1
|
Er S, Soh M, Low A, Seedorf H. Parasalinivibrio latis gen. nov., sp. nov., isolated from the distal gut of healthy farmed Asian Seabass (Lates calcarifer). Antonie Van Leeuwenhoek 2024; 118:25. [PMID: 39520647 DOI: 10.1007/s10482-024-02036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Asian Seabass (Lates calcarifer) is widely farmed as a sustainable source of protein for countries in the tropical Indo-West Pacific region. However, microbial species of the gut microbiome of healthy Asian Seabass remain largely uncharacterized and uncultured. Here, we analysed the microbial composition along the gastrointestinal tract of a farmed healthy Asian Seabass. We used different cultivation approaches to obtain isolates from the seabass intestinal tract and describe the isolation and characterization of a novel strain, TLL-SE01T. Analysis of the strain's 16S rRNA gene indicates that the strain belongs to the family Vibrionaceae with Photobacterium damselae as its closest relative, albeit sharing only 94.8% (aligned region 1553 bp) nucleotide identity. Comparative genomic analysis with all validly published Vibrionaceae species with available genomes revealed average nucleotide identity (ANI) and DNA-DNA hybridisation (DDH) values of around 70% and 24% respectively to strain TLL-SE01T, which are well below proposed thresholds for species delineation (ANI, 95-96%; DDH, 70%). The alignment fraction and ANI genus demarcation boundaries for all genera in the Vibrionaceae family were determined for which strain TLL-SE01T is well below the calculated values, indicating that it belongs to a novel genus. Single- and core-gene phylogenetic analysis places strain TLL-SE01T in a monophyletic clade, further supporting its designation to a novel genus. Phenotypic comparison between strain TLL-SE01T and its close relatives indicated additional differences, such as growth response at different salt concentrations and different metabolic capabilities. Based on genotypic, phylogenetic and phenotypic differences to other Vibrionaceae species, we propose a novel species in a new genus, Parasalinivibrio latis gen. nov. sp. nov. and strain TLL-SE01T (= BCRC 81435T = JCM 36283T) as the type strain.
Collapse
Affiliation(s)
- Shuan Er
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Melissa Soh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Adrian Low
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Medicine, MD6-Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Henning Seedorf
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| |
Collapse
|
2
|
Hohl M, Banks EJ, Manley MP, Le TBK, Low HH. Bidirectional pilus processing in the Tad pilus system motor CpaF. Nat Commun 2024; 15:6635. [PMID: 39103374 PMCID: PMC11300603 DOI: 10.1038/s41467-024-50280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
The bacterial tight adherence pilus system (TadPS) assembles surface pili essential for adhesion and colonisation in many human pathogens. Pilus dynamics are powered by the ATPase CpaF (TadA), which drives extension and retraction cycles in Caulobacter crescentus through an unknown mechanism. Here we use cryogenic electron microscopy and cell-based light microscopy to characterise CpaF mechanism. We show that CpaF assembles into a hexamer with C2 symmetry in different nucleotide states. Nucleotide cycling occurs through an intra-subunit clamp-like mechanism that promotes sequential conformational changes between subunits. Moreover, a comparison of the active sites with different nucleotides bound suggests a mechanism for bidirectional motion. Conserved CpaF residues, predicted to interact with platform proteins CpaG (TadB) and CpaH (TadC), are mutated in vivo to establish their role in pilus processing. Our findings provide a model for how CpaF drives TadPS pilus dynamics and have broad implications for how other ancient type 4 filament family members power pilus assembly.
Collapse
Affiliation(s)
- Michael Hohl
- Department of Infectious Disease, Imperial College, London, UK
| | - Emma J Banks
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Max P Manley
- Department of Infectious Disease, Imperial College, London, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK.
