1
|
Chakraborty S, Ganguli D, Nagaraja T, Gope A, Dey S, Pal A, Mandal RS, Das SS, Das S. Salmonella Typhi serine threonine kinase T4519 induces lysosomal membrane permeabilization by manipulating Toll-like receptor 2-Cystatin B-Cathepsin B-NF-κB-reactive oxygen species pathway and promotes survival within human macrophages. PLoS Pathog 2025; 21:e1013041. [PMID: 40168426 PMCID: PMC11984733 DOI: 10.1371/journal.ppat.1013041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/10/2025] [Accepted: 03/12/2025] [Indexed: 04/03/2025] Open
Abstract
Intracellular pathogens of Salmonella spp. survive and replicate within the phagosomes, called Salmonella-containing vacuoles (SCVs) inside macrophages by manipulating phagosomal maturation and phagolysosome formation. While controversies exist about the phagosomal traffic of Salmonella Typhimurium, little studies were carried out with the intracellular survival mechanisms of Salmonella Typhi (S. Typhi). We had previously reported that a eukaryote-like serine/threonine kinase of S. Typhi (T4519) contributes to survival within macrophages and activates host pro-inflammatory signaling pathways regulated by NF-κB. However, neither the mechanisms underlying NF-κB activation nor how it contributes to intracellular survival of S. Typhi were studied. Here we show, by using antibody-mediated blocking and gene knockdown studies that T4519 activates Toll-like receptor 2 (TLR2) signals in the human monocyte-derived macrophages. We computationally predicted the NH2-terminal glycine rich repeat domain of T4519 as the TLR2-binding moiety and confirmed the interaction by co-immunoprecipitation experiment. TLR2-T4519 interaction transcriptionally repressed cystatin B, a cathepsin B inhibitor, leading to the activation of cytosolic cathepsin B, leaked from the lysosomes of the infected cells. Through a series of RT-qPCR, western blotting, gene knockdown, flow cytometry and confocal microscopy experiments, we have shown that active cytosolic cathepsin B cleaves IKB-α, resulting in nuclear translocation of NF-κB and transactivation of its target genes, including reactive oxygen species (ROS), which in turn induces lysosomal membrane permeabilization (LMP). TLR2-dependent targeting of the cystatin B-cathepsin B-NF-κB-ROS pathways by T4519, leading to LMP promotes phagosomal survival of S. Typhi. This study describes a unique mechanism of the exploitation of host NF-κB signaling pathways by bacterial pathogens to promote its own persistence within macrophage cells.
Collapse
Affiliation(s)
- Swarnali Chakraborty
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
| | - Debayan Ganguli
- Division of Infectious Diseases, Washington school of medicine, St. Louis, Missouri, United States of America
| | - Theeya Nagaraja
- Biocon Biologics Limited- R&D centre, Chennai, Tamil Nadu, India
| | - Animesh Gope
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
| | - Sudip Dey
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
| | - Ananda Pal
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sudipta Sekhar Das
- Department of Cancer, Apollo Multispeciality Hospitals Limited, Kolkata, West Bengal, India
| | - Santasabuj Das
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
- ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Na-Phatthalung P, Sun S, Xie E, Wang J, Min J, Wang F. The zinc transporter Slc30a1 (ZnT1) in macrophages plays a protective role against attenuated Salmonella. eLife 2024; 13:e89509. [PMID: 39475776 PMCID: PMC11524588 DOI: 10.7554/elife.89509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/05/2024] [Indexed: 11/02/2024] Open
Abstract
The zinc transporter Slc30a1 plays an essential role in maintaining cellular zinc homeostasis. Despite this, its functional role in macrophages remains largely unknown. Here, we examine the function of Slc30a1 in host defense using mice models infected with an attenuated stain of Salmonella enterica Typhimurium and primary macrophages infected with the attenuated Salmonella. Bulk transcriptome sequencing in primary macrophages identifies Slc30a1 as a candidate in response to Salmonella infection. Whole-mount immunofluorescence and confocal microscopy imaging of primary macrophage and spleen from Salmonella-infected Slc30a1flag-EGFP mice demonstrate Slc30a1 expression is increased in infected macrophages with localization at the plasma membrane and in the cytosol. Lyz2-Cre-driven Slc30a1 conditional knockout mice (Slc30a1fl/fl;Lyz2-Cre) exhibit increased susceptibility to Salmonella infection compared to control littermates. We demonstrate that Slc30a1-deficient macrophages are defective in intracellular killing, which correlated with reduced activation of nuclear factor kappa B and reduction in nitric oxide (NO) production. Notably, the model exhibits intracellular zinc accumulation, demonstrating that Slc30a1 is required for zinc export. We thus conclude that zinc export enables the efficient NO-mediated antibacterial activity of macrophages to control invading Salmonella.
