1
|
Chen H, Charles PD, Gu Q, Liberatori S, Robertson DL, Palmarini M, Wilson SJ, Mohammed S, Castello A. Omics Analyses Uncover Host Networks Defining Virus-Permissive and -Hostile Cellular States. Mol Cell Proteomics 2025; 24:100966. [PMID: 40204275 DOI: 10.1016/j.mcpro.2025.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025] Open
Abstract
The capacity of host cells to sustain or restrict virus infection is influenced by their proteome. Understanding the compendium of proteins defining cellular permissiveness is key to many questions in fundamental virology. Here, we apply a multi-omic approach to determine the proteins that are associated with highly permissive, intermediate, and hostile cellular states. We observed two groups of differentially regulated genes: (i) with robust changes in mRNA and protein levels and (ii) with protein/RNA discordances. While many of the latter are classified as interferon-stimulated genes (ISGs), most exhibit no antiviral effects in overexpression screens. This suggests that IFN-dependent protein changes can be better indicators of antiviral function than mRNA levels. Phosphoproteomics revealed an additional regulatory layer involving non-signaling proteins with altered phosphorylation. Indeed, we confirmed that several permissiveness-associated proteins with changes in abundance or phosphorylation regulate infection fitness. Altogether, our study provides a comprehensive and systematic map of the cellular alterations driving virus susceptibility.
Collapse
Affiliation(s)
- Honglin Chen
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK; Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | | | - Sam J Wilson
- Cambridge Institute of Therapeutic Immunol & Infect Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, UK; The Rosalind Franklin Institute, Oxfordshire, UK; Department of Chemistry, University of Oxford, Oxford, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
2
|
Beetler DJ, Giresi P, Di Florio DN, Fliess JJ, McCabe EJ, Watkins MM, Xu V, Auda ME, Bruno KA, Whelan ER, Kocsis SPC, Edenfield BH, Walker S, Macomb LP, Keegan KC, Jain A, Morales-Lara AC, Chekuri I, Hill AR, Farres H, Wolfram J, Behfar A, Stalboerger PG, Terzic A, Cooper L, Fairweather D. Therapeutic effects of platelet-derived extracellular vesicles on viral myocarditis correlate with biomolecular content. Front Immunol 2025; 15:1468969. [PMID: 39835120 PMCID: PMC11743460 DOI: 10.3389/fimmu.2024.1468969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) can potently inhibit inflammation yet there is a lack of understanding about the impact of donor characteristics on the efficacy of EVs. The goal of this study was to determine whether the sex and age of donor platelet-derived EVs (PEV) affected their ability to inhibit viral myocarditis. Methods PEV, isolated from men and women of all ages, was compared to PEV obtained from women under 50 years of age, which we termed premenopausal PEV (pmPEV). Because of the protective effect of estrogen against myocardial inflammation, we hypothesized that pmPEV would be more effective than PEV at inhibiting myocarditis. We injected PEV, pmPEV, or vehicle control in a mouse model of viral myocarditis and examined histology, gene expression, protein profiles, and performed proteome and microRNA (miR) sequencing of EVs. Results We found that both PEV and pmPEV significantly inhibited myocarditis; however, PEV was more effective, which was confirmed by a greater reduction of inflammatory cells and proinflammatory and profibrotic markers determined using gene expression and immunohistochemistry. Proteome and miR sequencing of EVs revealed that PEV miRs specifically targeted antiviral, Toll-like receptor (TLR)4, and inflammasome pathways known to contribute to myocarditis while pmPEV contained general immunoregulatory miRs. Discussion These differences in EV content corresponded to the differing anti-inflammatory effects of the two types of EVs on viral myocarditis.
Collapse
Affiliation(s)
- Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Presley Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Jessica J. Fliess
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Elizabeth J. McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Molly M. Watkins
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Vivian Xu
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Matthew E. Auda
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, United States
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Stephen P. C. Kocsis
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | | | - Sierra A. Walker
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, United States
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Logan P. Macomb
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Kevin C. Keegan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Angita Jain
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Isha Chekuri
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Anneliese R. Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Houssam Farres
- Department of Vascular Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Atta Behfar
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
| | - Paul G. Stalboerger
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
| | - Andre Terzic
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
3
|
Zhao A, Zhou C, Li J, Wang Z, Zhu H, Shen S, Shao Q, Gong Q, Liu H, Chen X. UBE2G2 inhibits vasculogenic mimicry and metastasis of uveal melanoma by promoting ubiquitination of LGALS3BP. Acta Pharm Sin B 2024; 14:5201-5218. [PMID: 39807310 PMCID: PMC11725101 DOI: 10.1016/j.apsb.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/19/2024] [Accepted: 07/26/2024] [Indexed: 01/16/2025] Open
Abstract
Uveal melanoma (UM) poses a significant lethality, with approximately 50% of those developing metastases surviving less than one year. In the progression of UM, vasculogenic mimicry (VM) induced by hypoxia plays a pivotal role, which also partially explains the resistance of UM to anti-angiogenic therapies. Nevertheless, the crucial molecular mechanisms underlying VM in the progression of UM remain unclear. We identified ubiquitin conjugating enzyme E2 G2 (UBE2G2) as a critical suppressor through transcriptomic sequencing and metastasis correlation screening. In UM, hypoxia-induced VM and metastasis are markedly exacerbated by UBE2G2 knockdown and significantly alleviated by its overexpression. Mechanistically, UBE2G2 directly binds to galectin 3 binding protein (LGALS3BP) and forms a complex with the E3 ubiquitin ligase tripartite motif containing 38 (TRIM38), facilitating ubiquitination-mediated degradation of LGALS3BP at the K104 residue. Furthermore, UBE2G2 inhibits oncogenic phenotypes by inactivating intracellular PI3K/AKT signaling and reprogramming the tumor microenvironment. Therefore, targeting intercellular and intracellular molecular mechanisms of the hypoxia-UBE2G2-LGALS3BP axis may contribute to developing various therapeutic strategies for UM.
Collapse
Affiliation(s)
- Andi Zhao
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Nanjing Medical University, Nanjing 211166, China
| | - Chenyu Zhou
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Nanjing Medical University, Nanjing 211166, China
| | - Jinjing Li
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Nanjing Medical University, Nanjing 211166, China
| | - Zijin Wang
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Hui Zhu
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Shiya Shen
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Qing Shao
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Qi Gong
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Hu Liu
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Nanjing Medical University, Nanjing 211166, China
| | - Xuejuan Chen
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
4
|
Dandachi I, Alaiya A, Shinwari Z, Abbas B, Karkashan A, Al-Amari A, Aljabr W. Proteomic Profiling of COVID-19 Patients Sera: Differential Expression with Varying Disease Stage and Potential Biomarkers. Diagnostics (Basel) 2024; 14:2533. [PMID: 39594201 PMCID: PMC11592820 DOI: 10.3390/diagnostics14222533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: SARS-CoV-2 is one of the viruses that caused worldwide health issues. This effect is mainly due to the wide range of disease prognoses it can cause. The aim of this study is to determine protein profiles that can be used as potential biomarkers for patients' stratification, as well as potential targets for drug development. Methods: Eighty peripheral blood samples were collected from heathy as well as SARS-CoV-2 patients admitted at a major tertiary care center in Riyadh, Saudi Arabia. A label-free quantitative mass spectrometry-based proteomic analysis was conducted on the extracted sera. Protein-protein interactions and functional annotations of identified proteins were performed using the STRING. Results: In total, two-hundred-eighty-eight proteins were dysregulated among all four categories. Dysregulated proteins were mainly involved in the network map of SARS-CoV-2, immune responses, complement activation, and lipid transport. Compared to healthy subjects, the most common upregulated protein in all three categories were CRP, LGALS3BP, SAA2, as well as others involved in SARS-CoV-2 pathways such as ZAP70 and IGLL1. Notably, we found fifteen proteins that significantly discriminate between healthy/recovered subjects and moderate/under medication patients, among which are the SERPINA7, HSPD1 and TTC41P proteins. These proteins were also significantly downregulated in under medication versus moderate patients. Conclusions: Our results emphasize the possible association of specific proteins with the SARS-CoV-2 pathogenesis and their potential use as disease biomarkers and drug targets. Our study also gave insights about specific proteins that are likely increased upon infection but are likely restored post recovery.
Collapse
Affiliation(s)
- Iman Dandachi
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Ayodele Alaiya
- Cell Therapy & Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (A.A.); (Z.S.)
| | - Zakia Shinwari
- Cell Therapy & Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (A.A.); (Z.S.)
| | - Basma Abbas
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (B.A.); (A.K.)
| | - Alaa Karkashan
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia; (B.A.); (A.K.)
| | - Ahod Al-Amari
- Department of Basic Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh 13314, Saudi Arabia;
| | - Waleed Aljabr
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
- Public Health Authority, Riyadh 13352, Saudi Arabia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| |
Collapse
|
5
|
Wang Z, Liu Y, Safavisohi R, Asem M, Hu DD, Stack MS, Champion MM. Gender- and Age-Based Characterization and Comparison of the Murine Primary Peritoneal Mesothelial Cell Proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617441. [PMID: 39416176 PMCID: PMC11482775 DOI: 10.1101/2024.10.09.617441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Organs in the abdominal cavity are covered by a peritoneal membrane, which is comprised of a monolayer of mesothelial cells (MC). Diseases involving the peritoneal membrane include peritonitis, primary cancer (mesothelioma), and metastatic cancers (ovarian, pancreatic, colorectal). These diseases have gender- and/or age-related pathologies; however, the impact of gender and age on the peritoneal MC is not well evaluated. To address this, we identified and characterized gender- and age-related differences in the proteomes of murine primary peritoneal MC. Primary peritoneal MC were isolated from young female (FY) or male (MY) mice (3-6 months) and aged female (FA) or male (MA) mice (20-23 months), lysed, trypsin digested using S-Traps, then subjected to bottom-up proteomics using an LC-Orbitrap mass spectrometer. In each cohort, we identified >1000 protein groups. Proteins were categorized using Gene Ontology and pairwise comparisons between gender and age cohorts were conducted. This study establishes baseline information for studies on peritoneal MC in health and disease at two physiologic age/gender points. Segregation of the data by gender and age could reveal novel factors to specific disease states involving the peritoneum. [This in vitro primary cell model has utility for future studies on the interaction between the mesothelium and foreign materials.].
Collapse
Affiliation(s)
- Zhikun Wang
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
- Harper Cancer Research Institute, University of Notre Dame, South Bend IN 46617
| | - Yueying Liu
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
- Harper Cancer Research Institute, University of Notre Dame, South Bend IN 46617
| | - Reihaneh Safavisohi
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
- Harper Cancer Research Institute, University of Notre Dame, South Bend IN 46617
| | - Marwa Asem
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
- Harper Cancer Research Institute, University of Notre Dame, South Bend IN 46617
| | - Daniel D. Hu
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
| | - Mary Sharon Stack
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
- Harper Cancer Research Institute, University of Notre Dame, South Bend IN 46617
| | - Matthew M. Champion
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame IN 46556
| |
Collapse
|
6
|
Kim D, Sung M, Park M, Sun E, Yoon S, Yoo KH, Radhakrishnan K, Jung SY, Bae W, Cho S, Chung I. Galectin 3-binding protein (LGALS3BP) depletion attenuates hepatic fibrosis by reducing transforming growth factor-β1 (TGF-β1) availability and inhibits hepatocarcinogenesis. Cancer Commun (Lond) 2024; 44:1106-1129. [PMID: 39073023 PMCID: PMC11483554 DOI: 10.1002/cac2.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Increased Galectin 3-binding protein (LGALS3BP) serum levels have been used to assess hepatic fibrosis stages and the severity of hepatocellular carcinoma (HCC). Considering the crucial role of transforming growth factor-β1 (TGF-β1) in the emergence of these diseases, the present study tested the hypothesis that LGALS3BP regulates the TGF-β1 signaling pathway. METHODS The expression levels of LGALS3BP and TGFB1 were analyzed in patients with metabolic dysfunction-associated steatohepatitis (MASH) and HCC. Multiple omics techniques, such as RNA-sequencing, transposase-accessible chromatin-sequencing assay, and liquid chromatography-tandem mass spectrometry proteomics, were used to identify the regulatory mechanisms for the LGALS3BP-TGF-β1 axis. The effects of altered TGF-β1 signaling by LGALS3BP were investigated in conditional LGALS3BP-knockin and LGALS3BP-knockout mice. RESULTS In patients with MASH and HCC, the levels of LGALS3BP and TGFB1 exhibited positive correlations. Stimulation of LGALS3BP by the inflammatory cytokine interferon α in HCC cells or ectopic overexpression of LGALS3BP in hepatocytes promoted the expression levels of TGFB1. Aggravated fibrosis was observed in the livers of hepatocyte-specific LGALS3BP-knockin mice, with increased TGFB1 levels. LGALS3BP directly bound to and assembled integrin αV, an integral mediator required for releasing active TGF-β1 from extracellular latent complex with the rearranged F-actin cytoskeleton. The released TGF-β1 activated JunB transcription factor, which in turn promoted the TGF-β1 positive feedback loop. LGALS3BP deletion in the hepatocytes downregulated TGF-β1 signaling and CCl4 induced fibrosis. Moreover, LGALS3BP depletion hindered hepatocarcinogenesis by limiting the availability of fibrogenic TGF-β1. CONCLUSION LGALS3BP plays a crucial role in hepatic fibrosis and carcinogenesis by controlling the TGF-β1 signaling pathway, making it a promising therapeutic target in TGF-β1-related diseases.
Collapse
Affiliation(s)
- Dae‐Hwan Kim
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Minjeong Sung
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
- BioMedical Sciences Graduate ProgramChonnam National UniversityHwasunSouth Korea
| | - Myong‐Suk Park
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Eun‐Gene Sun
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Sumin Yoon
- Department of Biological ScienceSookmyung Women's UniversitySeoulSouth Korea
| | - Kyung Hyun Yoo
- Department of Biological ScienceSookmyung Women's UniversitySeoulSouth Korea
| | | | - Sung Yun Jung
- Department of Biochemistry and Molecular PharmacologyBaylor College of MedicineHoustonTexasUSA
| | - Woo‐Kyun Bae
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
- BioMedical Sciences Graduate ProgramChonnam National UniversityHwasunSouth Korea
| | - Sang‐Hee Cho
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Ik‐Joo Chung
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| |
Collapse
|
7
|
Yang HY, Zhu KC, Guo HY, Zhang N, Liu BS, Xian L, Zhu TF, Guo R, Zhang DC. Establishment and identification of the head kidney cell line of yellowfin seabream (Acanthopagrus latus) and its application in a virus susceptibility study. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105243. [PMID: 39147080 DOI: 10.1016/j.dci.2024.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The yellowfin seabream (Acanthopagrus latus) is a crucial marine resource owing to its economic significance. Acanthopagrus latus aquaculture faces numerous challenges from viral diseases, but a robust in-vitro research model to understand and address these threats is lacking. Therefore, we developed a novel A. latus cell line from head kidney cells called ALHK1. This study details the development, characterisation, and viral susceptibility properties of ALHK cells. This cell line primarily comprises fibroblast-like cells and has robust proliferative capacity when cultured at 28 °C in Leibovitz's L-15 medium supplemented with 10-20% foetal bovine serum. It exhibited remarkable stability after more than 60 consecutive passages and validation through cryopreservation techniques. The specificity of the ALHK cell line's origin from A. latus was confirmed via polymerase chain reaction (PCR) amplification of the cytochrome B gene, and a chromosomal karyotype analysis revealed a diploid count of 48 (2n = 48). Furthermore, the lipofection-mediated transfection efficiency using the pEGFP-N3 plasmid was high, at nearly 40%, suggesting that ALHK cells could be used for studies involving exogenous gene manipulation. In addition, ALHK cells displayed heightened sensitivity to the large mouth bass virus (LMBV), substantiated through observations of cytopathic effects, quantitative real-time PCR, and viral titration assays. Finally, the response of ALHK cells to LMBV infection resulted in differentially expressed antiviral genes associated with innate immunity. In conclusion, the ALHK cell line is a dependable in-vitro platform for elucidating the mechanisms of viral diseases in yellowfin seabream. Moreover, this cell line could be valuable for immunology, vaccine development, and host-pathogen interaction studies.
Collapse
Affiliation(s)
- Hui-Yuan Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Ocean College, Hebei Agricultural University, Qinhuangdao, 066000, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Teng-Fei Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Ran Guo
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066000, China.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China.
| |
Collapse
|
8
|
Liu Y, Liang L, Li J, Pang T, Zhang SH, Xia ZY. Aberrant expression of LGALS3BP drives an unfavorable prognosis and more aggressive in HCC via regulating PI3K/AKT signaling. Tissue Cell 2024; 89:102471. [PMID: 39029315 DOI: 10.1016/j.tice.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Lectin galactoside-binding soluble 3-binding protein (LGALS3BP) is associated with cancer metastasis and is a promising prognostic marker in neoplasms. In hepatocellular carcinoma (HCC), the prognostic impact and pro-metastatic function of LGALS3BP remain unclear. This study evaluated the endogenous LGALS3BP expression in HCC tissue and its association with prognosis. LGALS3BP protein levels were significantly elevated in clinical HCC tissues and cell lines. Increased LGALS3BP expression was closely associated with disease progression in HCC patients, and they also exhibited an unfavorable prognosis. Furthermore, the knockdown of LGALS3BP inhibited the growth, migration, and invasion of HCC cells in vitro. In mice xenografts, silencing LGALS3BP significantly inhibited tumor cell growth in vivo. Mechanically, upon LGALS3BP depletion, the tumor-suppressive function was dependent on inactivating Phosphatidylinositol 3-kinase (PI3K)/V-akt murine thymoma viral oncogene homolog (AKT) signaling pathway. Collectively, these findings suggest that LGALS3BP employs a pro-tumorigenic function in HCC and may be a promising HCC prognostic marker.
Collapse
Affiliation(s)
- Yang Liu
- Department of Postdoctoral Workstation, Liaocheng People's Hospital, Liaocheng, Shandong, China; Department of Mobile Post-Doctoral Stations, Shandong University, Jinan, Shandong, China; Department of Hepatobiliary Surgery, the Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Lei Liang
- Department of Obstetrics and Gynecology, the Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Jian Li
- Department of Breast Surgery, the Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Tao Pang
- Department of Orthopaedics, the First People's Hospital of Taian City, Taian, Shandong, China
| | - Shu Hong Zhang
- Department of Obstetrics and Gynecology, the Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Zhang Yong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong, China.
| |
Collapse
|
9
|
Arutyunov A, Durán-Laforet V, Ai S, Ferrari L, Murphy R, Schafer DP, Klein RS. West Nile Virus-Induced Expression of Senescent Gene Lgals3bp Regulates Microglial Phenotype within Cerebral Cortex. Biomolecules 2024; 14:808. [PMID: 39062523 PMCID: PMC11274721 DOI: 10.3390/biom14070808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia, the resident macrophages of the central nervous system, exhibit altered gene expression in response to various neurological conditions. This study investigates the relationship between West Nile Virus infection and microglial senescence, focusing on the role of LGALS3BP, a protein implicated in both antiviral responses and aging. Using spatial transcriptomics, RNA sequencing and flow cytometry, we characterized changes in microglial gene signatures in adult and aged mice following recovery from WNV encephalitis. Additionally, we analyzed Lgals3bp expression and generated Lgals3bp-deficient mice to assess the impact on neuroinflammation and microglial phenotypes. Our results show that WNV-activated microglia share transcriptional signatures with aged microglia, including upregulation of genes involved in interferon response and inflammation. Lgals3bp was broadly expressed in the CNS and robustly upregulated during WNV infection and aging. Lgals3bp-deficient mice exhibited reduced neuroinflammation, increased homeostatic microglial numbers, and altered T cell populations without differences in virologic control or survival. These data indicate that LGALS3BP has a role in regulating neuroinflammation and microglial activation and suggest that targeting LGALS3BP might provide a potential route for mitigating neuroinflammation-related cognitive decline in aging and post-viral infections.
Collapse
Affiliation(s)
- Artem Arutyunov
- Center for Neuroimmunology & Neuroinfectious Diseases, St. Louis, MO 63110, USA; (A.A.); (S.A.)
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Violeta Durán-Laforet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Shenjian Ai
- Center for Neuroimmunology & Neuroinfectious Diseases, St. Louis, MO 63110, USA; (A.A.); (S.A.)
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Loris Ferrari
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Robert Murphy
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Dorothy P. Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Robyn S. Klein
- Department of Microbiology & Immunology, Western Institute of Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, 100 Perth Dr, London, ON N6A 5K8, Canada
| |
Collapse
|
10
|
Xu L, Ren J, Li L, Wang M, Zhu G, Zheng H, Zeng Q, Shang Y, Li D. Vimentin inhibits peste des petits ruminants virus replication by interaction with nucleocapsid protein. Virology 2024; 595:110056. [PMID: 38552409 DOI: 10.1016/j.virol.2024.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 05/18/2024]
Abstract
The Peste des petits ruminant virus (PPRV) is a member of the Paramyxoviridae family and is classified into the genus Measles virus. PPRV predominantly infects small ruminants, leading to mortality rates of nearly 100%, which have caused significant economic losses in developing countries. Host proteins are important in virus replication, but the PPRV nucleocapsid (N) protein-host interacting partners for regulating PPRV replication remain unclear. The present study confirmed the interaction between PPRV-N and the host protein vimentin by co-immunoprecipitation and co-localization experiments. Overexpression of vimentin suppressed PPRV replication, whereas vimentin knockdown had the opposite effect. Mechanistically, N was subjected to degradation via the ubiquitin/proteasome pathway, where vimentin recruits the E3 ubiquitin ligase NEDD4L to fulfill N-ubiquitination, resulting in the degradation of the N protein. These findings suggest that the host protein vimentin and E3 ubiquitin ligase NEDD4L have an anti-PPRV effect.
Collapse
Affiliation(s)
- Long Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jingjing Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Lingxia Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Mengyi Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guoqiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| |
Collapse
|
11
|
Bartel S, Wolters JC, Noor H, Rafie K, Fang J, Kirchner B, Nolte-′t Hoen E, Pfaffl MW, Rutgers S, Timens W, van den Berge M, Hylkema MN. Altered Extracellular Vesicle-Derived Protein and microRNA Signatures in Bronchoalveolar Lavage Fluid from Patients with Chronic Obstructive Pulmonary Disease. Cells 2024; 13:945. [PMID: 38891077 PMCID: PMC11171984 DOI: 10.3390/cells13110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease for which there is no cure. Accumulating research results suggest a role for extracellular vesicles (EVs) in the pathogenesis of COPD. This study aimed to uncover the involvement of EVs and their molecular cargo in the progression of COPD by identification of EV-associated protein and microRNA (miRNA) profiles. We isolated EVs from the bronchial alveolar lavage fluid (BALF) of 18 patients with COPD and 11 healthy controls using size-exclusion chromatography. EV isolates were characterized using nanoparticle tracking analysis and protein content. Proteomic analysis revealed a higher abundance of 284 proteins (log2FC > 1) and a lower abundance of 3 proteins (log2FC < -1) in EVs derived from patients with COPD. Ingenuity pathway analysis showed that proteins enriched in COPD-associated EVs trigger inflammatory responses, including neutrophil degranulation. Variances in surface receptors and ligands associated with COPD EVs suggest a preferential interaction with alveolar cells. Small RNAseq analysis identified a higher abundance of ten miRNAs and a lower abundance of one miRNA in EVs from COPD versus controls (Basemean > 100, FDR < 0.05). Our data indicate that the molecular composition of EVs in the BALF of patients with COPD is altered compared to healthy control EVs. Several components in COPD EVs were identified that may perpetuate inflammation and alveolar tissue destruction.
Collapse
Affiliation(s)
- Sabine Bartel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Justina C. Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Hasnat Noor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Karim Rafie
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9712 CP Groningen, The Netherlands
| | - Jiahua Fang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- Institute of Human Genetics, LMU University Hospital, LMU Munich, 80539 Munich, Germany
| | - Esther Nolte-′t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | | | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Machteld N. Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
12
|
Wu S, Xiao X, Zhang Y, Zhang X, Wang G, Peng Q. Novel endotypes of antisynthetase syndrome identified independent of anti-aminoacyl transfer RNA synthetase antibody specificity that improve prognostic stratification. Ann Rheum Dis 2024; 83:775-786. [PMID: 38395605 DOI: 10.1136/ard-2023-225284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES To systemically analyse the heterogeneity in the clinical manifestations and prognoses of patients with antisynthetase syndrome (ASS) and evaluate the transcriptional signatures related to different clinical phenotypes. METHODS A total of 701 patients with ASS were retrospectively enrolled. The clinical presentation and prognosis were assessed in association with four anti-aminoacyl transfer RNA synthetase (ARS) antibodies: anti-Jo1, anti-PL7, anti-PL12 and anti-EJ. Unsupervised machine learning was performed for patient clustering independent of anti-ARS antibodies. Transcriptome sequencing was conducted in clustered ASS patients and healthy controls. RESULTS Patients with four different anti-ARS antibody subtypes demonstrated no significant differences in the incidence of rapidly progressive interstitial lung disease (RP-ILD) or prognoses. Unsupervised machine learning, independent of anti-ARS specificity, identified three endotypes with distinct clinical features and outcomes. Endotype 1 (RP-ILD cluster, 23.7%) was characterised by a high incidence of RP-ILD and a high mortality rate. Endotype 2 (dermatomyositis (DM)-like cluster, 14.5%) corresponded to patients with DM-like skin and muscle symptoms with an intermediate prognosis. Endotype 3 (arthritis cluster, 61.8%) was characterised by arthritis and mechanic's hands, with a good prognosis. Transcriptome sequencing revealed that the different endotypes had distinct gene signatures and biological processes. CONCLUSIONS Anti-ARS antibodies were not significant in stratifying ASS patients into subgroups with greater homogeneity in RP-ILD and prognoses. Novel ASS endotypes were identified independent of anti-ARS specificity and differed in clinical outcomes and transcriptional signatures, providing new insights into the pathogenesis of ASS.
Collapse
Affiliation(s)
- Shiyu Wu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
- Department of Rheumatology, Key Lab of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Xinyue Xiao
- Department of Rheumatology, Key Lab of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yingfang Zhang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
- Department of Rheumatology, Key Lab of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Xinxin Zhang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
- Department of Rheumatology, Key Lab of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Guochun Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
- Department of Rheumatology, Key Lab of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Qinglin Peng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
- Department of Rheumatology, Key Lab of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
13
|
He X, Wang B, Deng W, Cao J, Tan Z, Li X, Guan F. Impaired bisecting GlcNAc reprogrammed M1 polarization of macrophage. Cell Commun Signal 2024; 22:73. [PMID: 38279161 PMCID: PMC10811823 DOI: 10.1186/s12964-023-01432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/09/2023] [Indexed: 01/28/2024] Open
Abstract
The functions of macrophages are governed by distinct polarization phenotypes, which can be categorized as either anti-tumor/M1 type or pro-tumor/M2 type. Glycosylation is known to play a crucial role in various cellular processes, but its influence on macrophage polarization is not well-studied. In this study, we observed a significant decrease in bisecting GlcNAc during M0-M1 polarization, and impaired bisecting GlcNAc was found to drive M0-M1 polarization. Using a glycoproteomics strategy, we identified Lgals3bp as a specific glycoprotein carrying bisecting GlcNAc. A high level of bisecting GlcNAc modification facilitated the degradation of Lgals3bp, while a low level of bisecting GlcNAc stabilized Lgals3bp. Elevated levels of Lgals3bp promoted M1 polarization through the activation of the NF-кB pathway. Conversely, the activated NF-кB pathway significantly repressed the transcription of MGAT3, leading to reduced levels of bisecting GlcNAc modification on Lgals3bp. Overall, our study highlights the impact of glycosylation on macrophage polarization and suggests the potential of engineered macrophages via glycosylated modification. Video Abstract.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Bowen Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Wenli Deng
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Jinhua Cao
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Zengqi Tan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, 710069, China.
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
14
|
Yu C, Wang G, Liu Q, Zhai J, Xue M, Li Q, Xian Y, Zheng C. Host antiviral factors hijack furin to block SARS-CoV-2, ebola virus, and HIV-1 glycoproteins cleavage. Emerg Microbes Infect 2023; 12:2164742. [PMID: 36591809 PMCID: PMC9897805 DOI: 10.1080/22221751.2022.2164742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viral envelope glycoproteins are crucial for viral infections. In the process of enveloped viruses budding and release from the producer cells, viral envelope glycoproteins are presented on the viral membrane surface as spikes, promoting the virus's next-round infection of target cells. However, the host cells evolve counteracting mechanisms in the long-term virus-host co-evolutionary processes. For instance, the host cell antiviral factors could potently suppress viral replication by targeting their envelope glycoproteins through multiple channels, including their intracellular synthesis, glycosylation modification, assembly into virions, and binding to target cell receptors. Recently, a group of studies discovered that some host antiviral proteins specifically recognized host proprotein convertase (PC) furin and blocked its cleavage of viral envelope glycoproteins, thus impairing viral infectivity. Here, in this review, we briefly summarize several such host antiviral factors and analyze their roles in reducing furin cleavage of viral envelope glycoproteins, aiming at providing insights for future antiviral studies.
Collapse
Affiliation(s)
- Changqing Yu
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China
| | - Guosheng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Qiang Liu
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, People’s Republic of China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, People’s Republic of China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China,Mengzhou Xue
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China,Qiang Li
| | - Yuanhua Xian
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China,Yuanhua Xian
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China,Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Canada, Chunfu Zheng
| |
Collapse
|
15
|
Bosquillon de Jarcy L, Akbil B, Mhlekude B, Leyens J, Postmus D, Harnisch G, Jansen J, Schmidt ML, Aigner A, Pott F, Chua RL, Krist L, Gentile R, Mühlemann B, Jones TC, Niemeyer D, Fricke J, Keil T, Pischon T, Janke J, Conrad C, Iacobelli S, Drosten C, Corman VM, Ralser M, Eils R, Kurth F, Sander L, Goffinet C. 90K/LGALS3BP expression is upregulated in COVID-19 but may not restrict SARS-CoV-2 infection. Clin Exp Med 2023; 23:3689-3700. [PMID: 37162650 PMCID: PMC10170455 DOI: 10.1007/s10238-023-01077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Glycoprotein 90K, encoded by the interferon-stimulated gene LGALS3BP, displays broad antiviral activity. It reduces HIV-1 infectivity by interfering with Env maturation and virion incorporation, and increases survival of Influenza A virus-infected mice via antiviral innate immune signaling. Its antiviral potential in SARS-CoV-2 infection remains largely unknown. Here, we analyzed the expression of 90K/LGALS3BP in 44 hospitalized COVID-19 patients at multiple levels. We quantified 90K protein concentrations in serum and PBMCs as well as LGALS3BP mRNA levels. Complementary, we analyzed two single cell RNA-sequencing datasets for expression of LGALS3BP in respiratory specimens and PBMCs from COVID-19 patients. Finally, we analyzed the potential of 90K to interfere with SARS-CoV-2 infection of HEK293T/ACE2, Calu-3 and Caco-2 cells using authentic virus. 90K protein serum concentrations were significantly elevated in COVID-19 patients compared to uninfected sex- and age-matched controls. Furthermore, PBMC-associated concentrations of 90K protein were overall reduced by SARS-CoV-2 infection in vivo, suggesting enhanced secretion into the extracellular space. Mining of published PBMC scRNA-seq datasets uncovered monocyte-specific induction of LGALS3BP mRNA expression in COVID-19 patients. In functional assays, neither 90K overexpression in susceptible cell lines nor exogenous addition of purified 90K consistently inhibited SARS-CoV-2 infection. Our data suggests that 90K/LGALS3BP contributes to the global type I IFN response during SARS-CoV-2 infection in vivo without displaying detectable antiviral properties in vitro.
Collapse
Affiliation(s)
- Laure Bosquillon de Jarcy
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany
- Speciality Network: Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Bengisu Akbil
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany
| | - Baxolele Mhlekude
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany
| | - Johanna Leyens
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany
| | - Greta Harnisch
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marie L Schmidt
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Annette Aigner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Fabian Pott
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany
| | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
| | - Lilian Krist
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Barbara Mühlemann
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Terence C Jones
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Zoology, Centre for Pathogen Evolution, University of Cambridge, Downing St., Cambridge, CB2 3EJ, UK
| | - Daniela Niemeyer
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research, Associated Partner Charité, Berlin, Germany
| | - Julia Fricke
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Thomas Keil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Josef-Schneiderstr. 2, 97080, Würzburg, Germany
- State Institute of Health, Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058, Erlangen, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Core Facility Biobank, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, 10117, Berlin, Germany
| | - Jürgen Janke
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research, Associated Partner Charité, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research, Associated Partner Charité, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW11AT, UK
| | - Roland Eils
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Lung Research (DZL), 35392, Gießen, Germany
- Health Data Science Unit, Heidelberg University Hospital and BioQuant, 69120, Heidelberg, Germany
| | - Florian Kurth
- Speciality Network: Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
- Department of Medicine, University Medical Center, Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Leif Sander
- Speciality Network: Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Lung Research (DZL), 35392, Gießen, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany.
| |
Collapse
|
16
|
Abstract
RNA modification is manifested as chemically altered nucleotides, widely exists in diverse natural RNAs, and is closely related to RNA structure and function. Currently, mRNA-based vaccines have received great attention and rapid development as novel and mighty fighters against various diseases including cancer. The achievement of RNA vaccines in clinical application is largely attributed to some methodological innovations including the incorporation of modified nucleotides into the synthetic RNA. The selection of optimal RNA modifications aimed at reducing the instability and immunogenicity of RNA molecules is a very critical task to improve the efficacy and safety of mRNA vaccines. This review summarizes the functions of RNA modifications and their application in mRNA vaccines, highlights recent advances of mRNA vaccines in cancer immunotherapy, and provides perspectives for future development of mRNA vaccines in the context of personalized tumor therapy.
Collapse
Affiliation(s)
- Yingxue Mei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
17
|
Morales M, Alayi TD, Tawalbeh SM, Sydenstricker AV, Spathis R, Kim H, Nagaraju K, Hathout Y, Rider LG. Urine proteomics by mass spectrometry identifies proteins involved in key pathogenic pathways in patients with juvenile dermatomyositis. Rheumatology (Oxford) 2023; 62:3161-3168. [PMID: 36661295 PMCID: PMC10473190 DOI: 10.1093/rheumatology/kead033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES To identify and validate biomarkers in JDM patients using a multiplexing tandem mass tag urine proteome profiling approach. METHODS First morning void urine samples were collected from JDM patients (n = 20) and healthy control subjects (n = 21) and processed for analysis using a standardized liquid chromatography-tandem mass spectrometry approach. Biomarkers with significantly altered levels were correlated with clinical measures of myositis disease activity and damage. A subset of candidate biomarkers was validated using commercially available ELISA kits. RESULTS In total, 2348 proteins were detected in the samples, with 275 proteins quantified across all samples. Among the differentially altered proteins, cathepsin D and galectin-3 binding protein were significantly increased in the urine of JDM patients (adjusted P < 0.05), supporting previous findings in myositis patients. These two candidate biomarkers were confirmed with ELISAs. Cathepsin D positively correlated with Myositis Damage Index (r = 0.57, P < 0.05) and negatively correlated with the Childhood Myositis Assessment Scale (r = -0.54, P < 0.05). We also identified novel JDM candidate biomarkers involved with key features of myositis, including extracellular matrix remodelling proteins. CONCLUSION This study confirmed the presence of several proteins in the urine of JDM patients that were previously found to be elevated in the blood of myositis patients and identified novel candidate biomarkers that require validation. These results support the use of urine as a source for biomarker development in JDM.
Collapse
Affiliation(s)
- Melissa Morales
- Department of Pharmaceutical Sciences, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Tchilabalo D Alayi
- Department of Pharmaceutical Sciences, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Shefa M Tawalbeh
- Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid, Jordan
| | - Agnes V Sydenstricker
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rita Spathis
- Department of Pharmaceutical Sciences, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Hanna Kim
- Juvenile Myositis Pathogenesis and Therapeutics Unit, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Yetrib Hathout
- Department of Pharmaceutical Sciences, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
18
|
Bermúdez-Méndez E, Angelino P, van Keulen L, van de Water S, Rockx B, Pijlman GP, Ciuffi A, Kortekaas J, Wichgers Schreur PJ. Transcriptomic Profiling Reveals Intense Host-Pathogen Dispute Compromising Homeostasis during Acute Rift Valley Fever Virus Infection. J Virol 2023; 97:e0041523. [PMID: 37306574 PMCID: PMC10308945 DOI: 10.1128/jvi.00415-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/13/2023] [Indexed: 06/13/2023] Open
Abstract
Rift Valley fever virus (RVFV) (family Phenuiviridae) can cause severe disease, and outbreaks of this mosquito-borne pathogen pose a significant threat to public and animal health. Yet many molecular aspects of RVFV pathogenesis remain incompletely understood. Natural RVFV infections are acute, characterized by a rapid onset of peak viremia during the first days post-infection, followed by a rapid decline. Although in vitro studies identified a major role of interferon (IFN) responses in counteracting the infection, a comprehensive overview of the specific host factors that play a role in RVFV pathogenesis in vivo is still lacking. Here, the host in vivo transcriptional profiles in the liver and spleen tissues of lambs exposed to RVFV are studied using RNA sequencing (RNA-seq) technology. We validate that IFN-mediated pathways are robustly activated in response to infection. We also link the observed hepatocellular necrosis with severely compromised organ function, which is reflected as a marked downregulation of multiple metabolic enzymes essential for homeostasis. Furthermore, we associate the elevated basal expression of LRP1 in the liver with RVFV tissue tropism. Collectively, the results of this study deepen the knowledge of the in vivo host response during RVFV infection and reveal new insights into the gene regulation networks underlying pathogenesis in a natural host. IMPORTANCE Rift Valley fever virus (RVFV) is a mosquito-transmitted pathogen capable of causing severe disease in animals and humans. Outbreaks of RVFV pose a significant threat to public health and can result in substantial economic losses. Little is known about the molecular basis of RVFV pathogenesis in vivo, particularly in its natural hosts. We employed RNA-seq technology to investigate genome-wide host responses in the liver and spleen of lambs during acute RVFV infection. We show that RVFV infection drastically decreases the expression of metabolic enzymes, which impairs normal liver function. Moreover, we highlight that basal expression levels of the host factor LRP1 may be a determinant of RVFV tissue tropism. This study links the typical pathological phenotype induced by RVFV infection with tissue-specific gene expression profiles, thereby improving our understanding of RVFV pathogenesis.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Paolo Angelino
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lucien van Keulen
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Sandra van de Water
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Barry Rockx
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul J. Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
19
|
Stojanovic BS, Stojanovic B, Milovanovic J, Arsenijević A, Dimitrijevic Stojanovic M, Arsenijevic N, Milovanovic M. The Pivotal Role of Galectin-3 in Viral Infection: A Multifaceted Player in Host-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24119617. [PMID: 37298569 DOI: 10.3390/ijms24119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.
Collapse
Affiliation(s)
- Bojana S Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
20
|
Bannoudi HEL, Cornwell M, Luttrell-Williams E, Engel A, Rolling C, Barrett TJ, Izmirly P, Belmont HM, Ruggles K, Clancy R, Buyon J, Berger JS. Platelet LGALS3BP as a Mediator of Myeloid Inflammation in Systemic Lupus Erythematosus. Arthritis Rheumatol 2023; 75:711-722. [PMID: 36245285 PMCID: PMC11934290 DOI: 10.1002/art.42382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Platelets are mediators of inflammation with immune effector cell properties and have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). This study investigated the role of platelet-associated lectin, galactoside-binding, soluble 3 binding protein (LGALS3BP) as a mediator of inflammation in SLE and as a potential biomarker associated with clinical phenotypes. METHODS We performed RNA sequencing on platelets from patients with SLE (n = 54) and on platelets from age-, sex-, and race/ethnicity-matched healthy controls (n = 18) and measured LGALS3BP levels in platelet releasate and in circulating serum. We investigated the association between LGALS3BP levels and the prevalence, disease severity, and clinical phenotypes of SLE and studied platelet-mediated effects on myeloid inflammation. RESULTS Platelets from patients with SLE exhibited increased expression of LGALS3BP (fold change 4.0, adjusted P = 6.02 × 10-11 ). Platelet-released LGALS3BP levels were highly correlated with circulating LGALS3BP (R = 0.69, P < 0.0001), and circulating LGALS3BP levels were correlated with the severity of disease according to the SLE Disease Activity Index (r = 0.32, P = 0.0006). Specifically, circulating LGALS3BP levels were higher in SLE patients with lupus nephritis than in patients with inactive disease (4.0 μg/ml versus 2.3 μg/ml; P < 0.001). Interferon-α induced LGALS3BP transcription and translation in a megakaryoblastic cell line (MEG-01) in a dose-dependent manner. Recombinant LGALS3BP and platelet releasates from SLE patients enhanced proinflammatory cytokine production by macrophages. CONCLUSIONS Our results support that platelets act as potent effector cells that contribute to the pathogenesis of SLE by secreting proinflammatory LGALS3BP, which also represents a novel biomarker of SLE clinical activity.
Collapse
Affiliation(s)
- Hanane EL Bannoudi
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - MacIntosh Cornwell
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Alexis Engel
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Christina Rolling
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Medizinische Klinik, Universitaetsklinikum Hamburg-Eppendorf
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Peter Izmirly
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - H. Michael Belmont
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Kelly Ruggles
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA
| | - Robert Clancy
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jill Buyon
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Guo K, Shi J, Tang Z, Lai C, Liu C, Li K, Li Z, Xu K. Circular RNA circARHGEF28 inhibited the progression of prostate cancer via the miR-671-5p/LGALS3BP/NF-κB axis. Cancer Sci 2023. [PMID: 37186007 DOI: 10.1111/cas.15820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Circular RNAs (circRNAs) play crucial roles in various biological processes, including prostate cancer (PCa). However, the precise roles and mechanism of circRNAs are complicated. Hence, we studied the function of a circRNA that might be involved in the progression of PCa. In this study, we found that circARHGEF28 was frequently downregulated in PCa tissues and cell lines. Furthermore, gain- and loss-of function experiments in vitro showed that circARHGEF28 inhibited proliferation, migration, and invasion of PCa. Additionally, circARHGEF28 suppressed PCa progression in vivo. Bioinformatics analysis and RNA pull-down and capture assay found that circARHGEF28 sponged miR-671-5p in PCa cells. Importantly, qRT-PCR and dual luciferase assays found that Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) was downstream of miR-671-5p, and western blot analysis further confirmed that LGALS3BP negatively regulated the nuclear factor kappa-B (NF-κB) pathway. These results demonstrated that circARHGEF28 abolished the degradation of LGALS3BP by sponging miR-671-5p, thus blocking the activation of the NF-κB pathway. Our findings revealed that circARHGEF28/miR-671-5p/LGALS3BP/NF-κB may be an important axis that regulates PCa progression.
Collapse
Affiliation(s)
- Kaixuan Guo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Juanyi Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuang Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Cong Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Cheng Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Kuiqing Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Zhuohang Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| |
Collapse
|
22
|
90K/Mac-2 BP Is a New Predictive Biomarker of Response to Infliximab Therapy in IBD Patients. Int J Mol Sci 2023; 24:ijms24043955. [PMID: 36835367 PMCID: PMC9966915 DOI: 10.3390/ijms24043955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Inflammatory bowel diseases (IBD), comprising Crohn's disease (CD) and Ulcerative Colitis (UC), are multifactorial disorders characterized by a chronic inflammatory status with the secretion of cytokines and immune mediators. Biologic drugs targeting pro-inflammatory cytokines, such as infliximab, are broadly used in the treatment of IBD patients, but some patients lose responsiveness after an initial success. The research into new biomarkers is crucial for advancing personalized therapies and monitoring the response to biologics. The aim of this single center, observational study is to analyze the relationship between serum levels of 90K/Mac-2 BP and the response to infliximab, in a cohort of 48 IBD patients (30 CD and 18 UC), enrolled from February 2017 to December 2018. In our IBD cohort, high 90K serum levels were found at baseline in patients who then developed anti-infliximab antibodies at the fifth infusion (22 weeks after the first), becoming non-responders (9.76 ± 4.65 µg/mL compared to 6.53 ± 3.29 µg/mL in responder patients, p = 0.005). This difference was significant in the total cohort and in CD, but not significant in UC. We then analyzed the relationship between serum levels of 90K, C-reactive protein (CRP), and Fecal calprotectin. A significant positive correlation was found at baseline between 90K and CRP, the most common serum inflammation marker (R = 0.42, p = 0.0032). We concluded that circulating 90K could be considered a new non-invasive biomarker for monitoring the response to infliximab. Furthermore, 90K serum level determination, before the first infliximab infusion, in association with other inflammatory markers such as CRP, could assist in the choice of biologics for the treatment of IBD patients, thereby obviating the need for a drug switch due to loss of response, and so improving clinical practice and patient care.
Collapse
|
23
|
Do WL, Sun D, Meeks K, Dugué PA, Demerath E, Guan W, Li S, Chen W, Milne R, Adeyemo A, Agyemang C, Nassir R, Manson JE, Shadyab AH, Hou L, Horvath S, Assimes TL, Bhatti P, Jordahl KM, Baccarelli AA, Smith AK, Staimez LR, Stein AD, Whitsel EA, Narayan KV, Conneely KN. Epigenome-wide meta-analysis of BMI in nine cohorts: Examining the utility of epigenetically predicted BMI. Am J Hum Genet 2023; 110:273-283. [PMID: 36649705 PMCID: PMC9943731 DOI: 10.1016/j.ajhg.2022.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
This study sought to examine the association between DNA methylation and body mass index (BMI) and the potential of BMI-associated cytosine-phosphate-guanine (CpG) sites to provide information about metabolic health. We pooled summary statistics from six trans-ethnic epigenome-wide association studies (EWASs) of BMI representing nine cohorts (n = 17,034), replicated these findings in the Women's Health Initiative (WHI, n = 4,822), and developed an epigenetic prediction score of BMI. In the pooled EWASs, 1,265 CpG sites were associated with BMI (p < 1E-7) and 1,238 replicated in the WHI (FDR < 0.05). We performed several stratified analyses to examine whether these associations differed between individuals of European and African descent, as defined by self-reported race/ethnicity. We found that five CpG sites had a significant interaction with BMI by race/ethnicity. To examine the utility of the significant CpG sites in predicting BMI, we used elastic net regression to predict log-normalized BMI in the WHI (80% training/20% testing). This model found that 397 sites could explain 32% of the variance in BMI in the WHI test set. Individuals whose methylome-predicted BMI overestimated their BMI (high epigenetic BMI) had significantly higher glucose and triglycerides and lower HDL cholesterol and LDL cholesterol compared to accurately predicted BMI. Individuals whose methylome-predicted BMI underestimated their BMI (low epigenetic BMI) had significantly higher HDL cholesterol and lower glucose and triglycerides. This study confirmed 553 and identified 685 CpG sites associated with BMI. Participants with high epigenetic BMI had poorer metabolic health, suggesting that the overestimation may be driven in part by cardiometabolic derangements characteristic of metabolic syndrome.
Collapse
Affiliation(s)
- Whitney L. Do
- Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China,Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Karlijn Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA,Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences At Monash Health, Monash University, Clayton, VIC, Australia,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC 3051, Australia
| | - Ellen Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Shengxu Li
- Children’s Minnesota Research Institute, Childrens Minnesota, Minneapolis, MN, USA
| | - Wei Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Roger Milne
- Precision Medicine, School of Clinical Sciences At Monash Health, Monash University, Clayton, VIC, Australia,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC 3051, Australia
| | - Abedowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | | | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lisa R. Staimez
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Aryeh D. Stein
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Eric A. Whitsel
- Departments of Epidemiology and Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - K.M. Venkat Narayan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen N. Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA,Corresponding author
| |
Collapse
|
24
|
Chen F, Li M, Fei X, Chen X, Zhang Z, Zhu W, Shen Y, Mao Y, Liu J, Xu J, Du J. Predictive plasma biomarker for gestational diabetes: A case-control study in China. J Proteomics 2023; 271:104769. [PMID: 36372392 DOI: 10.1016/j.jprot.2022.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study aims to find new plasma biomarkers in early pregnancy. DESIGN The original study enrolled 1219 pregnant women. We investigated protein expression profiles of placental tissues from women with GDM (n = 89) and normal glucose tolerance (NGT) (n = 83). Maternal plasma samples between two groups in early and middle pregnancy were used for validation of candidate biomarkers. METHODS Differentially expressed proteins (DEPs) were identified by label-free quantitative proteomics from human placenta samples between two groups. Several DEPs were validated in plasma by Luminex assays. An automatic biochemical analyzer was used to detect blood lipid indexes. The associations of GAL-3BP with biochemical indicators were demonstrated by Pearson's correlation analysis. Binary logistic regression was used to model potential predictive indicators in early pregnancy of GDM. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic accuracy of the predictive model and the value of GAL-3BP. RESULTS 123 DEPs were found in placenta involved in ribosomal function, pancreatic secretion, oxidative phosphorylation, and inflammatory signaling pathway. Plasma GAL-3BP are significantly higher in women with GDM than NGT in the first (p = 0.008) and second (p = 0.026) trimester, but C9 and VWF have no difference. The predictive value of GAL-3BP in the first trimester of pregnancy (AUC 0.64) is better than that in the second trimester (AUC 0.61), and combined predictive model of TG and GAL-3BP at early pregnancy has greater predictive and diagnostic value for GDM (AUC 0.69) than individual GAL-3BP (AUC 0.64). CONCLUSIONS Plasma TG and GAL-3BP has good predictive and diagnostic value at early pregnancy, suggesting that these two indicators may be used as biomarkers for early prediction and diagnosis of GDM. SIGNIFICANCE The advantage of this study is that circulating TG and GAL-3BP might differentiate the progress of women with GDM and normal glucose tolerance (NGT) at the early stage of pregnancy. It is the first study to consider the role of GAL-3BP as an early predictive biomarker in the development of GDM during the whole pregnancy. Another advantage is that volunteers in this study were recruited from two provinces in China to eliminate the impacts of environmental confounders. The similar changes of blood glucose/lipid indicators for women with GDM and NGT in both regions was found in the first and second trimester of pregnancy, which added to the reliability of analytical results.
Collapse
Affiliation(s)
- Fujia Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Min Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoping Fei
- The First people's Hospital of Kunshan, Kunshan, China
| | - Xiaohong Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Pudong New Area, Shanghai, China
| | - Zhaofeng Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Weiqiang Zhu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Yupei Shen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Mao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Jun Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Population and Family Planning Science and Technology Research Institute)
| | - Jianhua Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China.
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
He J, Zhao F, Chen B, Cui N, Li Z, Qin J, Luo L, Zhao C, Li L. Alterations in immune cell heterogeneities in the brain of aged zebrafish using single-cell resolution. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2223-4. [PMID: 36607494 DOI: 10.1007/s11427-021-2223-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023]
Abstract
Immunocytes, including the microglia, are crucial in the neurodegenerative process in old people. However, the understanding of regarding microglia heterogeneity and other involved immunocytes remains elusive. We analyzed 26,456 immunocytes from 12-and 26-month-old zebrafish brains at single-cell resolution. Microglia and T lymphocytes were detected in the brain at both time points. Two types of microglia were annotated, namely, ac+ microglia and xr+ microglia, which were clustered into subsets 1, 2, 3, 4, 5, and subsets 6, 7, 8, 9, respectively. Diversified microglia predominated the adult brains and cooperated with T cells to perform the functions of immune response and neuronal nutrition. We validated the specific microglia markers. The novel transgenic lines, Tg(lgals3bpb:eGFP) and Tg(apoc1:eGFP), were created, which faithfully labeled ac+ microglia and served as valuable labeling tools. However, the microglia population reduced while T cells of six subtypes intriguingly increased to serve as the primary immune cells in aged brains. Unlike in 12-month-old brains, T cells, together with microglia, exhibited a coordinated signature of inflammation in the 26-month-old brains. Our findings revealed the immunocytes atlas in aged zebrafish brains. It implied the involvement of microglia and T cells in the progression of neurodegeneration in aging.
Collapse
Affiliation(s)
- Jiangyong He
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China.,Research Center of Stem cells and Aging, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fangying Zhao
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Bingyue Chen
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Nianfei Cui
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Zhifan Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Jie Qin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Congjian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Li Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China. .,Research Center of Stem cells and Aging, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
26
|
Zhu G, Yang F, Wei H, Meng W, Gan J, Wang L, He C, Lu S, Cao B, Luo H, Han B, Li L. 90 K increased delivery efficiency of extracellular vesicles through mediating internalization. J Control Release 2023; 353:930-942. [PMID: 36529385 DOI: 10.1016/j.jconrel.2022.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Using mass spectrometry-based high-throughput proteomics, we identified a membrane protein on extracellular vesicles (EVs), 90 K, which predicts poor overall survival of patients with head and neck cancer. 90 K levels in serum EVs could serve as an independent factor for poor prognosis of patients with head and neck cancer. Pre-treatment of immune competent mice with tumor-derived EVs (TDEs) elicited an immune-suppressive microenvironment for tumor cells, which was regulated by 90 K. The immunosuppressive function of TDE-90 K depends on the presence of myeloid derived suppressor cells (MDSCs) rather than regulatory T cells. The immune regulatory role of TDEs on MDSCs depends on miR-21 which is encapsulated in TDEs. Moreover, 90 K is required for the internalization of TDE cargo though interacting with integrin-β1 and anti-siglec-9 rather than directly affecting the immune function of MDSCs. 90 K modification of γδT cell-derived EVs (γδTEVs) could increase the delivery efficiency and therapeutic effect of PD-L1 siRNA by γδTEVs. We concluded that as a secreted protein modulating cell-cell and cell-matrix interactions, 90 K can be carried by TDEs to mediate the internalization and delivery of TDEs cargo by recipient cells. This function of 90 K could be utilized to improve the efficiency of EV-based drug delivery.
Collapse
Affiliation(s)
- Guiquan Zhu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Fan Yang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Hongxuan Wei
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Wanrong Meng
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Jianguo Gan
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Linlin Wang
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Chuanshi He
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Shun Lu
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Bangrong Cao
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Huaichao Luo
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Bo Han
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Ling Li
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China.
| |
Collapse
|
27
|
Gallo V, Gentile R, Antonini G, Iacobelli S, Nobrega C, Silva CS, Sarmento H, Cotter J, Canto-Gomes J, Palha J, Peixoto P, Barreira-Silva P, Sousa JC, Correia-Neves M, Formigo M, Vieira N, Cunha PG, Roque S, Gentile R, Antonini G, Iacobelli S. Increased Gal-3BP plasma levels in hospitalized patients infected with SARS-CoV-2. Clin Exp Med 2023; 23:151-155. [PMID: 35076790 PMCID: PMC8787969 DOI: 10.1007/s10238-021-00788-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has quickly turned into a health, financial and societal problem globally. The complex pathogenesis of severe acute respiratory syndrome coronavirus centers on the unpredictable clinical progression of the disease, which may evolve abruptly and results in critical and life-threatening clinical complications. Effective laboratory biomarkers that can classify patients according to risk of progression to severe disease are essential for ensuring timely treatment. Gal-3BP is a human secreted protein with innate immune functions, which is upregulated in viral infections, promotes inflammation and has been shown to induce IL-6 expression. In this study, Gal-3BP plasma levels were measured retrospectively in a cohort of 84 hospitalized COVID-19 patients. These were classified as having either "non-severe" or "severe" disease. Compared to healthy controls, Gal-3BP plasma levels were markedly increased in COVID-19 patients (P < 0.0001). Moreover, the levels were higher in severe than in non-severe patients (P < 0.05). As expected, patients with severe disease had plasma levels of IL-6 higher than patients with non-severe disease (P < 0.01). In non-severe disease patients, Gal-3BP levels collected at a late stage (13.3 + 5.7 days after the first positive PCR result) were significantly lower than those collected at an early stage (4.2 + 2.9 days form the first positive PCR result). Larger prospective analyses are needed to strength our understanding of the prognostic utility of Gal-3BP in COVID-19 patients.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Sciences, Roma Tre University, Rome, Italy ,Biostructures and Biosystems National Institute (INBB), Rome, Italy
| | | | | | - Giovanni Antonini
- Department of Sciences, Roma Tre University, Rome, Italy. .,Biostructures and Biosystems National Institute (INBB), Rome, Italy.
| | - Stefano Iacobelli
- Biostructures and Biosystems National Institute (INBB), Rome, Italy ,MediaPharma Srl, Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yin L, Chen Y, Fu T, Liu L, Xia Q. Identification of candidate blood biomarkers for the diagnosis of septicaemic melioidosis based on WGCNA. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:252-259. [DOI: 10.1080/21691401.2022.2126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Yuanyuan Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Tingting Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Lin Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, PR China
| |
Collapse
|
29
|
Wu S, Xu Y, Zhang J, Ran X, Jia X, Wang J, Sun L, Yang H, Li Y, Fu B, Huang C, Liao P, Sun W. Longitudinal Serum Proteome Characterization of COVID-19 Patients With Different Severities Revealed Potential Therapeutic Strategies. Front Immunol 2022; 13:893943. [PMID: 35958562 PMCID: PMC9361788 DOI: 10.3389/fimmu.2022.893943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/21/2022] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is exerting huge pressure on global healthcare. Understanding of the molecular pathophysiological alterations in COVID-19 patients with different severities during disease is important for effective treatment. In this study, we performed proteomic profiling of 181 serum samples collected at multiple time points from 79 COVID-19 patients with different severity levels (asymptomatic, mild, moderate, and severe/critical) and 27 serum samples from non-COVID-19 control individuals. Dysregulation of immune response and metabolic reprogramming was found in severe/critical COVID-19 patients compared with non-severe/critical patients, whereas asymptomatic patients presented an effective immune response compared with symptomatic COVID-19 patients. Interestingly, the moderate COVID-19 patients were mainly grouped into two distinct clusters using hierarchical cluster analysis, which demonstrates the molecular pathophysiological heterogeneity in COVID-19 patients. Analysis of protein-level alterations during disease progression revealed that proteins involved in complement activation, the coagulation cascade and cholesterol metabolism were restored at the convalescence stage, but the levels of some proteins, such as anti-angiogenesis protein PLGLB1, would not recovered. The higher serum level of PLGLB1 in COVID-19 patients than in control groups was further confirmed by parallel reaction monitoring (PRM). These findings expand our understanding of the pathogenesis and progression of COVID-19 and provide insight into the discovery of potential therapeutic targets and serum biomarkers worth further validation.
Collapse
Affiliation(s)
- Songfeng Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yuan Xu
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Chongqing Medical University, Chongqing, China
| | - Jian Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xiaoju Ran
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xue Jia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jing Wang
- Department of Clinical Laboratory, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Longqin Sun
- Beijing Qinglian Biotech Co., Ltd, Beijing, China
| | - Huan Yang
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yulei Li
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Changwu Huang
- Department of Clinical Laboratory, Chongqing Fifth People’s Hospital, Chongqing, China
- *Correspondence: Wei Sun, ; Pu Liao, ; Changwu Huang,
| | - Pu Liao
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
- *Correspondence: Wei Sun, ; Pu Liao, ; Changwu Huang,
| | - Wei Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- *Correspondence: Wei Sun, ; Pu Liao, ; Changwu Huang,
| |
Collapse
|
30
|
Zhuang C, Chen R, Zheng Z, Lu J, Hong C. Toll-Like Receptor 3 in Cardiovascular Diseases. Heart Lung Circ 2022; 31:e93-e109. [PMID: 35367134 DOI: 10.1016/j.hlc.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Toll-like receptor 3 (TLR3) is an important member of the innate immune response receptor toll-like receptors (TLRs) family, which plays a vital role in regulating immune response, promoting the maturation and differentiation of immune cells, and participating in the response of pro-inflammatory factors. TLR3 is activated by pathogen-associated molecular patterns and damage-associated molecular patterns, which support the pathophysiology of many diseases related to inflammation. An increasing number of studies have confirmed that TLR3, as a crucial medium of innate immunity, participates in the occurrence and development of cardiovascular diseases (CVDs) by regulating the transcription and translation of various cytokines, thus affecting the structure and physiological function of resident cells in the cardiovascular system, including vascular endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and macrophages. The dysfunction and structural damage of vascular endothelial cells and proliferation of vascular smooth muscle cells are the key factors in the occurrence of vascular diseases such as pulmonary arterial hypertension, atherosclerosis, myocardial hypertrophy, myocardial infarction, ischaemia/reperfusion injury, and heart failure. Meanwhile, cardiomyocytes, fibroblasts, and macrophages are involved in the development of CVDs. Therefore, the purpose of this review was to explore the latest research published on TLR3 in CVDs and discuss current understanding of potential mechanisms by which TLR3 contributes to CVDs. Even though TLR3 is a developing area, it has strong treatment potential as an immunomodulator and deserves further study for clinical translation.
Collapse
Affiliation(s)
- Chunying Zhuang
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Guangzhou, China
| | - Jianmin Lu
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Gal-3BP in Viral Infections: An Emerging Role in Severe Acute Respiratory Syndrome Coronavirus 2. Int J Mol Sci 2022; 23:ijms23137314. [PMID: 35806317 PMCID: PMC9266551 DOI: 10.3390/ijms23137314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Galectin-3 binding protein (Gal-3BP) is a multifunctional glycoprotein involved in cell–cell and cell–matrix interactions known to be upregulated in cancer and various viral infections, including HIV-1, HCV, and SARS-CoV-2, with a key role in regulating the antiviral immune response. Studies have identified a direct correlation between circulating levels of Gal-3BP and the severity of disease and/or disease progression for some viral infections, including SARS-CoV-2, suggesting a role of Gal-3BP in these processes. Due to Gal-3BP’s complex biology, the molecular mechanisms underlying its role in viral diseases have been only partially clarified. Gal-3BP induces the expression of interferons (IFNs) and proinflammatory cytokines, including interleukin-6 (IL-6), mainly interacting with galectin-3, targeting the TNF receptor-associated factors (TRAF-6 and TRAF-3) complex, thus having a putative role in the modulation of TGF-β signaling. In addition, an antiviral activity of Gal-3BP has been ascribed to a direct interaction of the protein with virus components. In this review, we explored the role of Gal-3BP in viral infections and the relationship between Gal-3BP upregulation and disease severity and progression, mainly focusing on SARS-CoV-2. Augmented knowledge of Gal-3BP’s role in virus infections can be useful to evaluate its possible use as a prognostic biomarker and as a putative target to block or attenuate severe disease.
Collapse
|
32
|
Fraszczyk E, Spijkerman AMW, Zhang Y, Brandmaier S, Day FR, Zhou L, Wackers P, Dollé MET, Bloks VW, Gào X, Gieger C, Kooner J, Kriebel J, Picavet HSJ, Rathmann W, Schöttker B, Loh M, Verschuren WMM, van Vliet-Ostaptchouk JV, Wareham NJ, Chambers JC, Ong KK, Grallert H, Brenner H, Luijten M, Snieder H. Epigenome-wide association study of incident type 2 diabetes: a meta-analysis of five prospective European cohorts. Diabetologia 2022; 65:763-776. [PMID: 35169870 PMCID: PMC8960572 DOI: 10.1007/s00125-022-05652-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 11/15/2021] [Indexed: 02/02/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is a complex metabolic disease with increasing prevalence worldwide. Improving the prediction of incident type 2 diabetes using epigenetic markers could help tailor prevention efforts to those at the highest risk. The aim of this study was to identify predictive methylation markers for incident type 2 diabetes by combining epigenome-wide association study (EWAS) results from five prospective European cohorts. METHODS We conducted a meta-analysis of EWASs in blood collected 7-10 years prior to type 2 diabetes diagnosis. DNA methylation was measured with Illumina Infinium Methylation arrays. A total of 1250 cases and 1950 controls from five longitudinal cohorts were included: Doetinchem, ESTHER, KORA1, KORA2 and EPIC-Norfolk. Associations between DNA methylation and incident type 2 diabetes were examined using robust linear regression with adjustment for potential confounders. Inverse-variance fixed-effects meta-analysis of cohort-level individual CpG EWAS estimates was performed using METAL. The methylGSA R package was used for gene set enrichment analysis. Confirmation of genome-wide significant CpG sites was performed in a cohort of Indian Asians (LOLIPOP, UK). RESULTS The meta-analysis identified 76 CpG sites that were differentially methylated in individuals with incident type 2 diabetes compared with control individuals (p values <1.1 × 10-7). Sixty-four out of 76 (84.2%) CpG sites were confirmed by directionally consistent effects and p values <0.05 in an independent cohort of Indian Asians. However, on adjustment for baseline BMI only four CpG sites remained genome-wide significant, and addition of the 76 CpG methylation risk score to a prediction model including established predictors of type 2 diabetes (age, sex, BMI and HbA1c) showed no improvement (AUC 0.757 vs 0.753). Gene set enrichment analysis of the full epigenome-wide results clearly showed enrichment of processes linked to insulin signalling, lipid homeostasis and inflammation. CONCLUSIONS/INTERPRETATION By combining results from five European cohorts, and thus significantly increasing study sample size, we identified 76 CpG sites associated with incident type 2 diabetes. Replication of 64 CpGs in an independent cohort of Indian Asians suggests that the association between DNA methylation levels and incident type 2 diabetes is robust and independent of ethnicity. Our data also indicate that BMI partly explains the association between DNA methylation and incident type 2 diabetes. Further studies are required to elucidate the underlying biological mechanisms and to determine potential causal roles of the differentially methylated CpG sites in type 2 diabetes development.
Collapse
Affiliation(s)
- Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Annemieke M W Spijkerman
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Brandmaier
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Felix R Day
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Li Zhou
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Paul Wackers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jaspal Kooner
- Department of Cardiology, Ealing Hospital, Ealing, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jennifer Kriebel
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - H Susan J Picavet
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Auf'm Hennekamp, Duesseldorf, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - W M Monique Verschuren
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Genomics Coordination Center, Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Department of Paediatrics, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
33
|
Xie Y, Yang L, Cao P, Li S, Zhang W, Dang W, Xin S, Jiang M, Xin Y, Li J, Long S, Wang Y, Zhang S, Yang Y, Lu J. Plasma Exosomal Proteomic Pattern of Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis. Front Microbiol 2022; 13:821311. [PMID: 35464963 PMCID: PMC9019563 DOI: 10.3389/fmicb.2022.821311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated hemophagocytic lymphohistiocytosis (EBV-HLH) is a life-threatening syndrome, which is caused by EBV infection that is usually refractory to treatment and shows relapse. The development of new biomarkers for the early diagnosis and clinical treatment of EBV-HLH is urgently needed. Exosomes have been shown to mediate various biological processes and are ideal non-invasive biomarkers. Here, we present the differential plasma exosomal proteome of a patient with EBV-HLH before vs. during treatment and with that of his healthy twin brother. A tandem mass tag-labeled LC-MS technique was employed for proteomic detection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that differential proteomic profiles were related to virus infection, coagulopathy, nervous system dysfunction, imbalance of immune response, and abnormal liver function. The candidate biomarkers were first identified in the patient’s plasma exosomes at different treatment and follow-up time points. Then, 14 additional EBV-HLH exosome samples were used to verify six differentially expressed proteins. The upregulation of C-reactive protein, moesin, galectin three-binding protein, and heat shock cognate 71 kDa protein and the downregulation of plasminogen and fibronectin 1 could serve as potential biomarkers of EBV-HLH. This plasma exosomal proteomic analysis provides new insights into the diagnostic and therapeutic biomarkers of EBV-HLH.
Collapse
Affiliation(s)
- Yan Xie
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shen Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yujie Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Sijing Long
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yang Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
- *Correspondence: Jianhong Lu,
| |
Collapse
|
34
|
Multiomics Analysis of Endocytosis upon HBV Infection and Identification of SCAMP1 as a Novel Host Restriction Factor against HBV Replication. Int J Mol Sci 2022; 23:ijms23042211. [PMID: 35216324 PMCID: PMC8874515 DOI: 10.3390/ijms23042211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a major global health problem and the primary cause of cirrhosis and hepatocellular carcinoma (HCC). HBV intrusion into host cells is prompted by virus–receptor interactions in clathrin-mediated endocytosis. Here, we report a comprehensive view of the cellular endocytosis-associated transcriptome, proteome and ubiquitylome upon HBV infection. In this study, we quantified 273 genes in the transcriptome and 190 endocytosis-associated proteins in the proteome by performing multi-omics analysis. We further identified 221 Lys sites in 77 endocytosis-associated ubiquitinated proteins. A weak negative correlation was observed among endocytosis-associated transcriptome, proteome and ubiquitylome. We found 33 common differentially expressed genes (DEGs), differentially expressed proteins (DEPs), and Kub-sites. Notably, we reported the HBV-induced ubiquitination change of secretory carrier membrane protein (SCAMP1) for the first time, differentially expressed across all three omics data sets. Overexpression of SCAMP1 efficiently inhibited HBV RNAs/pgRNA and secreted viral proteins, whereas knockdown of SCAMP1 significantly increased viral production. Mechanistically, the EnhI/XP, SP1, and SP2 promoters were inhibited by SCAMP1, which accounts for HBV X and S mRNA inhibition. Overall, our study unveils the previously unknown role of SCAMP1 in viral replication and HBV pathogenesis and provides cumulative and novel information for a better understanding of endocytosis in response to HBV infection.
Collapse
|
35
|
Pesce E, Manfrini N, Cordiglieri C, Santi S, Bandera A, Gobbini A, Gruarin P, Favalli A, Bombaci M, Cuomo A, Collino F, Cricrì G, Ungaro R, Lombardi A, Mangioni D, Muscatello A, Aliberti S, Blasi F, Gori A, Abrignani S, De Francesco R, Biffo S, Grifantini R. Exosomes Recovered From the Plasma of COVID-19 Patients Expose SARS-CoV-2 Spike-Derived Fragments and Contribute to the Adaptive Immune Response. Front Immunol 2022; 12:785941. [PMID: 35111156 PMCID: PMC8801440 DOI: 10.3389/fimmu.2021.785941] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by beta-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has rapidly spread across the globe starting from February 2020. It is well established that during viral infection, extracellular vesicles become delivery/presenting vectors of viral material. However, studies regarding extracellular vesicle function in COVID-19 pathology are still scanty. Here, we performed a comparative study on exosomes recovered from the plasma of either MILD or SEVERE COVID-19 patients. We show that although both types of vesicles efficiently display SARS-CoV-2 spike-derived peptides and carry immunomodulatory molecules, only those of MILD patients are capable of efficiently regulating antigen-specific CD4+ T-cell responses. Accordingly, by mass spectrometry, we show that the proteome of exosomes of MILD patients correlates with a proper functioning of the immune system, while that of SEVERE patients is associated with increased and chronic inflammation. Overall, we show that exosomes recovered from the plasma of COVID-19 patients possess SARS-CoV-2-derived protein material, have an active role in enhancing the immune response, and possess a cargo that reflects the pathological state of patients in the acute phase of the disease.
Collapse
Affiliation(s)
- Elisa Pesce
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Nicola Manfrini
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Spartaco Santi
- Unit of Bologna, Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Bologna, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy
| | - Andrea Gobbini
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Paola Gruarin
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Andrea Favalli
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Mauro Bombaci
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Federica Collino
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Giulia Cricrì
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Riccardo Ungaro
- Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Davide Mangioni
- Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Aliberti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Raffaele De Francesco
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefano Biffo
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Renata Grifantini
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| |
Collapse
|
36
|
Li Y, Jia P, Yu F, Li W, Mao C, Yi M, Gu Q, Jia K. Establishment and characterization of a liver cell line, ALL, derived from yellowfin sea bream, Acanthopagrus latus, and its application to fish virology. JOURNAL OF FISH DISEASES 2022; 45:141-151. [PMID: 34624134 DOI: 10.1111/jfd.13543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Yellowfin sea bream (Acanthopagrus latus) is an important economic fish, which is seriously threatened by various fish viruses. In this study, a cell line designated as ALL derived from the liver of yellowfin sea bream was developed and characterized. The cell line grew well in Dulbecco's modified Eagle's medium containing 10%-20% foetal bovine serum at 28°C. Amplification of the cytochrome B gene indicated that ALL cells originated from yellowfin sea bream. The modal chromosome number of ALL cells was 48. ALL cells were efficiently transfected with pEGFP-N3 plasmids, indicating the potential application of ALL cells in exogenous gene manipulation studies. ALL cells were susceptive to three main fish viruses, including viral haemorrhagic septicaemia virus (VHSV), red-spotted grouper nervous necrosis virus (RGNNV) and largemouth bass virus (LMBV). The replication of VHSV, RGNNV and LMBV in ALL cells was confirmed by quantitative real-time polymerase chain reaction, virus titre and transmission electron microscopy assays. Moreover, ALL cells could respond to VHSV, RGNNV and LMBV infections, as indicated by the differential expression of antiviral genes involving in the innate immune response. In conclusion, the newly established ALL cell line will be an excellent in vitro platform for the study of the virus-yellowfin sea bream interaction.
Collapse
Affiliation(s)
- Yong Li
- Modern Agricultural Development Center of Zhuhai City, Zhuhai, China
| | - Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fangzhao Yu
- Modern Agricultural Development Center of Zhuhai City, Zhuhai, China
| | - Wangdong Li
- Modern Agricultural Development Center of Zhuhai City, Zhuhai, China
| | - Can Mao
- Modern Agricultural Development Center of Zhuhai City, Zhuhai, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qunhong Gu
- Modern Agricultural Development Center of Zhuhai City, Zhuhai, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021; 53:1647-1668. [PMID: 34782737 PMCID: PMC8592830 DOI: 10.1038/s12276-021-00691-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
38
|
Liu S, Song D, Yuan D. Bergamottin protects against LPS-induced endotoxic shock by regulating the NF-κB signaling pathway. Immunol Res 2021; 70:33-43. [PMID: 34632552 DOI: 10.1007/s12026-021-09235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Bergamottin is a natural furanocoumarin compound that possesses antioxidative and anti-cancer properties; however, the effect of Bergamottin on lipopolysaccharide (LPS)-induced inflammation response is unknown. In this study, we investigated the protective effects and mechanisms of Bergamottin against LPS-induced inflammatory responses.Raw264.7 cells were pre-treated with Bergamottin, then stimulated with LPS. Morphologic analysis and flow cytometry were used to measure Bergamottin-related cytotoxicity. ELISA and qPCR were performed to measure secretion and transcription activities of inflammatory cytokines. Biochemical analysis was used to determine the expression of tissues damage indicators. Western blots were used to determine protein expression, and immunofluorescence staining was used to determine the co-localization of NF-κB and RelA. Hematoxylin and eosin staining was used to show the pathological damages.Bergamottin had no cytotoxic effects on Raw264.7 cells. Pre-treatment with Bergamottin inhibited inflammatory cytokines expression and secretion induced by LPS, due to the inhibition of LPS-induced NF-κB signaling pathway activation, and improved pathological damages. These findings suggest that Bergamottin protects against LPS-induced endotoxin shock by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Saisai Liu
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory for Molecular Genetic Mechanisms and Intervention Research On High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Dan Song
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China. .,Key Laboratory for Molecular Genetic Mechanisms and Intervention Research On High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.
| | - Dongya Yuan
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory for Molecular Genetic Mechanisms and Intervention Research On High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| |
Collapse
|
39
|
Physical Activity Attenuates the Obesity-Induced Dysregulated Expression of Brown Adipokines in Murine Interscapular Brown Adipose Tissue. Int J Mol Sci 2021; 22:ijms221910391. [PMID: 34638731 PMCID: PMC8508858 DOI: 10.3390/ijms221910391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, brown adipose tissue (BAT), which has a high heat-producing capacity, has been confirmed to exist even in adults, and it has become a focal point for the prevention and the improvement of obesity and lifestyle-related diseases. However, the influences of obesity and physical activity (PA) on the fluid factors secreted from BAT (brown adipokines) are not well understood. In this study, therefore, we focused on brown adipokines and investigated the effects of obesity and PA. The abnormal expressions of gene fluid factors such as galectin-3 (Lgals3) and Lgals3 binding protein (Lgals3bp), whose proteins are secreted from HB2 brown adipocytes, were observed in the interscapular BAT of obese mice fed a high-fat diet for 4 months. PA attenuated the abnormalities in the expressions of these genes. Furthermore, although the gene expressions of factors related to brown adipocyte differentiation such as peroxisome proliferator-activated receptor gamma coactivator 1-α were also down-regulated in the BAT of the obese mice, PA suppressed the down-regulation of these factors. On the other hand, lipogenesis was increased more in HB2 cells overexpressing Lgals3 compared with that in control cells, and the overexpression of Lgals3bp decreased the mitochondrial mass. These results indicate that PA attenuates the obesity-induced dysregulated expression of brown adipokines and suggests that Lgals3 and Lgals3bp are involved in brown adipocyte differentiation.
Collapse
|
40
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
41
|
Yan F, Wufuer D, Wang J, Ding J. MicroRNA miR-146a-5p inhibits the inflammatory response and injury of airway epithelial cells via targeting TNF receptor-associated factor 6. Bioengineered 2021; 12:1916-1926. [PMID: 34002665 PMCID: PMC8806598 DOI: 10.1080/21655979.2021.1927545] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bronchial asthma is a common respiratory disease, which is characterized by airway inflammation, remodeling and hyperresponsiveness. MicroRNAs (miRNAs), as reported, are implicated in the pathogenesis of many diseases, but how miRNAs-146a-5p (miR-146a-5p) works in asthma remains inconclusive. In this work, we proved that miR-146a-5p expression was inhibited in asthma patients’ plasma and platelet activating factor (PAF)-induced human small airway epithelial cells (HSAECs). MiR-146a-5p up-regulation ameliorated the inflammatory reaction and cell barrier damage of HSAECs induced by PAF, and inhibited the apoptosis; besides, miR-146a-5p down-regulation functioned oppositely. In addition, miR-146a-5p could target TNF receptor-associated factor 6 (TRAF6) and negatively regulate its expression. TRAF6 overexpression could counterract the impact of miR-146a-5p up-regulation on PAF-induced inflammation, cell barrier damage and apoptosis of HSAECs. Collectively, miR-146a-5p may protect airway epithelial cells and inhibit the pathogenesis of asthma via targeting TRAF6.
Collapse
Affiliation(s)
- Fang Yan
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China.,School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Dilinuer Wufuer
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Jing Wang
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Jianbing Ding
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| |
Collapse
|
42
|
Zhang L, Huang Y, Lou H, Gong X, Ouyang Q, Yu H. LGALS3BP/Gal-3 promotes osteogenic differentiation of human periodontal ligament stem cells. Arch Oral Biol 2021; 128:105149. [PMID: 34052527 DOI: 10.1016/j.archoralbio.2021.105149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To identify the role of LGALS3BP/Gal-3 in the process of human periodontal ligament stem cells (hPDLSCs) differentiating into osteoblasts. METHODS IP-WB experiments were carried out to examine the binding of LGALS3BP and Gal-3. Western blot was performed to detect the expressions of LGALS3BP and Gal-3 in hPDLSCs with or without osteogenic differentiation inducement. The expressions of differentiation-related Oct4, Sox2 and Runx2 were also detected by western blot. Alkaline Phosphatase (ALP) Assay Kit was used to measure ALP activity in hPDLSCs. The mineralization ability of hPDLSCs was observed by staining with Alizarin Red S solution. RESULTS LGALS3BP bound with Gal-3 in hPDLSCs, and the expression of LGALS3BP and Gal-3 was improved after osteogenic differentiation of hPDLSCs. Recombinant GAL-3 promoted the expression of differentiation-related proteins Oct4 and Sox2 and Runx2 in osteogenic differentiation-induced hPDLSCs. Recombinant GAL-3 also promoted the differentiation of osteogenesis-induced hPDLSCs. Furthermore, LGALS3BP had a facilitating effect on differentiation-related protein expression, while it could be reversed by shGal-3. LGALS3BP also promoted osteogenic capacity of hPDLSCs, and shGal-3 could reverse this effect. CONCLUSION LGALS3BP binds to Gal-3, producing a promoting effect on the osteogenic differentiation of human periodontal ligament stem cells.
Collapse
Affiliation(s)
- Lingpeng Zhang
- Department of Stomatology, Yan'an Hospital of Kunming City, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Yanfei Huang
- Department of Stomatology, Yan'an Hospital of Kunming City, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Huiquan Lou
- Department of Oral and Maxillofacial Surgery, First People's Hospital, the Affiliated Kunhua Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Xuetao Gong
- Department of Stomatology, First People's Hospital, the Affiliated Zhaotong Hospital of Kunming Medical University, Zhaotong 657000, Yunnan Province, China
| | - Qian Ouyang
- Department of Stomatology, Yan'an Hospital of Kunming City, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China.
| | - Hongbin Yu
- Department of Stomatology, Yan'an Hospital of Kunming City, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China.
| |
Collapse
|
43
|
Cho SH, Shim HJ, Park MR, Choi JN, Akanda MR, Hwang JE, Bae WK, Lee KH, Sun EG, Chung IJ. Lgals3bp suppresses colon inflammation and tumorigenesis through the downregulation of TAK1-NF-κB signaling. Cell Death Discov 2021; 7:65. [PMID: 33824294 PMCID: PMC8024364 DOI: 10.1038/s41420-021-00447-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Galectin 3-binding protein (LGALS3BP, also known as 90K) is a multifunctional glycoprotein involved in immunity and cancer. However, its precise role in colon inflammation and tumorigenesis remains unclear. Here, we showed that Lgals3bp-/- mice were highly susceptible to colitis and colon tumorigenesis, accompanied by the induction of inflammatory responses. In acute colitis, NF-κB was highly activated in the colon of Lgals3bp-/- mice, leading to the excessive production of pro-inflammatory cytokines, such as IL-6, TNFα, and IL-1β. Mechanistically, Lgals3bp suppressed NF-κB through the downregulation of TAK1 in colon epithelial cells. There was no significant difference in the pro-inflammatory cytokine levels between wild-type and Lgals3bp-/- mice in a chronic inflammatory state, during colon tumorigenesis. Instead, Lgals3bp-/- mice showed elevated levels of GM-CSF, compared to those in WT mice. We also found that GM-CSF promoted the accumulation of myeloid-derived suppressor cells and ultimately increased colon tumorigenesis in Lgals3bp-/- mice. Taken together, Lgals3bp plays a critical role in the suppression of colitis and colon tumorigenesis through the downregulation of the TAK1-NF-κB-cytokine axis. These findings suggest that LGALS3BP is a novel immunotherapeutic target for colon inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Sang-Hee Cho
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Hyun-Jeong Shim
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Mi-Ra Park
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Ji-Na Choi
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Md Rashedunnabi Akanda
- Combinatorial Tumor Immunotherapy MRC Center, Chonnam National University Medical School, Hwasun, Republic of Korea
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jun-Eul Hwang
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Woo-Kyun Bae
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC Center, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Kyung-Hwa Lee
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC Center, Chonnam National University Medical School, Hwasun, Republic of Korea
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Eun-Gene Sun
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
| | - Ik-Joo Chung
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
| |
Collapse
|
44
|
Type I IFNs facilitate innate immune control of the opportunistic bacteria Burkholderia cenocepacia in the macrophage cytosol. PLoS Pathog 2021; 17:e1009395. [PMID: 33684179 PMCID: PMC7971856 DOI: 10.1371/journal.ppat.1009395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/18/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
The mammalian immune system is constantly challenged by signals from both pathogenic and non-pathogenic microbes. Many of these non-pathogenic microbes have pathogenic potential if the immune system is compromised. The importance of type I interferons (IFNs) in orchestrating innate immune responses to pathogenic microbes has become clear in recent years. However, the control of opportunistic pathogens-and especially intracellular bacteria-by type I IFNs remains less appreciated. In this study, we use the opportunistic, Gram-negative bacterial pathogen Burkholderia cenocepacia (Bc) to show that type I IFNs are capable of limiting bacterial replication in macrophages, preventing illness in immunocompetent mice. Sustained type I IFN signaling through cytosolic receptors allows for increased expression of autophagy and linear ubiquitination mediators, which slows bacterial replication. Transcriptomic analyses and in vivo studies also show that LPS stimulation does not replicate the conditions of intracellular Gram-negative bacterial infection as it pertains to type I IFN stimulation or signaling. This study highlights the importance of type I IFNs in protection against opportunistic pathogens through innate immunity, without the need for damaging inflammatory responses.
Collapse
|
45
|
Deng F, Xu G, Cheng Z, Huang Y, Ma C, Luo C, Yu C, Wang J, Xu X, Liu S, Zhu Y. Hepatitis B Surface Antigen Suppresses the Activation of Nuclear Factor Kappa B Pathway via Interaction With the TAK1-TAB2 Complex. Front Immunol 2021; 12:618196. [PMID: 33717111 PMCID: PMC7947203 DOI: 10.3389/fimmu.2021.618196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis B is a major health problem worldwide, with more than 250 million chronic carriers. Hepatitis B virus interferes with the host innate immune system so as to evade elimination via almost all of its constituent proteins; nevertheless, the function of HBsAg with respect to immune escape remains unclear. This study aimed to determine the role HBsAg plays in assisting HBV to escape from immune responses. We found that HBsAg suppressed the activation of the nuclear factor kappa B (NF-кB) pathway, leading to downregulation of innate immune responses. HBsAg interacted with TAK1 and TAB2 specifically, inhibiting the phosphorylation and polyubiquitination of TAK1 and the K63-linked polyubiquitination of TAB2. Autophagy is a major catabolic process participating in many cellular processes, including the life cycle of HBV. We found that HBsAg promoted the autophagic degradation of TAK1 and TAB2 via the formation of complexes with TAK1 and TAB2, resulting in suppression of the NF-κB pathway. The expression of TAK1, TAB2, and the translocation of NF-κB inversely correlated with HBsAg levels in clinical liver tissues. Taken together, our findings suggest a novel mechanism by which HBsAg interacts with TAK1-TAB2 complex and suppresses the activation of NF-κB signaling pathway via reduction of the post-translational modifications and autophagic degradation.
Collapse
Affiliation(s)
- Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiupeng Xu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic, Huangshi, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Zhang YH, Li H, Zeng T, Chen L, Li Z, Huang T, Cai YD. Identifying Transcriptomic Signatures and Rules for SARS-CoV-2 Infection. Front Cell Dev Biol 2021; 8:627302. [PMID: 33505977 PMCID: PMC7829664 DOI: 10.3389/fcell.2020.627302] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
The world-wide Coronavirus Disease 2019 (COVID-19) pandemic was triggered by the widespread of a new strain of coronavirus named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Multiple studies on the pathogenesis of SARS-CoV-2 have been conducted immediately after the spread of the disease. However, the molecular pathogenesis of the virus and related diseases has still not been fully revealed. In this study, we attempted to identify new transcriptomic signatures as candidate diagnostic models for clinical testing or as therapeutic targets for vaccine design. Using the recently reported transcriptomics data of upper airway tissue with acute respiratory illnesses, we integrated multiple machine learning methods to identify effective qualitative biomarkers and quantitative rules for the distinction of SARS-CoV-2 infection from other infectious diseases. The transcriptomics data was first analyzed by Boruta so that important features were selected, which were further evaluated by the minimum redundancy maximum relevance method. A feature list was produced. This list was fed into the incremental feature selection, incorporating some classification algorithms, to extract qualitative biomarker genes and construct quantitative rules. Also, an efficient classifier was built to identify patients infected with SARS-COV-2. The findings reported in this study may help in revealing the potential pathogenic mechanisms of COVID-19 and finding new targets for vaccine design.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
47
|
Khan KA, Marineau A, Doyon P, Acevedo M, Durette É, Gingras AC, Servant MJ. TRK-Fused Gene (TFG), a protein involved in protein secretion pathways, is an essential component of the antiviral innate immune response. PLoS Pathog 2021; 17:e1009111. [PMID: 33411856 PMCID: PMC7790228 DOI: 10.1371/journal.ppat.1009111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response. Antiviral innate immune response is the first line of defence against the invading viruses through type I interferon (IFN) signaling. However, viruses have devised ways to target signaling molecules for aberrant IFN response and worsen the disease outcome. As such, deciphering the roles of new regulators of innate immunity could transform the antiviral treatment paradigm by introducing novel panviral therapeutics designed to reinforce antiviral host responses. This could be of great use in fighting recent outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome MERS-CoV, and the more recent SARS-CoV-2 causing the COVID-19 pandemic. However, aberrant activation of such pathways can lead to detrimental consequences, including autoimmune diseases. Regulation of type I IFN responses is thus of paramount importance. To prevent an uncontrolled response, signaling events happen in discrete subcellular compartments, therefore, distinguishing sites involved in recognition of pathogens and those permitting downstream signaling. Here, we show TFG as a new regulator of type I IFN response allowing the efficient organization of signaling molecules. TFG, thus, further substantiates the importance of the protein trafficking machinery in the regulation of optimal antiviral responses. Our findings have implications for both antiviral immunity and autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Priscilla Doyon
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Mariana Acevedo
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Étienne Durette
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
48
|
Melin EO, Svensson R, Dereke J, Hillman M. Galectin-3 Binding Protein, Depression, and Younger Age Were Independently Associated With Alexithymia in Adult Patients With Type 1 Diabetes. Front Psychiatry 2021; 12:672931. [PMID: 34045984 PMCID: PMC8144300 DOI: 10.3389/fpsyt.2021.672931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
Aims: Alexithymia has been linked to cardiovascular disease. The aim was to explore whether the immuno-inflammatory variables galectin-3 binding protein (Gal3BP), soluble (s)CD163 and galectin-3 were independently associated with alexithymia, while controlling for known risk factors for cardiovascular disease, such as depression, anxiety, impaired glycemic control, obesity, smoking, and physical inactivity in patients with type 1 diabetes (T1D). Methods: Cross-sectional design. The participants were consecutively recruited from one diabetes out-patient clinic. Alexithymia, depression and anxiety were assessed by self-report instruments. Blood samples, anthropometrics, and blood pressure were collected, supplemented with data from electronic health records. High Gal3BP was defined as ≥3.3 μg/ml, high sCD163 as ≥0.6 μg/ml, high galectin-3 as ≥2.6 ng/ml, impaired glycemic control as HbA1c >70 mmol/mol (>8.6%) and abdominal obesity as waist circumference ≥ 1.02 m for men and ≥ 0.88 m for women. Results: Two hundred and ninety two patients participated (men 56%, aged 18-59 years, alexithymia prevalence 15%). Patients with alexithymia had higher prevalence of depression (34 vs. 6%, p < 0.001), anxiety (61 vs. 30%, p < 0.001), high Gal3BP levels (39 vs. 17%, p = 0.004), high HbA1c levels (46 vs. 24%, p = 0.006), and abdominal obesity (29 vs. 15%, p = 0.045). Depression [adjusted odds ratio (AOR) 6.5, p < 0.001], high Gal3BP levels (AOR 2.4, p = 0.035), and age (AOR 0.96, p = 0.027) were independently associated with alexithymia. Abdominal obesity (AOR 4.0, p < 0.001), high Gal3BP levels (AOR 2.8, p = 0.002), and depression (AOR 2.9, p = 0.014) were associated with high HbA1c. Abdominal obesity and anxiety were associated [Crude odds ratio (COR) 2.4, p = 0.006]. Conclusions: T1D patients with alexithymia had higher prevalence of high Gal3BP levels, depression, impaired glycemic control, anxiety, and abdominal obesity, which are known risk factors for cardiovascular disease. Only high Gal3BP levels, depression, and younger age were independently associated with alexithymia in adult patients with T1D.
Collapse
Affiliation(s)
- Eva O Melin
- Diabetes Research Laboratory, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.,Region Kronoberg, Department of Research and Development, Växjö, Sweden
| | - Ralph Svensson
- Department of Psychology, Linnaeus University, Växjö, Sweden
| | - Jonatan Dereke
- Diabetes Research Laboratory, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Magnus Hillman
- Diabetes Research Laboratory, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
49
|
Niada S, Giannasi C, Magagnotti C, Andolfo A, Brini AT. Proteomic analysis of extracellular vesicles and conditioned medium from human adipose-derived stem/stromal cells and dermal fibroblasts. J Proteomics 2020; 232:104069. [PMID: 33309826 DOI: 10.1016/j.jprot.2020.104069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/23/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Conditioned medium (CM) and extracellular vesicles (EV) from Adipose-derived Stem/stromal cells (ASC) and Dermal fibroblasts (DF) represent promising tools for therapeutic applications. Which one should be preferred is still under debate and no direct comparison of their proteome has been reported yet. Here, we apply quantitative proteomics to explore the protein composition of CM and EV from the two cell types. Data are available via ProteomeXchange (identifier PXD020219). We identified 1977 proteins by LC-MS/MS proteomic analysis. Unsupervised clustering analysis and PCA recognized CM and EV as separate groups. We identified 68 and 201 CM and EV specific factors. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation factors. The analysis of ASC and DF secretomes revealed the presence of cell type-specific proteins. ASC-CM and -EV carried factors involved in ECM organization and immunological regulation, respectively. Conversely, DF-CM and -EV were enriched in epithelium development associated factors and -EV in Wnt signaling factors. In conclusion, this analysis provides evidence of a different protein composition between CM and EV and of the presence of cell type-specific bioactive mediators suggesting their specific future use as advanced therapy medicinal products. SIGNIFICANCE: The use of cell secretome presents several advantages over cell therapy such as the lower risks associated to the administration step and the avoidance of any potential risk of malignant transformation. The main secretome preparations consist in concentrated conditioned medium (CM) and extracellular vesicles (EV). Both of them showed well-documented therapeutic potentials. However, it is still not clear in which case it should be better to use one preparation over the other and an exhaustive comparison between their proteome has not been performed yet. The choice of the cell source is another relevant aspect that still needs to be addressed. In order to shed light on these questions we explored the protein composition of CM and EV obtained from Adipose-derived Stem/stromal Cells (ASC) and Dermal Fibroblasts (DF), by a comprehensive quantitative proteomics approach. The analysis showed a clear distinction between CM and EV proteome. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation-related factors. Furthermore, the analysis of ASC and DF secretomes revealed specific biological processes for the different cell products. ASC secretome presented factors involved in ECM organization (hyaluronan and glycosaminoglycan metabolism) and immunological regulation (e.g. macrophage and IkB/NFkB signaling regulation), respectively. On the other hand, DF-CM and -EV were both enriched in epithelium development associated factors, whilst DF-CM in proteins involved in cellular processes regulation and -EV in Wnt signaling factors. In conclusion, our study shed a light on the different protein composition of CM and EV of two promising cell types, spanning from basic processes involved in secretion to specific pathways supporting their therapeutic potential and their possible future use as advanced therapy medicinal products.
Collapse
Affiliation(s)
| | | | - Cinzia Magagnotti
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Anna Teresa Brini
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
50
|
Chen Y, Das S, Zhuo G, Cai H. Elevated serum levels of galectin-3 binding protein are associated with insulin resistance in non-diabetic women after menopause. Taiwan J Obstet Gynecol 2020; 59:877-881. [PMID: 33218405 DOI: 10.1016/j.tjog.2020.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Galectin-3 binding protein (Gal-3BP) is one of the major fucosylated glycoprotein family members and has recently been implicated in non-alcoholic fatty liver disease, hyperlipaemia and coronary artery disease. Here, we analysed the serum concentrations of Gal-3BP in menopausal women to evaluate the association of circulating Gal-3BP and insulin resistance in females after menopause. MATERIALS AND METHODS We evaluated serum levels of Gal-3BP in sixty-two non-diabetic women with menopausal status for at least one year. The clinical features, biochemical profiles and homeostasis model assessment of insulin resistance (HOMA-IR) indices were obtained routinely. RESULTS Gal-3BP levels increased in women with higher HOMA-IR indices and were positively correlated with HOMA-IR indices. The Gal-3BP level was also an independent risk factor for a high HOMA-IR index and showed the most influence on the HOMA-IR index compared to fasting plasma glucose, triglyceride, age and body mass index. The cut-off value of the serum Gal-3BP level was 2234.32 ng/ml, with areas under the ROC curve (AUCs) of 0.68 (HOMA-IR index 1.5), 0.81 (HOMA-IR index 2.0) and 0.93 (HOMA-IR index 2.5). CONCLUSION Serum levels of Gal-3BP are associated with impaired insulin sensitivity in non-diabetic menopausal women.
Collapse
Affiliation(s)
- Yun Chen
- Department of Gynaecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sayantana Das
- Department of Gynaecology, North Middlesex University Hospital NHS TRUST, London, UK
| | - Guangchao Zhuo
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Cai
- Department of Gynaecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|