| |
Collapse
|
3
|
Tekedar HC, Patel F, Blom J, Griffin MJ, Waldbieser GC, Kumru S, Abdelhamed H, Dharan V, Hanson LA, Lawrence ML. Tad pili contribute to the virulence and biofilm formation of virulent Aeromonas hydrophila. Front Cell Infect Microbiol 2024; 14:1425624. [PMID: 39145307 PMCID: PMC11322086 DOI: 10.3389/fcimb.2024.1425624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Type IV pili (T4P) are versatile proteinaceous protrusions that mediate diverse bacterial processes, including adhesion, motility, and biofilm formation. Aeromonas hydrophila, a Gram-negative facultative anaerobe, causes disease in a wide range of hosts. Previously, we reported the presence of a unique Type IV class C pilus, known as tight adherence (Tad), in virulent Aeromonas hydrophila (vAh). In the present study, we sought to functionalize the role of Tad pili in the pathogenicity of A. hydrophila ML09-119. Through a comprehensive comparative genomics analysis of 170 A. hydrophila genomes, the conserved presence of the Tad operon in vAh isolates was confirmed, suggesting its potential contribution to pathogenicity. Herein, the entire Tad operon was knocked out from A. hydrophila ML09-119 to elucidate its specific role in A. hydrophila virulence. The absence of the Tad operon did not affect growth kinetics but significantly reduced virulence in catfish fingerlings, highlighting the essential role of the Tad operon during infection. Biofilm formation of A. hydrophila ML09-119 was significantly decreased in the Tad operon deletant. Absence of the Tad operon had no effect on sensitivity to other environmental stressors, including hydrogen peroxide, osmolarity, alkalinity, and temperature; however, it was more sensitive to low pH conditions. Scanning electron microscopy revealed that the Tad mutant had a rougher surface structure during log phase growth than the wildtype strain, indicating the absence of Tad impacts the outer surface of vAh during cell division, of which the biological consequences are unknown. These findings highlight the role of Tad in vAh pathogenesis and biofilm formation, signifying the importance of T4P in bacterial infections.
Collapse
Affiliation(s)
- Hasan C. Tekedar
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Fenny Patel
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Jochen Blom
- Bioinformatics & Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Matt J. Griffin
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
- Thad Cochran National Warmwater Aquaculture Center, Stoneville, MS, United States
| | | | - Salih Kumru
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Vandana Dharan
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Larry A. Hanson
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Mark L. Lawrence
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
4
|
Zhang T, Ji S, Zhang M, Wu F, Li X, Luo X, Huang Q, Li M, Zhang Y, Lu R. Effect of capsular polysaccharide phase variation on biofilm formation, motility and gene expression in Vibrio vulnificus. Gut Pathog 2024; 16:40. [PMID: 39075606 PMCID: PMC11287873 DOI: 10.1186/s13099-024-00620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/25/2024] [Indexed: 07/31/2024] Open
Abstract
Vibrio vulnificus, a significant marine pathogen, undergoes opaque (Op)-translucent (Tr) colony switching based on whether capsular polysaccharide (CPS) is produced. CPS phase variation is sometime accompanied by genetic variation or down-regulation of particular genes, such as wzb. In addition, CPS prevents biofilm formation and is important to the virulence of V. vulnificus. However, the extent to which there is a difference in gene expression between Tr and Op colonies and the impact of CPS phase variation on other behaviors of V. vulnificus remain unknown. In this work, the data have shown that CPS phase variation of V. vulnificus is affected by incubation time. Tr and Op strains exhibited similar growth rates. However, Tr strains had enhanced biofilm formation capacities but reduced swimming motility compared to Op strains. The RNA-seq assay revealed 488 differentially expressed genes, with 214 downregulated and 274 upregulated genes, between Tr and Op colonies. Genes associated with Tad pili and CPS were downregulated, whereas those involved in flagellum were upregulated, in Tr colonies compared with Op colonies. In addition, 9 putative c-di-GMP metabolism-associated genes and 28 genes encoding putative regulators were significantly differentially expressed, suggesting that CPS phase variation is probably strictly regulated in V. vulnificus. Moreover, 8 genes encoding putative porins were also differentially expressed between the two phenotypic colonies, indicating that bacterial outer membrane was remodeled during CPS phase variation. In brief, this work highlighted the gene expression profiles associated with CPS phase variation, but more studies should be performed to disclose the intrinsic mechanisms in the future.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
- School of Medicine, Nantong University, Nantong, Jiangsu, 226019, China
| | - Shenjie Ji
- Department of Clinical Laboratory, Qidong People's Hospital, Qidong, Jiangsu, 226200, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Fei Wu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Qinglian Huang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
- School of Medicine, Nantong University, Nantong, Jiangsu, 226019, China
- Department of Clinical Laboratory, Qidong People's Hospital, Qidong, Jiangsu, 226200, China
| | - Min Li
- Department of Gastroenterology and Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China.
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, 226006, China.
- School of Medicine, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
5
|
Whitfield GB, Brun YV. The type IVc pilus: just a Tad different. Curr Opin Microbiol 2024; 79:102468. [PMID: 38579360 DOI: 10.1016/j.mib.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Bacteria utilize type IV pili (T4P) to interact with their environment, where they facilitate processes including motility, adherence, and DNA uptake. T4P require multisubunit, membrane-spanning nanomachines for assembly. The tight adherence (Tad) pili are an Archaea-derived T4P subgroup whose machinery exhibits significant mechanistic and architectural differences from bacterial type IVa and IVb pili. Most Tad biosynthetic genes are encoded in a single locus that is widespread in bacteria due to facile acquisition via horizontal gene transfer. These loci experience extensive structural rearrangements, including the acquisition of novel regulatory or biosynthetic genes, which fine-tune their function. This has permitted their integration into many different bacterial lifestyles, including the Caulobacter crescentus cell cycle, Myxococcus xanthus predation, and numerous plant and mammalian pathogens and symbionts.
Collapse
Affiliation(s)
- Gregory B Whitfield
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Yves V Brun
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
6
|
Tassinari M, Rudzite M, Filloux A, Low HH. Assembly mechanism of a Tad secretion system secretin-pilotin complex. Nat Commun 2023; 14:5643. [PMID: 37704603 PMCID: PMC10499894 DOI: 10.1038/s41467-023-41200-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
The bacterial Tight adherence Secretion System (TadSS) assembles surface pili that drive cell adherence, biofilm formation and bacterial predation. The structure and mechanism of the TadSS is mostly unknown. This includes characterisation of the outer membrane secretin through which the pilus is channelled and recruitment of its pilotin. Here we investigate RcpA and TadD lipoprotein from Pseudomonas aeruginosa. Light microscopy reveals RcpA colocalising with TadD in P. aeruginosa and when heterologously expressed in Escherichia coli. We use cryogenic electron microscopy to determine how RcpA and TadD assemble a secretin channel with C13 and C14 symmetries. Despite low sequence homology, we show that TadD shares a similar fold to the type 4 pilus system pilotin PilF. We establish that the C-terminal four residues of RcpA bind TadD - an interaction essential for secretin formation. The binding mechanism between RcpA and TadD appears distinct from known secretin-pilotin pairings in other secretion systems.
Collapse
Affiliation(s)
- Matteo Tassinari
- Department of Infectious Disease, Imperial College, London, SW7 2AZ, UK
- Human Technopole, Milan, Italy
| | - Marta Rudzite
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Alain Filloux
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Rathnapala JMSN, Ragab W, Kawato S, Furukawa M, Nozaki R, Kondo H, Hirono I. Genomic characterization and identification of virulence-related genes in Vibrio nigripulchritudo isolated from white leg shrimp Penaeus vannamei. JOURNAL OF FISH DISEASES 2023; 46:779-790. [PMID: 36989191 DOI: 10.1111/jfd.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/07/2023]
Abstract
Vibrio nigripulchritudo causes vibriosis in penaeid shrimps. Here, we used Illumina and Nanopore sequencing technologies to sequence the genomes of three of its strains (TUMSAT-V. nig1, TUMSAT-V. nig2, and TUMSAT-V. nig3) to explore opportunities for disease management. Putative virulence factors and mobile genetic elements were detected while evaluating the phylogenetic relationship of each isolated strain. The genomes consisted of two circular chromosomes (I and II) plus one or two plasmids. The size of chromosome I ranged from 4.02 to 4.07 Mb with an average GC content of 46%, while the number of predicted CDSs ranged from 3563 to 3644. The size of chromosome II ranged from 2.16 to 2.18 Mb, with an average GC content of 45.5%, and the number of predicted CDSs ranged from 1970 to 1987. Numerous virulence genes were identified related to adherence, antiphagocytosis, chemotaxis, motility, iron uptake, quorum sensing, secretion systems, and toxins in all three genomes. Higher numbers of prophages and genomic islands found in TUMSAT-V. nig1 suggest that the strain has experienced numerous horizontal gene transfer events. The presence of antimicrobial resistance genes suggests that the strains have multidrug resistance. Comparative genomic analysis showed that all three strains belonged to the same clade.
Collapse
Affiliation(s)
- Jayasundara Mudiyanselage Sajani Nisansala Rathnapala
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Fisheries and Aquaculture, Faculty of Fisheries and Marine Sciences and Technology, University of Ruhuna, Matara, Sri Lanka
| | - Wafaa Ragab
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Satoshi Kawato
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Miho Furukawa
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
8
|
Lu K, Li Y, Chen R, Yang H, Wang Y, Xiong W, Xu F, Yuan Q, Liang H, Xiao X, Huang R, Chen Z, Tian C, Wang S. Pathogenic mechanism of Vibrio vulnificus infection. Future Microbiol 2023; 18:373-383. [PMID: 37158065 DOI: 10.2217/fmb-2022-0243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Vibrio vulnificus is a fatal, opportunistic human pathogen transmitted through the consumption of raw/undercooked seafood or direct contact. V. vulnificus infection progresses rapidly and has severe consequences; some cases may require amputation or result in death. Growing evidence suggests that V. vulnificus virulence factors and regulators play a large role in disease progression, involving host resistance, cellular damage, iron acquisition, virulence regulation and host immune responses. Its disease mechanism remains largely undefined. Further evaluation of pathogenic mechanisms is important for selecting appropriate measures to prevent and treat V. vulnificus infection. In this review, the possible pathogenesis of V. vulnificus infection is described to provide a reference for treatment and prevention.