Collapse
Affiliation(s)
- Pinanong Na-Phatthalung
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of MedicineHangzhouChina
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of MedicineHangzhouChina
| | - Shumin Sun
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of MedicineHangzhouChina
| | - Enjun Xie
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of MedicineHangzhouChina
| | - Jia Wang
- School of Public Health, Zhengzhou UniversityZhengzhouChina
| | - Junxia Min
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of MedicineHangzhouChina
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
3
|
Martinez-Soto CE, McClelland M, Kropinski AM, Lin JT, Khursigara CM, Anany H. Multireceptor phage cocktail against Salmonella enterica to circumvent phage resistance. MICROLIFE 2024; 5:uqae003. [PMID: 38545601 PMCID: PMC10972627 DOI: 10.1093/femsml/uqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Non-Typhoidal Salmonella (NTS) is one of the most common food-borne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multireceptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22 × 10-6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 h at 25°C and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.
Collapse
Affiliation(s)
- Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, 811 Health Sciences Road, CA 92614, United States
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, 419 Gordon St, Guelph, ON N1G 2W1, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Kim JS, Liu L, Kant S, Orlicky DJ, Uppalapati S, Margolis A, Davenport BJ, Morrison TE, Matsuda J, McClelland M, Jones-Carson J, Vazquez-Torres A. Anaerobic respiration of host-derived methionine sulfoxide protects intracellular Salmonella from the phagocyte NADPH oxidase. Cell Host Microbe 2024; 32:411-424.e10. [PMID: 38307020 PMCID: PMC11396582 DOI: 10.1016/j.chom.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice. Reactive oxygen species generated by phagocytes oxidize methionine, generating methionine sulfoxide. Anaerobic Salmonella uses the molybdenum cofactor-containing DmsABC enzymatic complex to reduce methionine sulfoxide. The enzymatic activity of the methionine sulfoxide reductase DmsABC helps Salmonella maintain an alkaline cytoplasm that supports the synthesis of the antioxidant hydrogen sulfide via cysteine desulfuration while providing a source of methionine and fostering redox balancing by associated dehydrogenases. Our investigations demonstrate that nontyphoidal Salmonella responding to oxidative stress exploits the anaerobic metabolism associated with dmsABC gene products, a pathway that has accrued inactivating mutations in human-adapted typhoidal serovars.
Collapse
Affiliation(s)
- Ju-Sim Kim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sashi Kant
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Siva Uppalapati
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alyssa Margolis
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Michael McClelland
- University of California Irvine School of Medicine, Department of Microbiology and Molecular Genetics, Irvine, CA, USA
| | - Jessica Jones-Carson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andres Vazquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Webster CM, Shepherd M. The nitric oxide paradox: antimicrobial and inhibitor of antibiotic efficacy. Emerg Top Life Sci 2024; 8:37-43. [PMID: 37975610 PMCID: PMC10903473 DOI: 10.1042/etls20230114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
It is well-known that antibiotics target energy-consuming processes and a significant body of research now supports the conclusion that the metabolic state of bacteria can have a profound impact upon the efficacy of antibiotics. Several articles implicate bacterial energetics and the respiratory inhibitor nitric oxide (NO) in this process, although pinpointing the precise mechanism for how NO can diminish the potency of a range of antibiotics through modulating bacterial energy metabolism has proved challenging. Herein, we introduce the role of NO during infection, consider known links between NO and antibiotic efficacy, and discuss potential mechanisms via which NO present at the site of infection could mediate these effects through controlling bacterial energetics. This perspective article highlights an important relationship between NO and antibiotic action that has largely been overlooked and outlines future considerations for the development of new drugs and therapies that target bacterial energy metabolism.
Collapse
Affiliation(s)
- Calum M Webster
- School of Biosciences, RAPID Group, University of Kent, Canterbury CT2 7NJ, U.K
| | - Mark Shepherd
- School of Biosciences, RAPID Group, University of Kent, Canterbury CT2 7NJ, U.K
| |
Collapse
|
6
|
Alam S, Doherty E, Ortega-Prieto P, Arizanova J, Fets L. Membrane transporters in cell physiology, cancer metabolism and drug response. Dis Model Mech 2023; 16:dmm050404. [PMID: 38037877 PMCID: PMC10695176 DOI: 10.1242/dmm.050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
Collapse
Affiliation(s)
- Sara Alam
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Emily Doherty
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paula Ortega-Prieto
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Julia Arizanova
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
7
|
Zhai YJ, Liu PY, Luo XW, Liang J, Sun YW, Cui XD, He DD, Pan YS, Wu H, Hu GZ. Analysis of Regulatory Mechanism of AcrB and CpxR on Colistin Susceptibility Based on Transcriptome and Metabolome of Salmonella Typhimurium. Microbiol Spectr 2023; 11:e0053023. [PMID: 37358428 PMCID: PMC10434024 DOI: 10.1128/spectrum.00530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023] Open
Abstract
With the increasing and inappropriate use of colistin, the emerging colistin-resistant isolates have been frequently reported during the last few decades. Therefore, new potential targets and adjuvants to reverse colistin resistance are urgently needed. Our previous study has confirmed a marked increase of colistin susceptibility (16-fold compared to the wild-type Salmonella strain) of cpxR overexpression strain JSΔacrBΔcpxR::kan/pcpxR (simplified as JSΔΔ/pR). To searching for potential new drug targets, the transcriptome and metabolome analysis were carried out in this study. We found that the more susceptible strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels. The virulence-related genes and colistin resistance-related genes (CRRGs) were significantly downregulated in JSΔΔ/pR. There were significant accumulation of citrate, α-ketoglutaric acid, and agmatine sulfate in JSΔΔ/pR, and exogenous supplement of them could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. Additionally, we also demonstrated that AcrB and CpxR could target the ATP and reactive oxygen species (ROS) generation, but not proton motive force (PMF) production pathway to potentiate antibacterial activity of colistin. Collectively, these findings have revealed several previously unknown mechanisms contributing to increased colistin susceptibility and identified potential targets and adjuvants for potentiating colistin treatment of Salmonella infections. IMPORTANCE Emergence of multidrug-resistant (MDR) Gram-negative (G-) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G- bacteria are global challenges for the life sciences community and public health. In this paper, we demonstrated the more susceptibility strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels and revealed several previously unknown regulatory mechanisms of AcrB and CpxR on the colistin susceptibility. Importantly, we found that exogenous supplement of citrate, α-ketoglutaric acid, and agmatine sulfate could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. These results provide a theoretical basis for finding potential new drug targets and adjuvants.
Collapse
Affiliation(s)
- Ya-Jun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pei-Yi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xing-Wei Luo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun Liang
- Zhengzhou Animal Husbandry Bureau, Zhengzhou, China
| | - Ya-Wei Sun
- Henan Institute of Science and Technology, Xinxiang, China
| | - Xiao-Die Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dan-Dan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong-Zheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Liu Y, Yan Y, Yang K, Yang X, Dong P, Wu H, Luo X, Zhang Y, Zhu L. Inhibitory mechanism of Salmonella Derby biofilm formation by sub-inhibitory concentrations of clove and oregano essential oil: A global transcriptomic study. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
9
|
Visconti S, Astolfi ML, Battistoni A, Ammendola S. Impairment of the Zn/Cd detoxification systems affects the ability of Salmonella to colonize Arabidopsis thaliana. Front Microbiol 2022; 13:975725. [PMID: 36071967 PMCID: PMC9441889 DOI: 10.3389/fmicb.2022.975725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
Salmonella capacity to colonize different environments depends on its ability to respond efficiently to fluctuations in micronutrient availability. Among micronutrients, Zn, besides playing an essential role in bacterial physiology, is a key element whose concentration can influence bacterial survival in a particular niche. Plant colonization by Salmonella enterica was described for several years, and some molecular determinants involved in this host-pathogen interaction have started to be characterized. However, it is still unclear if Zn plays a role in the outcome of this interaction, as well established for animal hosts that employ nutritional immunity strategies to counteract pathogens infections. In this study, we have investigated the involvement of Salmonella Typhimurium main effectors of zinc homeostasis in plant colonization, using Arabidopsis thaliana as a model host. The results show that to colonize plant tissues, Salmonella takes advantage of its ability to export excess metal through the efflux pumps ZntA and ZitB. In fact, the deletion of these Zn/Cd detoxification systems can affect bacterial persistence in the shoots, depending on metal availability in the plant tissues. The importance of Salmonella ability to export excess metal was enhanced in the colonization of plants grown in high Zn conditions. On the contrary, the bacterial disadvantage related to Zn detoxification impairment can be abrogated if the plant cannot efficiently translocate Zn to the shoots. Overall, our work highlights the role of Zn in Salmonella-plant interaction and suggests that modulation of plant metal content through biofortification may be an efficient strategy to control pathogen colonization.
