activity against the two HsNMT subtypes 1 and 2 without inducing cytotoxicity. However, the molecular and structural basis for the dual-inhibitory potential of IMP-1088 has not been investigated. As such, we employ molecular modelling techniques to resolve the structural mechanisms that account for the dual-inhibitory prowess of IMP-1088. Sequence and nanosecond-based analyses identified Tyr296, Phe190, Tyr420, Leu453, Gln496, Val181, Leu474, Glu182, and Asn246 as residues common within the binding pockets of both HsNMT1 and HsNMT2 subtypes whose consistent interactions with IMP-1088 underpin the basis for its dual inhibitory potency. Nano-second-based assessment of interaction dynamics revealed that Tyr296 consistently elicited high-affinity π-π stacked interaction with IMP-1088, thus further highlighting its cruciality corroborating previous report. An exploration of resulting structural changes upon IMP-1088 binding further revealed a characteristic impeding of residue fluctuations, structural compactness, and a consequential burial of crucial hydrophobic residues, features required for HsNMT1/2 functionality. Findings present essential structural perspectives that augment previous experimental efforts and could also advance drug development for treating respiratory tract infections, especially those mediated by rhinoviruses.
Collapse
Affiliation(s)
- Clement Agoni
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Arcadia Campus, Pretoria, South Africa
| | - Elliasu Y Salifu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Gill Enslin
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Arcadia Campus, Pretoria, South Africa
| | - Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana.,West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Mahmoud E Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
19
|
Huaman JL, Pacioni C, Sarker S, Doyle M, Forsyth DM, Pople A, Carvalho TG, Helbig KJ. Novel Picornavirus Detected in Wild Deer: Identification, Genomic Characterisation, and Prevalence in Australia. Viruses 2021; 13:v13122412. [PMID: 34960681 PMCID: PMC8706930 DOI: 10.3390/v13122412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The use of high-throughput sequencing has facilitated virus discovery in wild animals and helped determine their potential threat to humans and other animals. We report the complete genome sequence of a novel picornavirus identified by next-generation sequencing in faeces from Australian fallow deer. Genomic analysis revealed that this virus possesses a typical picornavirus-like genomic organisation of 7554 nt with a single open reading frame (ORF) encoding a polyprotein of 2225 amino acids. Based on the amino acid identity comparison and phylogenetic analysis of the P1, 2C, 3CD, and VP1 regions, this novel picornavirus was closely related to but distinct from known bopiviruses detected to date. This finding suggests that deer/bopivirus could belong to a novel species within the genus Bopivirus, tentatively designated as "Bopivirus C". Epidemiological investigation of 91 deer (71 fallow, 14 sambar and 6 red deer) and 23 cattle faecal samples showed that six fallow deer and one red deer (overall prevalence 7.7%, 95% confidence interval [CI] 3.8-15.0%) tested positive, but deer/bopivirus was undetectable in sambar deer and cattle. In addition, phylogenetic and sequence analyses indicate that the same genotype is circulating in south-eastern Australia. To our knowledge, this study reports for the first time a deer-origin bopivirus and the presence of a member of genus Bopivirus in Australia. Further epidemiological and molecular studies are needed to investigate the geographic distribution and pathogenic potential of this novel Bopivirus species in other domestic and wild animal species.