Collapse
Affiliation(s)
- Kun Lu
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Yang Li
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Rui Chen
- Department of Orthopedics, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Hua Yang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Yong Wang
- Hemodialysis Center, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Wei Xiong
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Fang Xu
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Qijun Yuan
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Haihui Liang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Xian Xiao
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Renqiang Huang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Zhipeng Chen
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Chunou Tian
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| | - Songqing Wang
- Department of Neurosurgery, First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China
| |
Collapse
|
9
|
Environmental Reservoirs of Pathogenic Vibrio spp. and Their Role in Disease: The List Keeps Expanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:99-126. [PMID: 36792873 DOI: 10.1007/978-3-031-22997-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.
Collapse
|
10
|
Schwartzman JA, Ebrahimi A, Chadwick G, Sato Y, Roller BRK, Orphan VJ, Cordero OX. Bacterial growth in multicellular aggregates leads to the emergence of complex life cycles. Curr Biol 2022; 32:3059-3069.e7. [PMID: 35777363 PMCID: PMC9496226 DOI: 10.1016/j.cub.2022.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023]
Abstract
Facultative multicellular behaviors expand the metabolic capacity and physiological resilience of bacteria. Despite their ubiquity in nature, we lack an understanding of how these behaviors emerge from cellular-scale phenomena. Here, we show how the coupling between growth and resource gradient formation leads to the emergence of multicellular lifecycles in a marine bacterium. Under otherwise carbon-limited growth conditions, Vibrio splendidus 12B01 forms clonal multicellular groups to collectively harvest carbon from soluble polymers of the brown-algal polysaccharide alginate. As they grow, groups phenotypically differentiate into two spatially distinct sub-populations: a static "shell" surrounding a motile, carbon-storing "core." Differentiation of these two sub-populations coincides with the formation of a gradient in nitrogen-source availability within clusters. Additionally, we find that populations of cells containing a high proportion of carbon-storing individuals propagate and form new clusters more readily on alginate than do populations with few carbon-storing cells. Together, these results suggest that local metabolic activity and differential partitioning of resources leads to the emergence of reproductive cycles in a facultatively multicellular bacterium.
Collapse
Affiliation(s)
- Julia A Schwartzman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ali Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grayson Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuya Sato
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Benjamin R K Roller
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria; Department of Environmental Systems Sciences, ETH Zürich, Universitätsstrasse 16, Zürich 8092, Switzerland; Department of Environmental Microbiology, Eawag, Ueberlandstrasse 133, Dübendorf 8600, Switzerland
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Gujinović L, Maravić A, Kalinić H, Dželalija M, Šestanović S, Zanchi D, Šamanić I. Metagenomic analysis of pioneer biofilm-forming marine bacteria with emphasis on Vibrio gigantis adhesion dynamics. Colloids Surf B Biointerfaces 2022; 217:112619. [PMID: 35700566 DOI: 10.1016/j.colsurfb.2022.112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Marine biofilms occur frequently and spontaneously in seawater, on almost any submerged solid surface. At the early stages of colonization, it consists of bacteria and evolves into a more complex community. Using 16S rRNA amplicon sequencing and comparative metagenomics, the composition and predicted functional potential of one- to three-day old bacterial communities in surface biofilms were investigated and compared to that of seawater. This confirmed the autochthonous marine bacterium Vibrio gigantis as an early and very abundant biofilm colonizer, also functionally linked to the genes associated with cell motility, surface attachment, and communication via signaling molecules (quorum sensing), all crucial for biofilm formation. The dynamics of adhesion on a solid surface of V. gigantis alone was also monitored in controlled laboratory conditions, using a newly designed and easily implementable protocol. Resulting in a calculated percentage of bacteria-covered surface, a convincing tendency of spontaneous adhering was confirmed. From the multiple results, its quantified and reproducible adhesion dynamics will be used as a basis for future experiments involving surface modifications and coatings, with the goal of preventing adhesion.