Collapse
Affiliation(s)
- Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Serena Ammendola
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Serena Ammendola,
| |
Collapse
|
10
|
Uppalapati SR, Vazquez-Torres A. Manganese Utilization in Salmonella Pathogenesis: Beyond the Canonical Antioxidant Response. Front Cell Dev Biol 2022; 10:924925. [PMID: 35903545 PMCID: PMC9315381 DOI: 10.3389/fcell.2022.924925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The metal ion manganese (Mn2+) is equally coveted by hosts and bacterial pathogens. The host restricts Mn2+ in the gastrointestinal tract and Salmonella-containing vacuoles, as part of a process generally known as nutritional immunity. Salmonella enterica serovar Typhimurium counteract Mn2+ limitation using a plethora of metal importers, whose expression is under elaborate transcriptional and posttranscriptional control. Mn2+ serves as cofactor for a variety of enzymes involved in antioxidant defense or central metabolism. Because of its thermodynamic stability and low reactivity, bacterial pathogens may favor Mn2+-cofactored metalloenzymes during periods of oxidative stress. This divalent metal catalyzes metabolic flow through lower glycolysis, reductive tricarboxylic acid and the pentose phosphate pathway, thereby providing energetic, redox and biosynthetic outputs associated with the resistance of Salmonella to reactive oxygen species generated in the respiratory burst of professional phagocytic cells. Combined, the oxyradical-detoxifying properties of Mn2+ together with the ability of this divalent metal cation to support central metabolism help Salmonella colonize the mammalian gut and establish systemic infections.
Collapse
Affiliation(s)
- Siva R. Uppalapati
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Siva R. Uppalapati, ; Andres Vazquez-Torres,
| | - Andres Vazquez-Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States,*Correspondence: Siva R. Uppalapati, ; Andres Vazquez-Torres,
| |
Collapse
|
11
|
Sengupta S, Nath R, Bhuyan R, Bhattacharjee A. Variation in glucose metabolism under acidified sodium nitrite mediated nitrosative stress in Saccharomyces cerevisiae. J Appl Microbiol 2022; 133:1660-1675. [PMID: 35702895 DOI: 10.1111/jam.15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
AIMS The work aimed to understand the important changes during glucose metabolism in Saccharomyces cerevisiae under acidified sodium nitrite (ac.NaNO2 ) mediated nitrosative stress. METHODS AND RESULTS Confocal microscopy and fluorescence-activated cell sorting analysis were performed to investigate the generation of reactive nitrogen and oxygen species, and redox homeostasis under nitrosative stress was also characterized. Quantitative PCR analysis revealed that the expression of ADH genes was upregulated under such condition, whereas the ACO2 gene was downregulated. Some of the enzymes of the tricarboxylic acid cycle were partially inhibited, whereas malate metabolism and alcoholic fermentation were increased under nitrosative stress. Kinetics of ethanol production was also characterized. A network analysis was conducted to validate our findings. In the presence of ac.NaNO2 , in vitro protein tyrosine nitration formation was checked by western blotting using pure alcohol dehydrogenase and aconitase. CONCLUSIONS Alcoholic fermentation rate was increased under stress condition and this altered metabolism might be conjoined with the defence machinery to overcome the nitrosative stress. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first work of this kind where the role of metabolism under nitrosative stress has been characterized in S. cerevisiae and it will provide a base to develop an alternative method of industrial ethanol production.