Collapse
Affiliation(s)
- Jose L. Huaman
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
| | - Carlo Pacioni
- Department of Environment, Land, Water, and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, VIC 3084, Australia;
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Subir Sarker
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
| | - Mark Doyle
- South East Local Land Services, Bega, NSW 2550, Australia;
| | - David M. Forsyth
- Vertebrate Pest Research Unit, Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800, Australia;
| | - Anthony Pople
- Department of Agriculture and Fisheries, Invasive Plants & Animals Research, Biosecurity Queensland, Ecosciences Precinct, Brisbane, QLD 4102, Australia;
| | - Teresa G. Carvalho
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
| | - Karla J. Helbig
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
- Correspondence: ; Tel.: +61-3-9479-6650
| |
Collapse
|
20
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
21
|
Real-Hohn A, Blaas D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021; 13:1784. [PMID: 34578365 PMCID: PMC8473194 DOI: 10.3390/v13091784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Rhinoviruses (RVs) are the main cause of recurrent infections with rather mild symptoms characteristic of the common cold. Nevertheless, RVs give rise to enormous numbers of absences from work and school and may become life-threatening in particular settings. Vaccination is jeopardised by the large number of serotypes eliciting only poorly cross-neutralising antibodies. Conversely, antivirals developed over the years failed FDA approval because of a low efficacy and/or side effects. RV species A, B, and C are now included in the fifteen species of the genus Enteroviruses based upon the high similarity of their genome sequences. As a result of their comparably low pathogenicity, RVs have become a handy model for other, more dangerous members of this genus, e.g., poliovirus and enterovirus 71. We provide a short overview of viral proteins that are considered potential drug targets and their corresponding drug candidates. We briefly mention more recently identified cellular enzymes whose inhibition impacts on RVs and comment novel approaches to interfere with infection via aggregation, virus trapping, or preventing viral access to the cell receptor. Finally, we devote a large part of this article to adding the viral RNA genome to the list of potential drug targets by dwelling on its structure, folding, and the still debated way of its exit from the capsid. Finally, we discuss the recent finding that G-quadruplex stabilising compounds impact on RNA egress possibly via obfuscating the unravelling of stable secondary structural elements.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
22
|
Domanska A, Guryanov S, Butcher SJ. A comparative analysis of parechovirus protein structures with other picornaviruses. Open Biol 2021; 11:210008. [PMID: 34315275 PMCID: PMC8316810 DOI: 10.1098/rsob.210008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022] Open
Abstract
Parechoviruses belong to the genus Parechovirus within the family Picornaviridae and are non-enveloped icosahedral viruses with a single-stranded RNA genome. Parechoviruses include human and animal pathogens classified into six species. Those that infect humans belong to the Parechovirus A species and can cause infections ranging from mild gastrointestinal or respiratory illness to severe neonatal sepsis. There are no approved antivirals available to treat parechovirus (nor any other picornavirus) infections. In this parechovirus review, we focus on the cleaved protein products resulting from the polyprotein processing after translation comparing and contrasting their known or predicted structures and functions to those of other picornaviruses. The review also includes our original analysis from sequence and structure prediction. This review highlights significant structural differences between parechoviral and other picornaviral proteins, suggesting that parechovirus drug development should specifically be directed to parechoviral targets.
Collapse
Affiliation(s)
- Aušra Domanska
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, and Helsinki Institute of Life Sciences–Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sergey Guryanov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, and Helsinki Institute of Life Sciences–Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sarah J. Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, and Helsinki Institute of Life Sciences–Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
23
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
24
|
Jackson T, Belsham GJ. Picornaviruses: A View from 3A. Viruses 2021; 13:v13030456. [PMID: 33799649 PMCID: PMC7999760 DOI: 10.3390/v13030456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.
Collapse
Affiliation(s)
- Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
25
|