Collapse
Affiliation(s)
- Luka Gujinović
- Faculty of Chemistry and Technology, University of Split, Croatia; Doctoral study of Biophysics, Faculty of Science, University of Split, Croatia
| | - Ana Maravić
- Faculty of Science, University of Split, Croatia
| | | | | | | | - Dražen Zanchi
- Laboratoire Matières et Systèmes Complexes, UMR 7057 du CNRS and Université de Paris Cité, Paris, France.
| | | |
Collapse
|
12
|
Davis CM, Ruest MK, Cole JH, Dennis JJ. The Isolation and Characterization of a Broad Host Range Bcep22-like Podovirus JC1. Viruses 2022; 14:938. [PMID: 35632679 PMCID: PMC9144972 DOI: 10.3390/v14050938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteriophage JC1 is a Podoviridae phage with a C1 morphotype, isolated on host strain Burkholderia cenocepacia Van1. Phage JC1 is capable of infecting an expansive range of Burkholderia cepacia complex (Bcc) species. The JC1 genome exhibits significant similarity and synteny to Bcep22-like phages and to many Ralstonia phages. The genome of JC1 was determined to be 61,182 bp in length with a 65.4% G + C content and is predicted to encode 76 proteins and 1 tRNA gene. Unlike the other Lessieviruses, JC1 encodes a putative helicase gene in its replication module, and it is in a unique organization not found in previously analyzed phages. The JC1 genome also harbours 3 interesting moron genes, that encode a carbon storage regulator (CsrA), an N-acetyltransferase, and a phosphoadenosine phosphosulfate (PAPS) reductase. JC1 can stably lysogenize its host Van1 and integrates into the 5' end of the gene rimO. This is the first account of stable integration identified for Bcep22-like phages. JC1 has a higher global virulence index at 37 °C than at 30 °C (0.8 and 0.21, respectively); however, infection efficiency and lysogen stability are not affected by a change in temperature, and no observable temperature-sensitive switch between lytic and lysogenic lifestyle appears to exist. Although JC1 can stably lysogenize its host, it possesses some desirable characteristics for use in phage therapy. Phage JC1 has a broad host range and requires the inner core of the bacterial LPS for infection. Bacteria that mutate to evade infection by JC1 may develop a fitness disadvantage as seen in previously characterized LPS mutants lacking inner core.
Collapse
Affiliation(s)
| | | | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada; (C.M.D.); (M.K.R.); (J.H.C.)
| |
Collapse
|
13
|
Comparative Genomic Analysis of Vibrio cincinnatiensis Provides Insights into Genetic Diversity, Evolutionary Dynamics, and Pathogenic Traits of the Species. Int J Mol Sci 2022; 23:ijms23094520. [PMID: 35562911 PMCID: PMC9101195 DOI: 10.3390/ijms23094520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/22/2023] Open
Abstract
Vibrio cincinnatiensis is a poorly understood pathogenic Vibrio species, and the underlying mechanisms of its genetic diversity, genomic plasticity, evolutionary dynamics, and pathogenicity have not yet been comprehensively investigated. Here, a comparative genomic analysis of V. cincinnatiensis was constructed. The open pan-genome with a flexible gene repertoire exhibited genetic diversity. The genomic plasticity and stability were characterized by the determinations of diverse mobile genetic elements (MGEs) and barriers to horizontal gene transfer (HGT), respectively. Evolutionary divergences were exhibited by the difference in functional enrichment and selective pressure between the different components of the pan-genome. The evolution on the Chr I and Chr II core genomes was mainly driven by purifying selection. Predicted essential genes in V. cincinnatiensis were mainly found in the core gene families on Chr I and were subject to stronger evolutionary constraints. We identified diverse virulence-related elements, including the gene clusters involved in encoding flagella, secretion systems, several pili, and scattered virulence genes. Our results indicated the pathogenic potential of V. cincinnatiensis and highlighted that HGT events from other Vibrio species promoted pathogenicity. This pan-genome study provides comprehensive insights into this poorly understood species from the genomic perspective.