Collapse
Affiliation(s)
- Swarnab Sengupta
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Rohan Nath
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Rajabrata Bhuyan
- Department of Bio-Science and Biotechnology, Banasthali Vidyapith (Deemed) University, Banasthali, Rajasthan, India
| | - Arindam Bhattacharjee
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| |
Collapse
|
12
|
Adenosine Awakens Metabolism to Enhance Growth-Independent Killing of Tolerant and Persister Bacteria across Multiple Classes of Antibiotics. mBio 2022; 13:e0048022. [PMID: 35575513 PMCID: PMC9239199 DOI: 10.1128/mbio.00480-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metabolic and growth arrest are primary drivers of antibiotic tolerance and persistence in clinically diverse bacterial pathogens. We recently showed that adenosine (ADO) suppresses bacterial growth under nutrient-limiting conditions. In the current study, we show that despite the growth-suppressive effect of ADO, extracellular ADO enhances antibiotic killing in both Gram-negative and Gram-positive bacteria by up to 5 orders of magnitude. The ADO-potentiated antibiotic activity is dependent on purine salvage and is paralleled with a suppression of guanosine tetraphosphate synthesis and the massive accumulation of ATP and GTP. These changes in nucleoside phosphates coincide with transient increases in rRNA transcription and proton motive force. The potentiation of antibiotic killing by ADO is manifested against bacteria grown under both aerobic and anaerobic conditions, and it is exhibited even in the absence of alternative electron acceptors such as nitrate. ADO potentiates antibiotic killing by generating proton motive force and can occur independently of an ATP synthase. Bacteria treated with an uncoupler of oxidative phosphorylation and NADH dehydrogenase-deficient bacteria are refractory to the ADO-potentiated killing, suggesting that the metabolic awakening induced by this nucleoside is intrinsically dependent on an energized membrane. In conclusion, ADO represents a novel example of metabolite-driven but growth-independent means to reverse antibiotic tolerance. Our investigations identify the purine salvage pathway as a potential target for the development of therapeutics that may improve infection clearance while reducing the emergence of antibiotic resistance. IMPORTANCE Antibiotic tolerance, which is a hallmark of persister bacteria, contributes to treatment-refractory infections and the emergence of heritable antimicrobial resistance. Drugs that reverse tolerance and persistence may become part of the arsenal to combat antimicrobial resistance. Here, we demonstrate that salvage of extracellular ADO reduces antibiotic tolerance in nutritionally stressed Escherichia coli, Salmonella enterica, and Staphylococcus aureus. ADO potentiates bacterial killing under aerobic and anaerobic conditions and takes place in bacteria lacking the ATP synthase. However, the sensitization to antibiotic killing elicited by ADO requires an intact NADH dehydrogenase, suggesting a requirement for an energized electron transport chain. ADO antagonizes antibiotic tolerance by activating ATP and GTP synthesis, promoting proton motive force and cellular respiration while simultaneously suppressing the stringent response. These investigations reveal an unprecedented role for purine salvage stimulation as a countermeasure of antibiotic tolerance and the emergence of antimicrobial resistance.
Collapse
|
13
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
14
|
Liu X, Wu Y, Mao C, Shen J, Zhu K. Host-acting antibacterial compounds combat cytosolic bacteria. Trends Microbiol 2022; 30:761-777. [DOI: 10.1016/j.tim.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 01/25/2023]
|
15
|
Abstract
Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is an enzootic, obligate, intracellular bacterial pathogen. Nitric oxide (NO) synthesized by the inducible NO synthase (iNOS) is a potent antimicrobial component of innate immunity and has been implicated in the control of virulent Rickettsia spp. in diverse cell types. In this study, we examined the antibacterial role of NO on R. rickettsii. Our results indicate that NO challenge dramatically reduces R. rickettsii adhesion through the disruption of bacterial energetics. Additionally, NO-treated R. rickettsii cells were unable to synthesize protein or replicate in permissive cells. Activated, NO-producing macrophages restricted R. rickettsii infections, but inhibition of iNOS ablated the inhibition of bacterial growth. These data indicate that NO is a potent antirickettsial effector of innate immunity that targets energy generation in these pathogenic bacteria to prevent growth and subversion of infected host cells.
Collapse
|
16
|
Cappable-Seq Reveals Specific Patterns of Metabolism and Virulence for Salmonella Typhimurium Intracellular Survival within Acanthamoeba castellanii. Int J Mol Sci 2021; 22:ijms22169077. [PMID: 34445780 PMCID: PMC8396566 DOI: 10.3390/ijms22169077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023] Open
Abstract
The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction mechanisms and bacterial genes involved are unclear. Here, we characterized global gene expression patterns of S. enterica serovar Typhimurium within Acanthamoeba castellanii at the early stage of infection by Cappable-Seq. Gene expression features of S. Typhimurium within A. castellanii were presented with downregulation of glycolysis-related, and upregulation of glyoxylate cycle-related genes. Expression of Salmonella Pathogenicity Island-1 (SPI-1), chemotaxis system, and flagellar apparatus genes was upregulated. Furthermore, expression of genes mediating oxidative stress response and iron uptake was upregulated within A. castellanii as well as within mammalian phagocytes. Hence, global S. Typhimurium gene expression patterns within A. castellanii help better understand the molecular mechanisms of Salmonella adaptation to an amoeba cell and intracellular persistence in protozoa inhabiting water and soil ecosystems.