Jakhmola S, Indari O, Kashyap D, Varshney N, Das A, Manivannan E, Jha HC. Mutational analysis of structural proteins of SARS-CoV-2. Heliyon 2021; 7:e06572. [PMID: 33778179 PMCID: PMC7980187 DOI: 10.1016/j.heliyon.2021.e06572] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 transmissibility is higher than that of other human coronaviruses; therefore, it poses a threat to the populated communities. We investigated mutations among envelope (E), membrane (M), and spike (S) proteins from different isolates of SARS-CoV-2 and plausible signaling influenced by mutated virus in a host. We procured updated protein sequences from the NCBI virus database. Mutations were analyzed in the retrieved sequences of the viral proteins through multiple sequence alignment. Additionally, the data was subjected to ScanPROSITE to analyse if the mutations generated a relevant sequence for host signaling. Unique mutations in E, M, and S proteins resulted in modification sites like PKC phosphorylation and N-myristoylation sites. Based on structural analysis, our study revealed that the D614G mutation in the S protein diminished the interaction with T859 and K854 of adjacent chains. Moreover, the S protein of SARS-CoV-2 consists of an Arg-Gly-Asp (RGD) tripeptide sequence, which could potentially interact with various members of integrin family receptors. RGD sequence in S protein might aid in the initial virus attachment. We speculated crucial host pathways which the mutated isolates of SARS-CoV-2 may alter like PKC, Src, and integrin mediated signaling pathways. PKC signaling is known to influence the caveosome/raft pathway which is critical for virus entry. Additionally, the myristoylated proteins might activate NF-κB, a master molecule of inflammation. Thus the mutations may contribute to the disease pathogenesis and distinct lung pathophysiological changes. Further the frequently occurring mutations in the protein can be studied for possible therapeutic interventions.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Ayan Das
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | | | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
26
|
Mattenberger F, Latorre V, Tirosh O, Stern A, Geller R. Globally defining the effects of mutations in a picornavirus capsid. eLife 2021; 10:64256. [PMID: 33432927 PMCID: PMC7861617 DOI: 10.7554/elife.64256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The capsids of non-enveloped viruses are highly multimeric and multifunctional protein assemblies that play key roles in viral biology and pathogenesis. Despite their importance, a comprehensive understanding of how mutations affect viral fitness across different structural and functional attributes of the capsid is lacking. To address this limitation, we globally define the effects of mutations across the capsid of a human picornavirus. Using this resource, we identify structural and sequence determinants that accurately predict mutational fitness effects, refine evolutionary analyses, and define the sequence specificity of key capsid-encoded motifs. Furthermore, capitalizing on the derived sequence requirements for capsid-encoded protease cleavage sites, we implement a bioinformatic approach for identifying novel host proteins targeted by viral proteases. Our findings represent the most comprehensive investigation of mutational fitness effects in a picornavirus capsid to date and illuminate important aspects of viral biology, evolution, and host interactions. A virus is made up of genetic material that is encased with a protective protein coat called the capsid. The capsid also helps the virus to infect host cells by binding to the host receptor proteins and releasing its genetic material. Inside the cell, the virus hitchhikes the infected cell’s machinery to grow or replicate its own genetic material. Viral capsids are the main target of the host’s defence system, and therefore, continuously change in an attempt to escape the immune system by introducing alterations (known as mutations) into the genes encoding viral capsid proteins. Mutations occur randomly, and so while some changes to the viral capsid might confer an advantage, others may have no effect at all, or even weaken the virus. To better understand the effect of capsid mutations on the virus’ ability to infect host cells, Mattenberger et al. studied the Coxsackievirus B3, which is linked to heart problems and acute heart failure in humans. The researchers analysed around 90% of possible amino acid mutations (over 14,800 mutations) and correlated each mutation to how it influenced the virus’ ability to replicate in human cells grown in the laboratory. Based on these results, Mattenberger et al. developed a computer model to predict how a particular mutation might affect the virus. The analysis also identified specific amino acid sequences of capsid proteins that are essential for certain tasks, such as building the capsid. It also included an analysis of sequences in the capsid that allow it to be recognized by another viral protein, which cuts the capsid proteins into the right size from a larger precursor. By looking for similar sequences in human genes, the researchers identified several ones that the virus may attack and inactivate to support its own replication. These findings may help identify potential drug targets to develop new antiviral therapies. For example, proteins of the capsid that are less likely to mutate will provide a better target as they lower the possibility of the virus to become resistant to the treatment. They also highlight new proteins in human cells that could potentially block the virus in cells.
Collapse
Affiliation(s)
- Florian Mattenberger
- Institute for Integrative Systems Biology, I2SysBio (Universitat de València-CSIC), Paterna, Spain
| | - Victor Latorre
- Institute for Integrative Systems Biology, I2SysBio (Universitat de València-CSIC), Paterna, Spain
| | - Omer Tirosh
- The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Stern
- The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Ron Geller
- Institute for Integrative Systems Biology, I2SysBio (Universitat de València-CSIC), Paterna, Spain
| |
Collapse
|
27
|
Role of Host-Mediated Post-Translational Modifications (PTMs) in RNA Virus Pathogenesis. Int J Mol Sci 2020; 22:ijms22010323. [PMID: 33396899 PMCID: PMC7796338 DOI: 10.3390/ijms22010323] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.