Collapse
|
14
|
Zheng H, Huang Y, Liu P, Yan L, Zhou Y, Yang C, Wu Y, Qin J, Guo Y, Pei X, Guo Y, Cui Y, Liang W. Population genomics of the food-borne pathogen Vibrio fluvialis reveals lineage associated pathogenicity-related genetic elements. Microb Genom 2022; 8. [PMID: 35212619 PMCID: PMC8942032 DOI: 10.1099/mgen.0.000769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio fluvialis is a food-borne pathogen with epidemic potential that causes cholera-like acute gastroenteritis and sometimes extraintestinal infections in humans. However, research on its genetic diversity and pathogenicity-related genetic elements based on whole genome sequences is lacking. In this study, we collected and sequenced 130 strains of V. fluvialis from 14 provinces of China, and also determined the susceptibility of 35 of the strains to 30 different antibiotics. Combined with 52 publicly available V. fluvialis genomes, we inferred the population structure and investigated the characteristics of pathogenicity-related factors. The V. fluvialis strains exhibited high levels of homologous recombination and were assigned to two major populations, VflPop1 and VflPop2, according to the different compositions of their gene pools. VflPop2 was subdivided into groups 2.1 and 2.2. Except for VflPop2.2, which consisted only of Asian strains, the strains in VflPop1 and VflPop2.1 were distributed in the Americas, Asia and Europe. Analysis of the pathogenicity potential of V. fluvialis showed that most of the identified virulence-related genes or gene clusters showed high prevalence in V. fluvialis, except for three mobile genetic elements: pBD146, ICEVflInd1 and MGIVflInd1, which were scattered in only a few strains. A total of 21 antimicrobial resistance genes were identified in the genomes of the 182 strains analysed in this study, and 19 (90%) of them were exclusively present in VflPop2. Notably, the tetracycline resistance-related gene tet(35) was present in 150 (95%) of the strains in VflPop2, and in only one (4%) strain in VflPop1, indicating it was population-specific. In total, 91% of the 35 selected strains showed resistance to cefazolin, indicating V. fluvialis has a high resistance rate to cefazolin. Among the 15 genomes that carried the previously reported drug resistance-related plasmid pBD146, 11 (73%) showed resistance to trimethoprim-sulfamethoxazole, which we inferred was related to the presence of the dfr6 gene in the plasmid. On the basis of the population genomics analysis, the genetic diversity, population structure and distribution of pathogenicity-related factors of V. fluvialis were delineated in this study. The results will provide further clues regarding the evolution and pathogenic mechanisms of V. fluvialis, and improve our knowledge for the prevention and control of this pathogen.
Collapse
Affiliation(s)
- Hongyuan Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yuanming Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ping Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Lin Yan
- National Center for Food Safety Risk Assessment, Beijing 100022, PR China
| | - Yanyan Zhou
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Xiaoyan Pei
- National Center for Food Safety Risk Assessment, Beijing 100022, PR China
| | - Yunchang Guo
- National Center for Food Safety Risk Assessment, Beijing 100022, PR China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Weili Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| |
Collapse
|
15
|
Correa Velez KE, Norman RS. Transcriptomic Analysis Reveals That Municipal Wastewater Effluent Enhances Vibrio vulnificus Growth and Virulence Potential. Front Microbiol 2021; 12:754683. [PMID: 34759904 PMCID: PMC8573347 DOI: 10.3389/fmicb.2021.754683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Vibrio vulnificus is an opportunistic pathogen indigenous to estuarine and marine environments and associated with aquatic organisms. Vibrio vulnificus is of utmost importance because it causes 95% of the seafood-related deaths in the United States due to rapid progression of septicemia. Changes in environmental parameters associated with climate change and coastal population expansion are altering geographical constraints, resulting in increased Vibrio spread, exposure, and rates of infection. In addition, coastal population expansion is resulting in increased input of treated municipal sewage into areas that are also experiencing increased Vibrio proliferation. This study aimed to better understand the influence of treated sewage effluent on effluent-receiving microbial communities using Vibrio as a model of an opportunistic pathogen. Integrated transcriptomic approaches were used to analyze the changes in overall gene expression of V. vulnificus NBRC 15645 exposed to wastewater treatment plant (WWTP) effluent for a period of 6h using a modified seawater yeast extract media that contained 0, 50, and 100% filtered WWTP effluent. RNA-seq reads were mapped, annotated, and analyzed to identify differentially expressed genes using the Pathosystems Resource Integration Center analysis tool. The study revealed that V. vulnificus responds to wastewater effluent exposure by activating cyclic-di-GMP-influenced biofilm development. Also, genes involved in crucial functions, such as nitrogen metabolism and bacterial attachment, were upregulated depending on the presence of treated municipal sewage. This altered gene expression increased V. vulnificus growth and proliferation and enhanced genes and pathways involved in bacterial survival during the early stages of infection in a host. These factors represent a potential public health risk due to exposure to environmental reservoirs of potentially Vibrio strains with enhanced virulence profiles in coastal areas.