Collapse
|
17
|
Quan G, Xia P, Lian S, Wu Y, Zhu G. Zinc uptake system ZnuACB is essential for maintaining pathogenic phenotype of F4ac + enterotoxigenic E. coli (ETEC) under a zinc restricted environment. Vet Res 2020; 51:127. [PMID: 33028391 PMCID: PMC7539401 DOI: 10.1186/s13567-020-00854-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023] Open
Abstract
Zinc is the second trace element of living organisms after iron. Given its crucial importance, mammalian hosts restrict the bioavailability of Zinc ions (Zn2+) to bacterial pathogens. As a countermeasure, pathogens utilize high affinity Zn2+ transporters, such as ZnuACB to compete with the host for zinc. It is essential for bacteria to maintain zinc homeostasis and thus maintain their physiology and pathogenesis. In an attempt to uncover the zinc transporter in F4+ enterotoxigenic E. coli (ETEC) C83902, we analyzed two RNA-seq data sets of bacteria samples when different zinc treatments (restriction or abundance) were applied. Considering data revealing that the high affinity zinc uptake system ZnuACB acts as the main transporter in ETEC C83902 to resist zinc deficiency, we deleted znuACB genes to study the role of them in ETEC C83902. The deletion of znuACB genes results in growth perturbation and a sharp decrease in the ability of biofilm formation and adhesion of bacteria in vitro. Taking the data together, this study demonstrates that the ZnuACB system is required for ETEC C83902 to acquire zinc, which highly contributes to ETEC pathogenicity as well.
Collapse
Affiliation(s)
- Guomei Quan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Chen M, Sun H, Boot M, Shao L, Chang SJ, Wang W, Lam TT, Lara-Tejero M, Rego EH, Galán JE. Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against Salmonella. Science 2020; 369:450-455. [PMID: 32703879 DOI: 10.1126/science.aaz1333] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/26/2020] [Accepted: 05/15/2020] [Indexed: 11/02/2022]
Abstract
The guanosine triphosphatase (GTPase) Rab32 coordinates a cell-intrinsic host defense mechanism that restricts the replication of intravacuolar pathogens such as Salmonella Here, we show that this mechanism requires aconitate decarboxylase 1 (IRG1), which synthesizes itaconate, a metabolite with antimicrobial activity. We find that Rab32 interacts with IRG1 on Salmonella infection and facilitates the delivery of itaconate to the Salmonella-containing vacuole. Mice defective in IRG1 rescued the virulence defect of a S. enterica serovar Typhimurium mutant specifically defective in its ability to counter the Rab32 defense mechanism. These studies provide a link between a metabolite produced in the mitochondria after stimulation of innate immune receptors and a cell-autonomous defense mechanism that restricts the replication of an intracellular bacterial pathogen.