Collapse
|
28
|
Phanthong S, Densumite J, Seesuay W, Thanongsaksrikul J, Teimoori S, Sookrung N, Poovorawan Y, Onvimala N, Guntapong R, Pattanapanyasat K, Chaicumpa W. Human Antibodies to VP4 Inhibit Replication of Enteroviruses Across Subgenotypes and Serotypes, and Enhance Host Innate Immunity. Front Microbiol 2020; 11:562768. [PMID: 33101238 PMCID: PMC7545151 DOI: 10.3389/fmicb.2020.562768] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious disease that usually affects infants and young children (<5 years). HFMD outbreaks occur frequently in the Asia-Pacific region, and these outbreaks are associated with enormous healthcare and socioeconomic burden. There is currently no specific antiviral agent to treat HFMD and/or the severe complications that are frequently associated with the enterovirus of serotype EV71. Therefore, the development of a broadly effective and safe anti-enterovirus agent is an existential necessity. In this study, human single-chain antibodies (HuscFvs) specific to the EV71-internal capsid protein (VP4) were generated using phage display technology. VP4 specific-HuscFvs were linked to cell penetrating peptides to make them cell penetrable HuscFvs (transbodies), and readily accessible to the intracellular target. The transbodies, as well as the original HuscFvs that were tested, entered the enterovirus-infected cells, bound to intracellular VP4, and inhibited replication of EV71 across subgenotypes A, B, and C, and coxsackieviruses CVA16 and CVA6. The antibodies also enhanced the antiviral response of the virus-infected cells. Computerized simulation, indirect and competitive ELISAs, and experiments on cells infected with EV71 particles to which the VP4 and VP1-N-terminus were surface-exposed (i.e., A-particles that don't require receptor binding for infection) indicated that the VP4 specific-antibodies inhibit virus replication by interfering with the VP4-N-terminus, which is important for membrane pore formation and virus genome release leading to less production of virus proteins, less infectious virions, and restoration of host innate immunity. The antibodies may inhibit polyprotein/intermediate protein processing and cause sterically strained configurations of the capsid pentamers, which impairs virus morphogenesis. These antibodies should be further investigated for application as a safe and broadly effective HFMD therapy.
Collapse
Affiliation(s)
- Siratcha Phanthong
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Jaslan Densumite
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Watee Seesuay
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Bangkok, Thailand
| | - Salma Teimoori
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Napa Onvimala
- Department of Medical Science, Ministry of Public Health, National Institute of Health, Nonthaburi, Thailand
| | - Ratigorn Guntapong
- Department of Medical Science, Ministry of Public Health, National Institute of Health, Nonthaburi, Thailand
| | - Kovit Pattanapanyasat
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| |
Collapse
|
29
|
Bell AS, Yu Z, Hutton JA, Wright MH, Brannigan JA, Paape D, Roberts SM, Sutherell CL, Ritzefeld M, Wilkinson AJ, Smith DF, Leatherbarrow RJ, Tate EW. Novel Thienopyrimidine Inhibitors of Leishmania N-Myristoyltransferase with On-Target Activity in Intracellular Amastigotes. J Med Chem 2020; 63:7740-7765. [PMID: 32575985 PMCID: PMC7383931 DOI: 10.1021/acs.jmedchem.0c00570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
The
leishmaniases, caused by Leishmania species
of protozoan parasites, are neglected tropical diseases with millions
of cases worldwide. Current therapeutic approaches are limited by
toxicity, resistance, and cost. N-Myristoyltransferase
(NMT), an enzyme ubiquitous and essential in all eukaryotes, has been
validated via genetic and pharmacological methods as a promising anti-leishmanial
target. Here we describe a comprehensive structure–activity
relationship (SAR) study of a thienopyrimidine series previously identified
in a high-throughput screen against Leishmania NMT,
across 68 compounds in enzyme- and cell-based assay formats. Using
a chemical tagging target engagement biomarker assay, we identify
the first inhibitor in this series with on-target NMT activity in
leishmania parasites. Furthermore, crystal structure analyses of 12
derivatives in complex with Leishmania major NMT revealed key factors important for future structure-guided optimization
delivering IMP-105 (43), a compound with modest activity
against Leishmania donovani intracellular
amastigotes and excellent selectivity (>660-fold) for Leishmania NMT over human NMTs.
Collapse
Affiliation(s)
- Andrew S Bell
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| | - Zhiyong Yu
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| | - Jennie A Hutton
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| | - Megan H Wright
- School of Chemistry, University of Leeds, Leeds, U.K. LS2 9JT
| | - James A Brannigan
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York, U.K. YO10 5DD
| | - Daniel Paape
- Centre for Immunology and Infection, York Biomedical Research Institute, Department of Biology, University of York, York, U.K. YO10 5NG
| | - Shirley M Roberts
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York, U.K. YO10 5DD
| | - Charlotte L Sutherell
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| | - Markus Ritzefeld
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| | - Anthony J Wilkinson
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York, U.K. YO10 5DD
| | - Deborah F Smith
- Centre for Immunology and Infection, York Biomedical Research Institute, Department of Biology, University of York, York, U.K. YO10 5NG
| | - Robin J Leatherbarrow
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, U.K. W12 0BZ
| |
Collapse
|
30
|
Kosciuk T, Lin H. N-Myristoyltransferase as a Glycine and Lysine Myristoyltransferase in Cancer, Immunity, and Infections. ACS Chem Biol 2020; 15:1747-1758. [PMID: 32453941 DOI: 10.1021/acschembio.0c00314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein myristoylation, the addition of a 14-carbon saturated acyl group, is an abundant modification implicated in biological events as diverse as development, immunity, oncogenesis, and infections. N-Myristoyltransferase (NMT) is the enzyme that catalyzes this modification. Many elegant studies have established the rules guiding the catalysis including substrate amino acid sequence requirements with the indispensable N-terminal glycine, and a co-translational mode of action. Recent advances in technology such as the development of fatty acid analogs, small molecule inhibitors, and new proteomic strategies, allowed a deeper insight into the NMT activity and function. Here we focus on discussing recent work demonstrating that NMT is also a lysine myristoyltransferase, the enzyme's regulation by a previously unnoticed solvent channel, and the mechanism of NMT regulation by protein-protein interactions. We also summarize recent findings on NMT's role in cancer, immunity, and infections and the advances in pharmacological targeting of myristoylation. Our analyses highlight opportunities for further understanding and discoveries.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Cao J, Qu M, Liu H, Wan X, Li F, Hou A, Zhou Y, Sun B, Cai L, Su W, Jiang C. Myristoylation of EV71 VP4 is Essential for Infectivity and Interaction with Membrane Structure. Virol Sin 2020; 35:599-613. [PMID: 32399947 DOI: 10.1007/s12250-020-00226-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/03/2020] [Indexed: 01/18/2023] Open
Abstract
The Enterovirus 71 (EV71) VP4 is co-translationally linked to myristic acid at its amino-terminal glycine residue. However, the role of this myristoylation in the EV71 life cycle remains largely unknown. To investigate this issue, we developed a myristoylation-deficient virus and reporter (luciferase) pseudovirus with a Gly-to-Ala mutation (G2A) on EV71 VP4. When transfecting the EV71-G2A genome encoding plasmid in cells, the loss of myristoylation on VP4 did not affect the expression of viral proteins and the virus morphology, however, it did significantly influence viral infectivity. Further, in myristoylation-deficient reporter pseudovirus-infected cells, the luciferase activity and viral genome RNA decreased significantly as compared to that of wild type virus; however, cytopathic effect and viral capsid proteins were not detected in myristoylation-deficient virus-infected cells. Also, although myristoylation-deficient viral RNA and proteins were detected in the second blind passage of infection, they were much fewer in number compared to that of the wild type virus. The replication of genomic RNA and negative-strand viral RNA were both blocked in myristoylation-deficient viruses, suggesting that myristoylation affects viral genome RNA release from capsid to cytoplasm. Besides, loss of myristoylation on VP4 altered the distribution of VP4-green fluorescent protein protein, which disappeared from the membrane structure fraction. Finally, a liposome leakage assay showed that EV71 myristoylation mediates the permeability of the model membrane. Hence, the amino-terminal myristoylation of VP4 is pivotal to EV71 infection and capsid-membrane structure interaction. This study provides novel molecular mechanisms regarding EV71 infection and potential molecular targets for antiviral drug design.