Collapse
Affiliation(s)
- Karlen Enid Correa Velez
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
- Department of Environmental Health Sciences, NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| | - Robert Sean Norman
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
- Department of Environmental Health Sciences, NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
16
|
Zhang J, Huang Y, Xu H, Ying S, Pan H, Yu W. Genomic and Phenotypic Characteristics for Vibrio vulnificus Infections. Infect Drug Resist 2021; 14:3721-3726. [PMID: 34548795 PMCID: PMC8449862 DOI: 10.2147/idr.s331468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Background Vibrio vulnificus (VV) is a causative agent of foodborne diseases with high mortality. The aim of this study was to investigate the genomic and phenotypic profiles of VV. Methods Six VV isolates were collected and conducted whole-genome sequencing. Biofilm formation and anti-complement killing test were performed to evaluate the pathogenicity. Subsequently, 157 publicly available genomes of VV isolates were selected to determine the evolutionary relationship. Results The resistant genes norM and tet34 were identified in six isolates. A total of 156 virulence genes were identified. However, there is no obvious difference between strains isolated from blood and puncture fluid. The tendency of growth for six isolates decreased with the lapse of time, while the biofilm formation increased. The genes tadC and flp related to Flp pili were found in isolate 25506 and 30896, resulting in more obvious biofilm formation. In addition, the survival rate of 19656 was less than 20% due to lack of one genomic island including virulence genes (impD-H, clpV-1) relevant to type VI secretion system (T6SS). Multi-locus sequence typing (MLST) revealed 95 different STs and 19 novel STs, indicating that the tendency of 163 isolates was sporadic. Further comparative genomics analysis clearly classified 163 isolates into three distinct evolutionary lineages. Conclusion VV infections were sporadic in humans and the environment. Virulence genes impD-H and clpV-1 related to T6SS were associated with pathogenicity phenotype of VV.
Collapse
Affiliation(s)
- Jiajie Zhang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Yicheng Huang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shuaibing Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hongying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
17
|
Deimmunization of flagellin for repeated administration as a vaccine adjuvant. NPJ Vaccines 2021; 6:116. [PMID: 34518537 PMCID: PMC8438039 DOI: 10.1038/s41541-021-00379-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022] Open
Abstract
Flagellin, a protein-based Toll-like receptor agonist, is a versatile adjuvant applicable to wide spectrum of vaccines and immunotherapies. Given reiterated treatments of immunogenic biopharmaceuticals should lead to antibody responses precluding repeated administration, the development of flagellin not inducing specific antibodies would greatly expand the chances of clinical applications. Here we computationally identified immunogenic regions in Vibrio vulnificus flagellin B and deimmunized by simply removing a B cell epitope region. The recombinant deimmunized FlaB (dFlaB) maintains stable TLR5-stimulating activity. Multiple immunization of dFlaB does not induce FlaB-specific B cell responses in mice. Intranasally co-administered dFlaB with influenza vaccine enhanced strong Ag-specific immune responses in both systemic and mucosal compartments devoid of FlaB-specific Ab production. Notably, dFlaB showed better protective immune responses against lethal viral challenge compared with wild type FlaB. The deimmunizing B cell epitope deletion did not compromise stability and adjuvanticity, while suppressing unwanted antibody responses that may negatively affected vaccine antigen-directed immune responses in repeated vaccinations. We explain the underlying mechanism of deimmunization by employing molecular dynamics analysis.
Collapse
|
18
|
Yuan Y, Feng Z, Wang J. Vibrio vulnificus Hemolysin: Biological Activity, Regulation of vvhA Expression, and Role in Pathogenesis. Front Immunol 2020; 11:599439. [PMID: 33193453 PMCID: PMC7644469 DOI: 10.3389/fimmu.2020.599439] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
The Vibrio vulnificus (V. vulnificus) hemolysin (VVH) is a pore-forming cholesterol-dependent cytolysin (CDC). Although there has been some debate surrounding the in vivo virulence effects of the VVH, it is becoming increasingly clear that it drives different cellular outcomes and is involved in the pathogenesis of V. vulnificus. This minireview outlines recent advances in our understanding of the regulation of vvhA gene expression, the biological activity of the VVH and its role in pathogenesis. An in-depth examination of the role of the VVH in V. vulnificus pathogenesis will help reveal the potential targets for therapeutic and preventive interventions to treat fatal V. vulnificus septicemia in humans. Future directions in VVH research will also be discussed.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zihan Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| |
Collapse
|
19
|
Blanco-Romero E, Garrido-Sanz D, Rivilla R, Redondo-Nieto M, Martín M. In Silico Characterization and Phylogenetic Distribution of Extracellular Matrix Components in the Model Rhizobacteria Pseudomonas fluorescens F113 and Other Pseudomonads. Microorganisms 2020; 8:E1740. [PMID: 33171989 PMCID: PMC7716237 DOI: 10.3390/microorganisms8111740] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/23/2022] Open
Abstract
Biofilms are complex structures that are crucial during host-bacteria interaction and colonization. Bacteria within biofilms are surrounded by an extracellular matrix (ECM) typically composed of proteins, polysaccharides, lipids, and DNA. Pseudomonads contain a variety of ECM components, some of which have been extensively characterized. However, neither the ECM composition of plant-associated pseudomonads nor their phylogenetic distribution within the genus has been so thoroughly studied. In this work, we use in silico methods to describe the ECM composition of Pseudomonas fluorescens F113, a plant growth-promoting rhizobacteria and model for rhizosphere colonization. These components include the polysaccharides alginate, poly-N-acetyl-glucosamine (PNAG) and levan; the adhesins LapA, MapA and PsmE; and the functional amyloids in Pseudomonas. Interestingly, we identified novel components: the Pseudomonas acidic polysaccharide (Pap), whose presence is limited within the genus; and a novel type of Flp/Tad pilus, partially different from the one described in P. aeruginosa. Furthermore, we explored the phylogenetic distribution of the most relevant ECM components in nearly 600 complete Pseudomonas genomes. Our analyses show that Pseudomonas populations contain a diverse set of gene/gene clusters potentially involved in the formation of their ECMs, showing certain commensal versus pathogen lifestyle specialization.
Collapse
Affiliation(s)
| | | | | | | | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain; (E.B.-R.); (D.G.-S.); (R.R.); (M.R.-N.)
| |
Collapse
|
20
|
Abstract
V. vulnificus is an opportunistic human pathogen that can cause life-threatening sepsis in immunocompromised patients via seafood poisoning or wound infection. Among the toxic substances produced by this pathogen, the MARTX toxin greatly contributes to disease progression by promoting the dysfunction and death of host cells, which allows the bacteria to disseminate and colonize the host. In response to this, host cells mount a counterattack against the invaders by upregulating various defense genes. In this study, the gene expression profiles of both host cells and V. vulnificus were analyzed by RNA sequencing to gain a comprehensive understanding of host-pathogen interactions. Our results suggest that V. vulnificus uses the MARTX toxin to subvert host cell immune responses as well as to oppose host counterattacks such as iron limitation. To understand toxin-stimulated host-pathogen interactions, we performed dual-transcriptome sequencing experiments using human epithelial (HT-29) and differentiated THP-1 (dTHP-1) immune cells infected with the sepsis-causing pathogen Vibrio vulnificus (either the wild-type [WT] pathogen or a multifunctional-autoprocessing repeats-in-toxin [MARTX] toxin-deficient strain). Gene set enrichment analyses revealed MARTX toxin-dependent responses, including negative regulation of extracellular related kinase 1 (ERK1) and ERK2 (ERK1/2) signaling and cell cycle regulation in HT-29 and dTHP-1 cells, respectively. Further analysis of the expression of immune-related genes suggested that the MARTX toxin dampens immune responses in gut epithelial cells but accelerates inflammation and nuclear factor κB (NF-κB) signaling in immune cells. With respect to the pathogen, siderophore biosynthesis genes were significantly more highly expressed in WT V. vulnificus than in the MARTX toxin-deficient mutant upon infection of dTHP-1 cells. Consistent with these results, iron homeostasis genes that limit iron levels for invading pathogens were overexpressed in WT V. vulnificus-infected dTHP-1 cells. Taken together, these results suggest that MARTX toxin regulates host inflammatory responses during V. vulnificus infection while also countering host defense mechanisms such as iron limitation. IMPORTANCEV. vulnificus is an opportunistic human pathogen that can cause life-threatening sepsis in immunocompromised patients via seafood poisoning or wound infection. Among the toxic substances produced by this pathogen, the MARTX toxin greatly contributes to disease progression by promoting the dysfunction and death of host cells, which allows the bacteria to disseminate and colonize the host. In response to this, host cells mount a counterattack against the invaders by upregulating various defense genes. In this study, the gene expression profiles of both host cells and V. vulnificus were analyzed by RNA sequencing to gain a comprehensive understanding of host-pathogen interactions. Our results suggest that V. vulnificus uses the MARTX toxin to subvert host cell immune responses as well as to oppose host counterattacks such as iron limitation.
Collapse
|
21
|
Froelich BA, Daines DA. In hot water: effects of climate change on Vibrio-human interactions. Environ Microbiol 2020; 22:4101-4111. [PMID: 32114705 DOI: 10.1111/1462-2920.14967] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Sea level rise and the anthropogenic warming of the world's oceans is not only an environmental tragedy, but these changes also result in a significant threat to public health. Along with coastal flooding and the encroachment of saltwater farther inland comes an increased risk of human interaction with pathogenic Vibrio species, such as Vibrio cholerae, V. vulnificus and V. parahaemolyticus. This minireview examines the current literature for updates on the climatic changes and practices that impact the location and duration of the presence of Vibrio spp., as well as the infection routes, trends and virulence factors of these highly successful pathogens. Finally, an overview of current treatments and methods for the mitigation of both oral and cutaneous exposures are presented.
Collapse
Affiliation(s)
- Brett A Froelich
- Department of Biology, George Mason University, 10900 University Boulevard, Manassas, VA, 20110
| | - Dayle A Daines
- College of Sciences, Office of the Dean, Old Dominion University, Norfolk, VA, 23529
| |
Collapse
|