Collapse
Affiliation(s)
- Meixin Chen
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Hui Sun
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Maikel Boot
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Lin Shao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Shu-Jung Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Weiwei Wang
- WM Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Tukiet T Lam
- WM Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06536, USA.,Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
19
|
Kehl A, Noster J, Hensel M. Eat in or Take out? Metabolism of Intracellular Salmonella enterica. Trends Microbiol 2020; 28:644-654. [DOI: 10.1016/j.tim.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/15/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
|
20
|
King AN, de Mets F, Brinsmade SR. Who's in control? Regulation of metabolism and pathogenesis in space and time. Curr Opin Microbiol 2020; 55:88-96. [PMID: 32532689 PMCID: PMC7323893 DOI: 10.1016/j.mib.2020.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Bacterial pathogens need to sense and respond to their environments during infection to align cell metabolism and virulence factor production to survive and battle host defenses. Complex regulatory networks including ligand-binding transcription factors, two-component systems, RNA-binding proteins, and small non-coding regulatory RNAs adjust gene expression programs in response to changes in metabolic fluxes, environmental cues, and nutrient availability. Recent studies underlined that these different layers of regulation occur along varying spatial and temporal scales, leading to changes in cell behavior and heterogeneity among the bacterial community. This brief review will highlight current research emphasizing that cell metabolism and pathogenesis are inextricably intertwined in both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Alyssa N King
- Department of Biology, Georgetown University, Washington, DC, USA
| | - François de Mets
- Department of Biology, Georgetown University, Washington, DC, USA
| | | |
Collapse
|
21
|
Stocks CJ, von Pein JB, Curson JEB, Rae J, Phan MD, Foo D, Bokil NJ, Kambe T, Peters KM, Parton RG, Schembri MA, Kapetanovic R, Sweet MJ. Frontline Science: LPS-inducible SLC30A1 drives human macrophage-mediated zinc toxicity against intracellular Escherichia coli. J Leukoc Biol 2020; 109:287-297. [PMID: 32441444 PMCID: PMC7891337 DOI: 10.1002/jlb.2hi0420-160r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
TLR-inducible zinc toxicity is an antimicrobial mechanism utilized by macrophages, however knowledge of molecular mechanisms mediating this response is limited. Here, we show that E. coli exposed to zinc stress within primary human macrophages reside in membrane-bound vesicular compartments. Since SLC30A zinc exporters can deliver zinc into the lumen of vesicles, we examined LPS-regulated mRNA expression of Slc30a/SLC30A family members in primary mouse and human macrophages. A number of these transporters were dynamically regulated in both cell populations. In human monocyte-derived macrophages, LPS strongly up-regulated SLC30A1 mRNA and protein expression. In contrast, SLC30A1 was not LPS-inducible in macrophage-like PMA-differentiated THP-1 cells. We therefore ectopically expressed SLC30A1 in these cells, finding that this was sufficient to promote zinc-containing vesicle formation. The response was similar to that observed following LPS stimulation. Ectopically expressed SLC30A1 localized to both the plasma membrane and intracellular zinc-containing vesicles within LPS-stimulated THP-1 cells. Inducible overexpression of SLC30A1 in THP-1 cells infected with the Escherichia coli K-12 strain MG1655 augmented the zinc stress response of intracellular bacteria and promoted clearance. Furthermore, in THP-1 cells infected with an MG1655 zinc stress reporter strain, all bacteria contained within SLC30A1-positive compartments were subjected to zinc stress. Thus, SLC30A1 marks zinc-containing compartments associated with TLR-inducible zinc toxicity in human macrophages, and its ectopic over-expression is sufficient to initiate this antimicrobial pathway in these cells. Finally, SLC30A1 silencing did not compromise E. coli clearance by primary human macrophages, suggesting that other zinc exporters may also contribute to the zinc toxicity response.
Collapse
Affiliation(s)
- Claudia J Stocks
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jessica B von Pein
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - James E B Curson
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - James Rae
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia
| | - Minh-Duy Phan
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Darren Foo
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nilesh J Bokil
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kate M Peters
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
22
|
Chakraborty S, Liu L, Fitzsimmons L, Porwollik S, Kim JS, Desai P, McClelland M, Vazquez-Torres A. Glycolytic reprograming in Salmonella counters NOX2-mediated dissipation of ΔpH. Nat Commun 2020; 11:1783. [PMID: 32286292 PMCID: PMC7156505 DOI: 10.1038/s41467-020-15604-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/09/2020] [Indexed: 01/16/2023] Open
Abstract
The microbial adaptations to the respiratory burst remain poorly understood, and establishing how the NADPH oxidase (NOX2) kills microbes has proven elusive. Here we demonstrate that NOX2 collapses the ΔpH of intracellular Salmonella Typhimurium. The depolarization experienced by Salmonella undergoing oxidative stress impairs folding of periplasmic proteins. Depolarization in respiring Salmonella mediates intense bactericidal activity of reactive oxygen species (ROS). Salmonella adapts to the challenges oxidative stress imposes on membrane bioenergetics by shifting redox balance to glycolysis and fermentation, thereby diminishing electron flow through the membrane, meeting energetic requirements and anaplerotically generating tricarboxylic acid intermediates. By diverting electrons away from the respiratory chain, glycolysis also enables thiol/disulfide exchange-mediated folding of bacterial cell envelope proteins during periods of oxidative stress. Thus, primordial metabolic pathways, already present in bacteria before aerobic respiration evolved, offer a solution to the stress ROS exert on molecular targets at the bacterial cell envelope. Chakraborty et al. show that phagocyte NADPH oxidase (NOX2) collapses the ΔpH of intracellular Salmonella Typhimurium, leading to oxidative damage of cell envelope proteins. Salmonella responds by shifting redox balance from respiration to glycolysis and fermentation, thereby facilitating folding of periplasmic functions.
Collapse
Affiliation(s)
- Sangeeta Chakraborty
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA
| | - Lin Liu
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA
| | - Liam Fitzsimmons
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, 240 Med Sci Bldg., Irvine, CA, 92697, USA
| | - Ju-Sim Kim
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, 240 Med Sci Bldg., Irvine, CA, 92697, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, 240 Med Sci Bldg., Irvine, CA, 92697, USA
| | - Andres Vazquez-Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave, Mail Box 8333, Aurora, CO, 80045, USA. .,Veterans Affairs Eastern Colorado Health Care System, Denver, CO, USA.
| |
Collapse
|
23
|
MacLean A, Bley AM, Appanna VP, Appanna VD. Metabolic manipulation by Pseudomonas fluorescens: a powerful stratagem against oxidative and metal stress. J Med Microbiol 2020; 69:339-346. [PMID: 31961786 DOI: 10.1099/jmm.0.001139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Metabolism is the foundation of all living organisms and is at the core of numerous if not all biological processes. The ability of an organism to modulate its metabolism is a central characteristic needed to proliferate, to be dormant and to survive any assault. Pseudomonas fluorescens is bestowed with a uniquely versatile metabolic framework that enables the microbe to adapt to a wide range of conditions including disparate nutrients and toxins. In this mini-review we elaborate on the various metabolic reconfigurations evoked by this microbial system to combat reactive oxygen/nitrogen species and metal stress. The fine-tuning of the NADH/NADPH homeostasis coupled with the production of α-keto-acids and ATP allows for the maintenance of a reductive intracellular milieu. The metabolic networks propelling the synthesis of metabolites like oxalate and aspartate are critical to keep toxic metals at bay. The biochemical processes resulting from these defensive mechanisms provide molecular clues to thwart infectious microbes and reveal elegant pathways to generate value-added products.
Collapse
Affiliation(s)
- Alex MacLean
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Anondo Michel Bley
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Varun P Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Vasu D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| |
Collapse
|
24
|
Jones-Carson J, Yahashiri A, Kim JS, Liu L, Fitzsimmons LF, Weiss DS, Vázquez-Torres A. Nitric oxide disrupts bacterial cytokinesis by poisoning purine metabolism. SCIENCE ADVANCES 2020; 6:eaaz0260. [PMID: 32133408 PMCID: PMC7043908 DOI: 10.1126/sciadv.aaz0260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/04/2019] [Indexed: 06/02/2023]
Abstract
Cytostasis is the most salient manifestation of the potent antimicrobial activity of nitric oxide (NO), yet the mechanism by which NO disrupts bacterial cell division is unknown. Here, we show that in respiring Escherichia coli, Salmonella, and Bacillus subtilis, NO arrests the first step in division, namely, the GTP-dependent assembly of the bacterial tubulin homolog FtsZ into a cytokinetic ring. FtsZ assembly fails in respiring cells because NO inactivates inosine 5'-monophosphate dehydrogenase in de novo purine nucleotide biosynthesis and quinol oxidases in the electron transport chain, leading to drastic depletion of nucleoside triphosphates, including the GTP needed for the polymerization of FtsZ. Despite inhibiting respiration and dissipating proton motive force, NO does not destroy Z ring formation and only modestly decreases nucleoside triphosphates in glycolytic cells, which obtain much of their ATP by substrate-level phosphorylation and overexpress inosine 5'-monophosphate dehydrogenase. Purine metabolism dictates the susceptibility of early morphogenic steps in cytokinesis to NO toxicity.
Collapse
Affiliation(s)
- Jessica Jones-Carson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Atsushi Yahashiri
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Ju-Sim Kim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Liam F. Fitzsimmons
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
- Veterans Administration Eastern Colorado Health Care System, Aurora, CO, USA
| |
Collapse
|
25
|
Reactive nitrogen species in host-bacterial interactions. Curr Opin Immunol 2019; 60:96-102. [PMID: 31200187 DOI: 10.1016/j.coi.2019.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Reactive nitrogen species play diverse and essential roles in host-pathogen interactions. Here, we review selected recent discoveries regarding nitric oxide (NO) in host defense and the pathogenesis of infection, mechanisms of bacterial NO resistance, production of NO by human macrophages, NO-based antimicrobial therapeutics and NO interactions with the gut microbiota.
Collapse
|