1
|
Belmares-Ortega J, Zara Issoufou Kapran F, Denkers EY. