1
|
Lafoux B, Fourcaud G, Hortion J, Soyer L, Journeaux A, Germain C, Reynard S, Cousseau H, Larignon C, Pietrosemoli N, Croze S, Lachuer J, Perthame E, Baize S. Expansion of myeloid suppressor cells and suppression of Lassa virus-specific T cells during fatal Lassa fever. PLoS Pathog 2025; 21:e1013111. [PMID: 40245043 PMCID: PMC12040235 DOI: 10.1371/journal.ppat.1013111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/29/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Lassa fever is a highly lethal hemorrhagic fever endemic to West Africa. In the absence of efficient prophylactic or therapeutic countermeasures, it poses a substantial threat to public health in this region. The pathophysiological mechanisms underlying the severity of the disease are poorly known because Lassa virus (LASV), its causative agent, has to be handled in BSL-4 laboratories and access to clinical samples is difficult. The control of Lassa fever is associated with a rapid and well-balanced immune response and viral clearance. However, severe disease is characterized by uncontrolled innate immune activation and symptoms reminiscent of sepsis and a cytokine storm. In a model of cynomolgus monkeys infected with two different strains of the virus, one causing moderate disease and the other a lethal outcome, we show that the control of LASV infection is characterized by the induction of a LASV-specific T-cell response, whereas severity is associated with the expansion of suppressive myeloid cells, alterations of the stromal network of secondary lymphoid organs, and the anergy of specific T cells. These results suggest that T cells are crucial for the control of LASV and that immunomodulatory therapeutics, such as checkpoint inhibitors, could contribute to new therapeutic strategies to treat Lassa fever. They also highlight how immunosuppressive mechanisms described in sepsis and cancer patients may play a role in the pathogenicity of Lassa fever, as well as in other similar hemorrhagic fevers.
Collapse
Affiliation(s)
- Blaise Lafoux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Gustave Fourcaud
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Jimmy Hortion
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Laura Soyer
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Alexandra Journeaux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Clara Germain
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Hadrien Cousseau
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Clémentine Larignon
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Séverine Croze
- ProfileXpert, SFR Santé Lyon-Est, UCBL, CNRS, INSERM, Lyon, France
| | - Joël Lachuer
- ProfileXpert, SFR Santé Lyon-Est, UCBL, CNRS, INSERM, Lyon, France
| | - Emeline Perthame
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| |
Collapse
|
2
|
Warner BM, Safronetz D, Stein DR. Current perspectives on vaccines and therapeutics for Lassa Fever. Virol J 2024; 21:320. [PMID: 39702419 PMCID: PMC11657583 DOI: 10.1186/s12985-024-02585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Lassa virus, the cause of deadly Lassa fever, is endemic in West Africa, where thousands of cases occur on an annual basis. Nigeria continues to report increasingly severe outbreaks of Lassa Fever each year and there are currently no approved vaccines or therapeutics for the prevention or treatment of Lassa Fever. Given the high burden of disease coupled with the potential for further escalation due to climate change the WHO has listed Lassa virus as a priority pathogen with the potential to cause widespread outbreaks. Several candidate vaccines have received support and have entered clinical trials with promising early results. This review focuses on the current state of vaccine and therapeutic development for LASV disease and the potential of these interventions to advance through clinical trials. The growing burden of LASV disease in Africa highlights the importance of advancing preclinical and clinical testing of vaccines and therapeutics to respond to the growing threat of LASV disease.
Collapse
Affiliation(s)
- Bryce M Warner
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Canada.
| | - David Safronetz
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Derek R Stein
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Cadham Provincial Laboratory, Winnipeg, Canada
| |
Collapse
|
3
|
Isibor PO, Onwaeze OO, Kayode-Edwards II, Agbontaen DO, Ifebem-Ezima IAM, Bilewu O, Onuselogu C, Akinniyi AP, Obafemi YD, Oniha MI. Investigating and combatting the key drivers of viral zoonoses in Africa: an analysis of eight epidemics. BRAZ J BIOL 2023; 84:e270857. [PMID: 37531478 DOI: 10.1590/1519-6984.270857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/02/2023] [Indexed: 08/04/2023] Open
Abstract
Investigating the interplay of factors that result in a viral zoonotic outbreak is difficult, though it is increasingly important. As anthropogenic influences shift the delicate balance of ecosystems, new zoonoses emerge in humans. Sub-Saharan Africa is a notable hotspot for zoonotic disease due to abundant competent mammalian reservoir hosts. Furthermore, poverty, corruption, and an overreliance on natural resources play considerable roles in depleting biological resources, exacerbating the population's susceptibility. Unsurprisingly, viral zoonoses have emerged in Africa, including HIV/AIDS, Ebola, Avian influenza, Lassa fever, Zika, and Monkeypox. These diseases are among the principal causes of death in endemic areas. Though typically distinct in their manifestations, viral zoonoses are connected by underlying, definitive factors. This review summarises vital findings on viral zoonoses in Africa using nine notable case studies as a benchmark for future studies. We discuss the importance of ecological recuperation and protection as a central strategy to control zoonotic diseases. Emphasis was made on moderating key drivers of zoonotic diseases to forestall future pandemics. This is in conjunction with attempts to redirect efforts from reactive to pre-emptive through a multidisciplinary "one health" approach.
Collapse
Affiliation(s)
- P O Isibor
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - O O Onwaeze
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - I I Kayode-Edwards
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - D O Agbontaen
- University of South Wales, Department of Public Health, Pontypridd, United Kingdom
| | - I-A M Ifebem-Ezima
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - O Bilewu
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - C Onuselogu
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - A P Akinniyi
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - Y D Obafemi
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - M I Oniha
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| |
Collapse
|
4
|
Grant DS, Samuels RJ, Garry RF, Schieffelin JS. Lassa Fever Natural History and Clinical Management. Curr Top Microbiol Immunol 2023. [PMID: 37106159 DOI: 10.1007/82_2023_263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lassa fever is caused by Lassa virus (LASV), an Old World Mammarenavirus that is carried by Mastomys natalensis and other rodents. It is endemic in Sierra Leone, Nigeria, and other countries in West Africa. The clinical presentation of LASV infection is heterogenous varying from an inapparent or mild illness to a fatal hemorrhagic fever. Exposure to LASV is usually through contact with rodent excreta. After an incubation period of 1-3 weeks, initial symptoms such as fever, headache, and fatigue develop that may progress to sore throat, retrosternal chest pain, conjunctival injection, vomiting, diarrhea, and abdominal pain. Severe illness, including hypotension, shock, and multiorgan failure, develops in a minority of patients. Patient demographics and case fatality rates are distinctly different in Sierra Leone and Nigeria. Laboratory diagnosis relies on the detection of LASV antigens or genomic RNA. LASV-specific immunoglobulin G and M assays can also contribute to clinical management. The mainstay of treatment for Lassa fever is supportive care. The nucleoside analog ribavirin is commonly used to treat acute Lassa fever but is considered useful only if treatment is begun early in the disease course. Drugs in development, including a monoclonal antibody cocktail, have the potential to impact the management of Lassa fever.
Collapse
Affiliation(s)
- Donald S Grant
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health, Kenema, Sierra Leone
- College of Medicine and Allied Health Sciences (COMAHS), University of Sierra Leone, Freetown, Sierra Leone
| | - Robert J Samuels
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health, Kenema, Sierra Leone
| | - Robert F Garry
- School of Medicine, Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
- Zalgen Labs, Frederick, MD, 21703, USA
- Global Virus Network (GVN), Baltimore, MD, 21201, USA
| | - John S Schieffelin
- School of Medicine, Department of Pediatrics, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Guerra GS, Barriales D, Lorenzo G, Moreno S, Anguita J, Brun A, Abrescia NGA. Immunization with a small fragment of the Schmallenberg virus nucleoprotein highly conserved across the Orthobunyaviruses of the Simbu serogroup reduces viremia in SBV challenged IFNAR -/- mice. Vaccine 2023; 41:3275-3284. [PMID: 37085455 DOI: 10.1016/j.vaccine.2023.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023]
Abstract
Schmallenberg Virus (SBV), an arbovirus from the Peribunyaviridae family and Orthobunyavirus genus, was discovered in late 2011 in Germany and has been circulating in Europe, Asia and Africa ever since. The virus causes a disease associated with ruminants that includes fever, fetal malformation, drop in milk production, diarrhoea and stillbirths, becoming a burden for small and large farms. Building on previous studies on SBV nucleoprotein (SBV-N) as a promising vaccine candidate, we have investigated the possible protein regions responsible for protection. Based on selective truncation of domains designed from the available crystal structure of the SBV-N, we identified both the N-terminal domain (N-term; Met1 - Thr133) and a smaller fragment within (C4; Met1 - Ala58) as vaccine prototypes. Two injections of the N-term and C4 polypeptides protected mice knockout for type I interferon (IFN) receptors (IFNAR-/-) challenged with virulent SBV, opposite to control groups that presented severe signs of morbidity and weight loss. Viremia analyses along with the presence of IFN-γ secreted from splenocytes re-stimulated with the N-terminal region of the protein corroborate that these two portions of SBV-N can be employed as subunit vaccines. Apart from both proteinaceous fragments being easily produced in bacterial cells, the C4 polypeptide shares a high sequence homology (∼87.1 %) with the corresponding region of nucleoproteins of several viruses of the Simbu serogroup, a group of Orthobunyaviruses that comprises SBV and veterinary pathogens like Akabane virus and human infecting viruses like Oropouche. Thus, we propose that this smaller fragment is better suited for vaccine nanoparticle formulation, and it paves the way to further research with other related Orthobunyaviruses.
Collapse
Affiliation(s)
- Gabriel Soares Guerra
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain
| | - Gema Lorenzo
- Animal Health Research Center (INIA-CISA/CSIC), 28130 Valdeolmos, Madrid, Spain
| | - Sandra Moreno
- Animal Health Research Center (INIA-CISA/CSIC), 28130 Valdeolmos, Madrid, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia 48015, Spain
| | - Alejandro Brun
- Animal Health Research Center (INIA-CISA/CSIC), 28130 Valdeolmos, Madrid, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia 48160, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia 48015, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Saito T, Reyna RA, Taniguchi S, Littlefield K, Paessler S, Maruyama J. Vaccine Candidates against Arenavirus Infections. Vaccines (Basel) 2023; 11:635. [PMID: 36992218 PMCID: PMC10057967 DOI: 10.3390/vaccines11030635] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The viral family Arenaviridae contains several members that cause severe, and often lethal, diseases in humans. Several highly pathogenic arenaviruses are classified as Risk Group 4 agents and must be handled in the highest biological containment facility, biosafety level-4 (BSL-4). Vaccines and treatments are very limited for these pathogens. The development of vaccines is crucial for the establishment of countermeasures against highly pathogenic arenavirus infections. While several vaccine candidates have been investigated, there are currently no approved vaccines for arenavirus infection except for Candid#1, a live-attenuated Junin virus vaccine only licensed in Argentina. Current platforms under investigation for use include live-attenuated vaccines, recombinant virus-based vaccines, and recombinant proteins. We summarize here the recent updates of vaccine candidates against arenavirus infections.
Collapse
Affiliation(s)
- Takeshi Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rachel A. Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satoshi Taniguchi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kirsten Littlefield
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Abstract
Lassa virus (LASV) is endemic in the rodent populations of Sierra Leone, Nigeria and other countries in West Africa. Spillover to humans occurs frequently and results in Lassa fever, a viral haemorrhagic fever (VHF) associated with a high case fatality rate. Despite advances, fundamental gaps in knowledge of the immunology, epidemiology, ecology and pathogenesis of Lassa fever persist. More frequent outbreaks, the potential for further geographic expansion of Mastomys natalensis and other rodent reservoirs, the ease of procurement and possible use and weaponization of LASV, the frequent importation of LASV to North America and Europe, and the emergence of novel LASV strains in densely populated West Africa have driven new initiatives to develop countermeasures for LASV. Although promising candidates are being evaluated, as yet there are no approved vaccines or therapeutics for human use. This Review discusses the virology of LASV, the clinical course of Lassa fever and the progress towards developing medical countermeasures.
Collapse
Affiliation(s)
- Robert F Garry
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA.
- Zalgen Labs, Frederick, MD, USA.
- Global Viral Network, Baltimore, MD, USA.
| |
Collapse
|
8
|
Molecular Engineering of a Mammarenavirus with Unbreachable Attenuation. J Virol 2023; 97:e0138522. [PMID: 36533953 PMCID: PMC9888291 DOI: 10.1128/jvi.01385-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several mammarenaviruses cause severe hemorrhagic fever (HF) disease in humans and pose important public health problems in their regions of endemicity. There are no United States (US) Food and Drug Administration (FDA)-approved mammarenavirus vaccines, and current anti-mammarenavirus therapy is limited to an off-label use of ribavirin that has limited efficacy. Mammarenaviruses are enveloped viruses with a bi-segmented negative-strand RNA genome. Each genome segment contains two open reading frames (ORF) separated by a noncoding intergenic region (IGR). The large (L) segment encodes the RNA dependent RNA polymerase, L protein, and the Z matrix protein, whereas the small (S) segment encodes the surface glycoprotein precursor (GPC) and nucleoprotein (NP). In the present study, we document the generation of a recombinant form of the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) expressing a codon deoptimized (CD) GPC and containing the IGR of the S segment in both the S and L segments (rLCMV/IGR-CD). We show that rLCMV/IGR-CD is fully attenuated in C57BL/6 (B6) mice but able to provide complete protection upon a single administration against a lethal challenge with LCMV. Importantly, rLCMV/IGR-CD exhibited an unbreachable attenuation for its safe implementation as a live-attenuated vaccine (LAV). IMPORTANCE Several mammarenaviruses cause severe disease in humans and pose important public health problems in their regions of endemicity. Currently, no FDA-licensed mammarenavirus vaccines are available, and anti-mammarenaviral therapy is limited to an off-label use of ribavirin whose efficacy is controversial. Here, we describe the generation of recombinant version of the prototypic mammarenavirus lymphocytic choriomeningitis virus (rLCMV) combining the features of a codon deoptimized (CD) GPC and the noncoding intergenic region (IGR) of the S segment in both S and L genome segments, called rLCMV/IGR-CD. We present evidence that rLCMV/IGR-CD has excellent safety and protective efficacy features as live-attenuated vaccine (LAV). Importantly, rLCMV/IGR-CD prevents, in coinfected mice, the generation of LCMV reassortants with increased virulence. Our findings document a well-defined molecular strategy for the generation of mammarenavirus LAV candidates able to trigger long-term protective immunity, upon a single immunization, while exhibiting unique enhanced safety features, including unbreachable attenuation.
Collapse
|
9
|
Humoral and cellular immune responses to Lassa fever virus in Lassa fever survivors and their exposed contacts in Southern Nigeria. Sci Rep 2022; 12:22330. [PMID: 36567369 PMCID: PMC9790078 DOI: 10.1038/s41598-022-26045-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/08/2022] [Indexed: 12/26/2022] Open
Abstract
Elucidating the adaptive immune characteristics of natural protection to Lassa fever (LF) is vital in designing and selecting optimal vaccine candidates. With rejuvenated interest in LF and a call for accelerated research on the Lassa virus (LASV) vaccine, there is a need to define the correlates of natural protective immune responses to LF. Here, we describe cellular and antibody immune responses present in survivors of LF (N = 370) and their exposed contacts (N = 170) in a LASV endemic region in Nigeria. Interestingly, our data showed comparable T cell and binding antibody responses from both survivors and their contacts, while neutralizing antibody responses were primarily seen in the LF survivors and not their contacts. Neutralizing antibody responses were found to be cross-reactive against all five lineages of LASV with a strong bias to Lineage II, the prevalent strain in southern Nigeria. We demonstrated that both T cell and antibody responses were not detectable in peripheral blood after a decade in LF survivors. Notably LF survivors maintained high levels of detectable binding antibody response for six months while their contacts did not. Lastly, as potential vaccine targets, we identified the regions of the LASV Glycoprotein (GP) and Nucleoprotein (NP) that induced the broadest peptide-specific T cell responses. Taken together this data informs immunological readouts and potential benchmarks for clinical trials evaluating LASV vaccine candidates.
Collapse
|
10
|
LaVergne SM, Sakabe S, Momoh M, Kanneh L, Bond N, Garry RF, Grant DS, de la Torre JC, Oldstone MBA, Schieffelin JS, Sullivan BM. Expansion of CD8+ T cell population in Lassa virus survivors with low T cell precursor frequency reveals durable immune response in most survivors. PLoS Negl Trop Dis 2022; 16:e0010882. [PMID: 36441765 PMCID: PMC9731491 DOI: 10.1371/journal.pntd.0010882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/08/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Lassa virus is a priority pathogen for vaccine research and development, however the duration of cellular immunity and protection in Lassa fever (LF) survivors remains unclear. METHODS We investigated Lassa virus specific CD8+ T cell responses in 93 LF survivors. Peripheral blood mononuclear cells from these individuals were infected with recombinant vesicular stomatitis virus encoding Lassa virus antigens and virus specific T cell responses were measured after 18-hour incubation. Participants who had undetectable CD8+ T cell response underwent further analysis using a 10-day T cell proliferation assays to evaluate for low T cell precursor frequency. RESULTS Forty-five of the 93 LF survivors did not have a Lassa virus specific CD8+ T cell response. Of those with responses and a known date of onset of LF (N = 11), 9 had LF within the last ten years. Most participants without a measurable CD8+ T cell response were more than 10 years removed from a clinical history of LF (N = 14/16). Fourteen of 21 patients (67%) with undetectable CD8+ T cell response had a measurable Lassa virus specific CD8+ T cell response with the 10-day assay. DISCUSSION Despite reports of strong CD8+ T cell responses during acute Lassa virus infection, circulating Lassa virus-specific CD8+ T cells declined to undetectable levels in most Lassa fever survivors after ten years when evaluated with an 18-hour T cell stimulation. However, when Lassa virus-specific T cells were expanded prior to restimulation, a Lassa virus-specific CD8+ T cell response could be detected in many if the samples that were negative in the 18-hour stimulation assay, suggesting that prolonged cellular immunity does exist in Lassa fever survivors at low frequencies.
Collapse
Affiliation(s)
- Stephanie M. LaVergne
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, San Diego, California, United States of America
- Division of Infectious Diseases, University of California, San Diego, California, United States of America
| | - Saori Sakabe
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, San Diego, California, United States of America
| | - Mambu Momoh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
- Eastern Technical University of Sierra Leone, Kenema, Sierra Leone
| | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Nell Bond
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Robert F. Garry
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Donald S. Grant
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Juan Carlos de la Torre
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, San Diego, California, United States of America
| | - Michael B. A. Oldstone
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, San Diego, California, United States of America
| | - John S. Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Brian M. Sullivan
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, San Diego, California, United States of America
- La Jolla Institute for Immunology, San Diego, California, United States of America
| |
Collapse
|
11
|
Murphy H, Ly H. Understanding Immune Responses to Lassa Virus Infection and to Its Candidate Vaccines. Vaccines (Basel) 2022; 10:1668. [PMID: 36298533 PMCID: PMC9612042 DOI: 10.3390/vaccines10101668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Lassa fever (LF) is a deadly viral hemorrhagic fever disease that is endemic in several countries in West Africa. It is caused by Lassa virus (LASV), which has been estimated to be responsible for approximately 300,000 infections and 5000 deaths annually. LASV is a highly pathogenic human pathogen without effective therapeutics or FDA-approved vaccines. Here, we aim to provide a literature review of the current understanding of the basic mechanism of immune responses to LASV infection in animal models and patients, as well as to several of its candidate vaccines.
Collapse
Affiliation(s)
| | - Hinh Ly
- Comparative & Molecular Biosciences Graduate Program, Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, St Paul, MN 55108, USA
| |
Collapse
|
12
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
13
|
Mateo M, Reynard S, Journeaux A, Germain C, Hortion J, Carnec X, Picard C, Baillet N, Borges-Cardoso V, Merabet O, Vallve A, Barron S, Jourjon O, Lacroix O, Duthey A, Dirheimer M, Jouvion G, Moreau PH, Fellmann L, Carbonnelle C, Raoul H, Tangy F, Baize S. A single-shot Lassa vaccine induces long-term immunity and protects cynomolgus monkeys against heterologous strains. Sci Transl Med 2021; 13:13/597/eabf6348. [PMID: 34108251 DOI: 10.1126/scitranslmed.abf6348] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022]
Abstract
A safe and protective Lassa virus vaccine is crucially needed in Western Africa to stem the recurrent outbreaks of Lassa virus infections in Nigeria and the emergence of Lassa virus in previously unaffected countries, such as Benin and Togo. Major challenges in developing a Lassa virus vaccine include the high diversity of circulating strains and their reemergence from 1 year to another. To address each of these challenges, we immunized cynomolgus monkeys with a measles virus vector expressing the Lassa virus glycoprotein and nucleoprotein of the prototypic Lassa virus strain Josiah (MeV-NP). To evaluate vaccine efficacy against heterologous strains of Lassa virus, we challenged the monkeys a month later with heterologous strains from lineage II or lineage VII, finding that the vaccine was protective against these strains. A second cohort of monkeys was challenged 1 year later with the homologous Josiah strain, finding that a single dose of MeV-NP was sufficient to protect all vaccinated monkeys. These studies demonstrate that MeV-NP can generate both long-lasting immune responses and responses that are able to protect against diverse strains of Lassa virus.
Collapse
Affiliation(s)
- Mathieu Mateo
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Alexandra Journeaux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Clara Germain
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Jimmy Hortion
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Caroline Picard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Nicolas Baillet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Virginie Borges-Cardoso
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Othmann Merabet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Audrey Vallve
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Stéphane Barron
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Ophélie Jourjon
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Orianne Lacroix
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Aurélie Duthey
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Manon Dirheimer
- INSERM, Délégation Régionale Auvergne Rhône-Alpes, 69500 Bron, France
| | - Gregory Jouvion
- Ecole Nationale Vétérinaire d'Alfort, Unité d'Histologie et d'Anatomie Pathologique, 94700 Maisons-Alfort, France.,Dynamic Research Group, Université Paris Est Créteil, Ecole Nationale Vétérinaire d'Alfort, USC ANSES, 94700 Maisons-Alfort, France
| | | | - Lyne Fellmann
- SILABE, Université de Strasbourg, Fort Foch, 67207 Niederhausbergen, France
| | | | - Hervé Raoul
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Frédéric Tangy
- Viral Genomics and Vaccination, Institut Pasteur, CNRS UMR-3569, 75015 Paris, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France. .,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| |
Collapse
|
14
|
Brooks DG, Tishon A, Oldstone MBA, McGavern DB. Prevention of CD8 T Cell Deletion during Chronic Viral Infection. Viruses 2021; 13:v13071189. [PMID: 34206262 PMCID: PMC8310272 DOI: 10.3390/v13071189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 01/05/2023] Open
Abstract
During chronic viral infections, CD8 T cells rapidly lose antiviral and immune-stimulatory functions in a sustained program termed exhaustion. In addition to this loss of function, CD8 T cells with the highest affinity for viral antigen can be physically deleted. Consequently, treatments designed to restore function to exhausted cells and control chronic viral replication are limited from the onset by the decreased breadth of the antiviral T cell response. Yet, it remains unclear why certain populations of CD8 T cells are deleted while others are preserved in an exhausted state. We report that CD8 T cell deletion during chronic viral infection can be prevented by therapeutically lowering viral replication early after infection. The initial resistance to deletion enabled long-term maintenance of antiviral cytolytic activity of the otherwise deleted high-affinity CD8 T cells. In combination with decreased virus titers, CD4 T cell help and prolonged interactions with costimulatory molecules B7-1/B7-2 were required to prevent CD8 T cell deletion. Thus, therapeutic strategies to decrease early virus replication could enhance virus-specific CD8 T cell diversity and function during chronic infection.
Collapse
Affiliation(s)
- David G. Brooks
- Viral Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA; (A.T.); (M.B.A.O.)
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: (D.G.B.); (D.B.M.)
| | - Antoinette Tishon
- Viral Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA; (A.T.); (M.B.A.O.)
| | - Michael B. A. Oldstone
- Viral Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA; (A.T.); (M.B.A.O.)
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, The National Institutes of Health, 10 Center Drive, Bethesda, MD 20895, USA
- Correspondence: (D.G.B.); (D.B.M.)
| |
Collapse
|
15
|
Wang M, Li R, Li Y, Yu C, Chi X, Wu S, Liu S, Xu J, Chen W. Construction and Immunological Evaluation of an Adenoviral Vector-Based Vaccine Candidate for Lassa Fever. Viruses 2021; 13:v13030484. [PMID: 33804206 PMCID: PMC8001012 DOI: 10.3390/v13030484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Lassa virus (LASV) is a rodent-borne arenavirus circulating in West African regions that causes Lassa fever (LF). LF is normally asymptomatic at the initial infection stage, but can progress to severe disease with multiorgan collapse and hemorrhagic fever. To date, the therapeutic choices are limited, and there is no approved vaccine for avoiding LASV infection. Adenoviral vector-based vaccines represent an effective countermeasure against LASV because of their safety and adequate immunogenicity, as demonstrated in use against other emerging viral infections. Here, we constructed and characterized a novel Ad5 (E1-, E3-) vectored vaccine containing the glycoprotein precursor (GPC) of LASV. Ad5-GPCLASV elicited both humoral and cellular immune responses in BALB/c mice. Moreover, a bioluminescent imaging-based BALB/c mouse model infected with GPC-bearing and luciferase-expressing replication-incompetent LASV pseudovirus was utilized to evaluate the vaccine efficacy. The bioluminescence intensity of immunized mice was significantly lower than that of control mice after being inoculated with LASV pseudovirus. This study suggests that Ad5-GPCLASV represents a potential vaccine candidate against LF.
Collapse
|
16
|
Shaffer JG, Schieffelin JS, Momoh M, Goba A, Kanneh L, Alhasan F, Gbakie M, Engel EJ, Bond NG, Hartnett JN, Nelson DKS, Bush DJ, Boisen ML, Heinrich ML, Rowland MM, Branco LM, Samuels RJ, Garry RF, Grant DS, the Viral Hemorrhagic Fever Consortium. Space-Time Trends in Lassa Fever in Sierra Leone by ELISA Serostatus, 2012-2019. Microorganisms 2021; 9:microorganisms9030586. [PMID: 33809204 PMCID: PMC8000031 DOI: 10.3390/microorganisms9030586] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/03/2023] Open
Abstract
Lassa fever (LF) is a viral hemorrhagic disease found in Sub-Saharan Africa and is responsible for up to 300,000 cases and 5000 deaths annually. LF is highly endemic in Sierra Leone, particularly in its Eastern Province. Kenema Government Hospital (KGH) maintains one of only a few LF isolation facilities in the world with year-round diagnostic testing. Here we focus on space-time trends for LF occurring in Sierra Leone between 2012 and 2019 to provide a current account of LF in the wake of the 2014–2016 Ebola epidemic. Data were analyzed for 3277 suspected LF cases and classified as acute, recent, and non-LF or prior LF exposure using enzyme-linked immunosorbent assays (ELISAs). Presentation rates for acute, recent, and non-LF or prior LF exposure were 6.0% (195/3277), 25.6% (838/3277), and 68.4% (2244/3277), respectively. Among 2051 non-LF or prior LF exposures, 33.2% (682/2051) tested positive for convalescent LF exposure. The overall LF case-fatality rate (CFR) was 78.5% (106/135). Both clinical presentations and confirmed LF cases declined following the Ebola epidemic. These declines coincided with an increased duration between illness onset and clinical presentation, perhaps suggesting more severe disease or presentation at later stages of illness. Acute LF cases and their corresponding CFRs peaked during the dry season (November to April). Subjects with recent (but not acute) LF exposure were more likely to present during the rainy season (May to October) than the dry season (p < 0.001). The findings here suggest that LF remains endemic in Sierra Leone and that caseloads are likely to resume at levels observed prior to the Ebola epidemic. The results provide insight on the current epidemiological profile of LF in Sierra Leone to facilitate LF vaccine studies and accentuate the need for LF cohort studies and continued advancements in LF diagnostics.
Collapse
Affiliation(s)
- Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Correspondence: (J.G.S.); (J.S.S.); (D.S.G.); Tel.: +1-504-988-1142 (J.G.S.); +1-504-988-5117 (D.S.G.)
| | - John S. Schieffelin
- Sections of Infectious Disease, Departments of Pediatrics and Internal Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (E.J.E.); (N.G.B.)
- Correspondence: (J.G.S.); (J.S.S.); (D.S.G.); Tel.: +1-504-988-1142 (J.G.S.); +1-504-988-5117 (D.S.G.)
| | - Mambu Momoh
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (M.M.); (A.G.); (L.K.); (F.A.); (M.G.); (R.J.S.)
| | - Augustine Goba
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (M.M.); (A.G.); (L.K.); (F.A.); (M.G.); (R.J.S.)
| | - Lansana Kanneh
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (M.M.); (A.G.); (L.K.); (F.A.); (M.G.); (R.J.S.)
| | - Foday Alhasan
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (M.M.); (A.G.); (L.K.); (F.A.); (M.G.); (R.J.S.)
| | - Michael Gbakie
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (M.M.); (A.G.); (L.K.); (F.A.); (M.G.); (R.J.S.)
| | - Emily J. Engel
- Sections of Infectious Disease, Departments of Pediatrics and Internal Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (E.J.E.); (N.G.B.)
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; (J.N.H.); (R.F.G.)
| | - Nell G. Bond
- Sections of Infectious Disease, Departments of Pediatrics and Internal Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (E.J.E.); (N.G.B.)
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; (J.N.H.); (R.F.G.)
| | - Jessica N. Hartnett
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; (J.N.H.); (R.F.G.)
| | - Diana K. S. Nelson
- Zalgen Labs, LLC, Germantown, MD 20876, USA; (D.K.S.N.); (D.J.B.); (M.L.B.); (M.L.H.); (M.M.R.); (L.M.B.)
| | - Duane J. Bush
- Zalgen Labs, LLC, Germantown, MD 20876, USA; (D.K.S.N.); (D.J.B.); (M.L.B.); (M.L.H.); (M.M.R.); (L.M.B.)
| | - Matthew L. Boisen
- Zalgen Labs, LLC, Germantown, MD 20876, USA; (D.K.S.N.); (D.J.B.); (M.L.B.); (M.L.H.); (M.M.R.); (L.M.B.)
| | - Megan L. Heinrich
- Zalgen Labs, LLC, Germantown, MD 20876, USA; (D.K.S.N.); (D.J.B.); (M.L.B.); (M.L.H.); (M.M.R.); (L.M.B.)
| | - Megan M. Rowland
- Zalgen Labs, LLC, Germantown, MD 20876, USA; (D.K.S.N.); (D.J.B.); (M.L.B.); (M.L.H.); (M.M.R.); (L.M.B.)
| | - Luis M. Branco
- Zalgen Labs, LLC, Germantown, MD 20876, USA; (D.K.S.N.); (D.J.B.); (M.L.B.); (M.L.H.); (M.M.R.); (L.M.B.)
| | - Robert J. Samuels
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (M.M.); (A.G.); (L.K.); (F.A.); (M.G.); (R.J.S.)
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TE 37203, USA
| | - Robert F. Garry
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; (J.N.H.); (R.F.G.)
- Zalgen Labs, LLC, Germantown, MD 20876, USA; (D.K.S.N.); (D.J.B.); (M.L.B.); (M.L.H.); (M.M.R.); (L.M.B.)
| | - Donald S. Grant
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone; (M.M.); (A.G.); (L.K.); (F.A.); (M.G.); (R.J.S.)
- Correspondence: (J.G.S.); (J.S.S.); (D.S.G.); Tel.: +1-504-988-1142 (J.G.S.); +1-504-988-5117 (D.S.G.)
| | | |
Collapse
|
17
|
LaVergne SM, Sakabe S, Kanneh L, Momoh M, Al-Hassan F, Yilah M, Goba A, Sandi JD, Gbakie M, Cubitt B, Boisen M, Mayeux JM, Smira A, Shore K, Bica I, Pollard KM, Carlos de la Torre J, Branco LM, Garry RF, Grant DS, Schieffelin JS, Oldstone MBA, Sullivan BM. Ebola-Specific CD8+ and CD4+ T-Cell Responses in Sierra Leonean Ebola Virus Survivors With or Without Post-Ebola Sequelae. J Infect Dis 2021; 222:1488-1497. [PMID: 32436943 DOI: 10.1093/infdis/jiaa268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ebola virus (EBOV) disease has killed thousands of West and Central Africans over the past several decades. Many who survive the acute disease later experience post-Ebola syndrome, a constellation of symptoms whose causative pathogenesis is unclear. METHODS We investigated EBOV-specific CD8+ and CD4+ T-cell responses in 37 Sierra Leonean EBOV disease survivors with (n = 19) or without (n = 18) sequelae of arthralgia and ocular symptoms. Peripheral blood mononuclear cells were infected with recombinant vesicular stomatitis virus encoding EBOV antigens. We also studied the presence of EBOV-specific immunoglobulin G, antinuclear antibodies, anti-cyclic citrullinated peptide antibodies, rheumatoid factor, complement levels, and cytokine levels in these 2 groups. RESULTS Survivors with sequelae had a significantly higher EBOV-specific CD8+ and CD4+ T-cell response. No differences in EBOV-specific immunoglobulin G, antinuclear antibody, or anti-cyclic citrullinated peptide antibody levels were found. Survivors with sequelae showed significantly higher rheumatoid factor levels. CONCLUSION EBOV-specific CD8+ and CD4+ T-cell responses were significantly higher in Ebola survivors with post-Ebola syndrome. These findings suggest that pathogenesis may occur as an immune-mediated disease via virus-specific T-cell immune response or that persistent antigen exposure leads to increased and sustained T-cell responses.
Collapse
Affiliation(s)
- Stephanie M LaVergne
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA.,Division of Infectious Diseases, University of California, San Diego, La Jolla, California, USA
| | - Saori Sakabe
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Mambu Momoh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone.,Eastern Polytechnic Institute, Kenema, Sierra Leone
| | - Foday Al-Hassan
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Mohamed Yilah
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Augustine Goba
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - John Demby Sandi
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Michael Gbakie
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Beatrice Cubitt
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | | | - Jessica M Mayeux
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Ashley Smira
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Kayla Shore
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Iris Bica
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - K Michael Pollard
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Juan Carlos de la Torre
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | | | - Robert F Garry
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Donald S Grant
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone.,College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - John S Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Michael B A Oldstone
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Brian M Sullivan
- Viral-Immunobiology Laboratory, Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| |
Collapse
|
18
|
Hare J, Morrison D, Nielsen M. Sampling SARS-CoV-2 Proteomes for Predicted CD8 T-Cell Epitopes as a Tool for Understanding Immunogenic Breadth and Rational Vaccine Design. FRONTIERS IN BIOINFORMATICS 2021; 1:622992. [PMID: 36303758 PMCID: PMC9581046 DOI: 10.3389/fbinf.2021.622992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022] Open
Abstract
Predictive models for vaccine design have become a powerful and necessary resource for the expeditiousness design of vaccines to combat the ongoing SARS-CoV-2 global pandemic. Here we use the power of these predicted models to assess the sequence diversity of circulating SARS-CoV-2 proteomes in the context of an individual's CD8 T-cell immune repertoire to identify potential. defined regions of immunogenicity. Using this approach of expedited and rational CD8 T-cell vaccine design, it may be possible to develop a therapeutic vaccine candidate with the potential for both global and local coverage.
Collapse
Affiliation(s)
| | | | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
19
|
Antibodies from Sierra Leonean and Nigerian Lassa fever survivors cross-react with recombinant proteins representing Lassa viruses of divergent lineages. Sci Rep 2020; 10:16030. [PMID: 32994446 PMCID: PMC7525497 DOI: 10.1038/s41598-020-72539-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever, an often-fatal hemorrhagic disease that is endemic in West Africa. Seven genetically distinct LASV lineages have been identified. As part of CEPI's (Coalition for Epidemic Preparedness Innovations) Lassa vaccine development program, we assessed the potential of the human immune system to mount cross-reactive and cross-protective humoral immune responses to antigens from the most prevalent LASV lineages, which are lineages II and III in Nigeria and lineage IV in Sierra Leone. IgG and IgM present in the blood of Lassa fever survivors from Nigeria or Sierra Leone exhibited substantial cross-reactivity for binding to LASV nucleoprotein and two engineered (linked and prefusion) versions of the glycoproteins (GP) of lineages II-IV. There was less cross-reactivity for the Zinc protein. Serum or plasma from Nigerian Lassa fever survivors neutralized LASV pseudoviruses expressing lineage II GP better than they neutralized lineage III or IV GP expressing pseudoviruses. Sierra Leonean survivors did not exhibit a lineage bias. Neutralization titres determined using LASV pseudovirus assays showed significant correlation with titres determined by plaque reduction with infectious LASV. These studies provide guidance for comparison of humoral immunity to LASV of distinct lineages following natural infection or immunization.
Collapse
|
20
|
Brothers in Arms: Structure, Assembly and Function of Arenaviridae Nucleoprotein. Viruses 2020; 12:v12070772. [PMID: 32708976 PMCID: PMC7411964 DOI: 10.3390/v12070772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023] Open
Abstract
Arenaviridae is a family of viruses harbouring important emerging pathogens belonging to the Bunyavirales order. Like in other segmented negative strand RNA viruses, the nucleoprotein (NP) is a major actor of the viral life cycle being both (i) the necessary co-factor of the polymerase present in the L protein, and (ii) the last line of defence of the viral genome (vRNA) by physically hiding its presence in the cytoplasm. The NP is also one of the major players interfering with the immune system. Several structural studies of NP have shown that it features two domains: a globular RNA binding domain (NP-core) in its N-terminal and an exonuclease domain (ExoN) in its C-terminal. Further studies have observed that significant conformational changes are necessary for RNA encapsidation. In this review we revisited the most recent structural and functional data available on Arenaviridae NP, compared to other Bunyavirales nucleoproteins and explored the structural and functional implications. We review the variety of structural motif extensions involved in NP–NP binding mode. We also evaluate the major functional implications of NP interactome and the role of ExoN, thus making the NP a target of choice for future vaccine and antiviral therapy.
Collapse
|
21
|
Identification of Common CD8 + T Cell Epitopes from Lassa Fever Survivors in Nigeria and Sierra Leone. J Virol 2020; 94:JVI.00153-20. [PMID: 32269122 PMCID: PMC7307091 DOI: 10.1128/jvi.00153-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023] Open
Abstract
The high morbidity and mortality associated with clinical cases of Lassa fever, together with the lack of licensed vaccines and limited and partially effective interventions, make Lassa virus (LASV) an important health concern in its regions of endemicity in West Africa. Previous infection with LASV protects from disease after subsequent exposure, providing a framework for designing vaccines to elicit similar protective immunity. Multiple major lineages of LASV circulate in West Africa, and therefore, ideal vaccine candidates should elicit immunity to all lineages. We therefore sought to identify common T cell epitopes between Lassa fever survivors from Sierra Leone and Nigeria, where distinct lineages circulate. We identified three such epitopes derived from highly conserved regions within LASV proteins. In this process, we also identified nine other T cell epitopes. These data should help in the design of an effective pan-LASV vaccine. Early and robust T cell responses have been associated with survival from Lassa fever (LF), but the Lassa virus-specific memory responses have not been well characterized. Regions within the virus surface glycoprotein (GPC) and nucleoprotein (NP) are the main targets of the Lassa virus-specific T cell responses, but, to date, only a few T cell epitopes within these proteins have been identified. We identified GPC and NP regions containing T cell epitopes and HLA haplotypes from LF survivors and used predictive HLA-binding algorithms to identify putative epitopes, which were then experimentally tested using autologous survivor samples. We identified 12 CD8-positive (CD8+) T cell epitopes, including epitopes common to both Nigerian and Sierra Leonean survivors. These data should be useful for the identification of dominant Lassa virus-specific T cell responses in Lassa fever survivors and vaccinated individuals as well as for designing vaccines that elicit cell-mediated immunity. IMPORTANCE The high morbidity and mortality associated with clinical cases of Lassa fever, together with the lack of licensed vaccines and limited and partially effective interventions, make Lassa virus (LASV) an important health concern in its regions of endemicity in West Africa. Previous infection with LASV protects from disease after subsequent exposure, providing a framework for designing vaccines to elicit similar protective immunity. Multiple major lineages of LASV circulate in West Africa, and therefore, ideal vaccine candidates should elicit immunity to all lineages. We therefore sought to identify common T cell epitopes between Lassa fever survivors from Sierra Leone and Nigeria, where distinct lineages circulate. We identified three such epitopes derived from highly conserved regions within LASV proteins. In this process, we also identified nine other T cell epitopes. These data should help in the design of an effective pan-LASV vaccine.
Collapse
|
22
|
Abstract
Lassa fever was first described as a clinical entity fifty years ago. The causative agent Lassa virus was isolated from these first known cases. This chapter reviews the key publications on Lassa fever research that appeared in the scientific literature at that time and over the ensuing decades.
Collapse
Affiliation(s)
- Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70118, USA. .,Zalgen Labs, LLC, 20271 Goldenrod Lane, Suite 2083, Germantown, MD, 20876, USA.
| |
Collapse
|
23
|
Ibukun FI. Inter-Lineage Variation of Lassa Virus Glycoprotein Epitopes: A Challenge to Lassa Virus Vaccine Development. Viruses 2020; 12:v12040386. [PMID: 32244402 PMCID: PMC7232328 DOI: 10.3390/v12040386] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lassa virus (LASV), which causes considerable morbidity and mortality annually, has a high genetic diversity across West Africa. LASV glycoprotein (GP) expresses this diversity, but most LASV vaccine candidates utilize only the Lineage IV LASV Josiah strain GP antigen as an immunogen and homologous challenge with Lineage IV LASV. In addition to the sequence variation amongst the LASV lineages, these lineages are also distinguished in their presentations. Inter-lineage variations within previously mapped B-cell and T-cell LASV GP epitopes and the breadth of protection in LASV vaccine/challenge studies were examined critically. Multiple alignments of the GP primary sequence of strains from each LASV lineage showed that LASV GP has diverging degrees of amino acid conservation within known epitopes among LASV lineages. Conformational B-cell epitopes spanning different sites in GP subunits were less impacted by LASV diversity. LASV GP diversity should influence the approach used for LASV vaccine design. Expression of LASV GP on viral vectors, especially in its prefusion configuration, has shown potential for protective LASV vaccines that can overcome LASV diversity. Advanced vaccine candidates should demonstrate efficacy against all LASV lineages for evidence of a pan-LASV vaccine.
Collapse
Affiliation(s)
- Francis Ifedayo Ibukun
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| |
Collapse
|