Collapse
Affiliation(s)
- Jiaming Cao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Meng Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Hongtao Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xuan Wan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
32
|
Abstract
Viruses manipulate cellular lipids and membranes at each stage of their life cycle. This includes lipid-receptor interactions, the fusion of viral envelopes with cellular membranes during endocytosis, the reorganization of cellular membranes to form replication compartments, and the envelopment and egress of virions. In addition to the physical interactions with cellular membranes, viruses have evolved to manipulate lipid signaling and metabolism to benefit their replication. This review summarizes the strategies that viruses use to manipulate lipids and membranes at each stage in the viral life cycle.
Collapse
Affiliation(s)
- Ellen Ketter
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
33
|
Kallemeijn WW, Lueg GA, Faronato M, Hadavizadeh K, Goya Grocin A, Song OR, Howell M, Calado DP, Tate EW. Validation and Invalidation of Chemical Probes for the Human N-myristoyltransferases. Cell Chem Biol 2019; 26:892-900.e4. [PMID: 31006618 PMCID: PMC6593224 DOI: 10.1016/j.chembiol.2019.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022]
Abstract
On-target, cell-active chemical probes are of fundamental importance in chemical and cell biology, whereas poorly characterized probes often lead to invalid conclusions. Human N-myristoyltransferase (NMT) has attracted increasing interest as target in cancer and infectious diseases. Here we report an in-depth comparison of five compounds widely applied as human NMT inhibitors, using a combination of quantitative whole-proteome N-myristoylation profiling, biochemical enzyme assays, cytotoxicity, in-cell protein synthesis, and cell-cycle assays. We find that N-myristoylation is unaffected by 2-hydroxymyristic acid (100 μM), D-NMAPPD (30 μM), or Tris-DBA palladium (10 μM), with the latter compounds causing cytotoxicity through mechanisms unrelated to NMT. In contrast, drug-like inhibitors IMP-366 (DDD85646) and IMP-1088 delivered complete and specific inhibition of N-myristoylation in a range of cell lines at 1 μM and 100 nM, respectively. This study enables the selection of appropriate on-target probes for future studies and suggests the need for reassessment of previous studies that used off-target compounds.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Gregor A Lueg
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Monica Faronato
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kate Hadavizadeh
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Andrea Goya Grocin
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Ok-Ryul Song
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dinis P Calado
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
34
|
Owino CO, Chu JJH. Recent advances on the role of host factors during non-poliovirus enteroviral infections. J Biomed Sci 2019; 26:47. [PMID: 31215493 PMCID: PMC6582496 DOI: 10.1186/s12929-019-0540-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Non-polio enteroviruses are emerging viruses known to cause outbreaks of polio-like infections in different parts of the world with several cases already reported in Asia Pacific, Europe and in United States of America. These outbreaks normally result in overstretching of health facilities as well as death in children under the age of five. Most of these infections are usually self-limiting except for the neurological complications associated with human enterovirus A 71 (EV-A71). The infection dynamics of these viruses have not been fully understood, with most inferences made from previous studies conducted with poliovirus.Non-poliovirus enteroviral infections are responsible for major outbreaks of hand, foot and mouth disease (HFMD) often associated with neurological complications and severe respiratory diseases. The myriad of disease presentations observed so far in children calls for an urgent need to fully elucidate the replication processes of these viruses. There are concerted efforts from different research groups to fully map out the role of human host factors in the replication cycle of these viral infections. Understanding the interaction between viral proteins and human host factors will unravel important insights on the lifecycle of this groups of viruses.This review provides the latest update on the interplay between human host factors/processes and non-polio enteroviruses (NPEV). We focus on the interactions involved in viral attachment, entry, internalization, uncoating, replication, virion assembly and eventual egress of the NPEV from the infected cells. We emphasize on the virus- human host interplay and highlight existing knowledge gaps that needs further studies. Understanding the NPEV-human host factors interactions will be key in the design and development of vaccines as well as antivirals against enteroviral infections. Dissecting the role of human host factors during NPEV infection cycle will provide a clear picture of how NPEVs usurp the human cellular processes to establish an efficient infection. This will be a boost to the drug and vaccine development against enteroviruses which will be key in control and eventual elimination of the viral infections.
Collapse
Affiliation(s)
- Collins Oduor Owino
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|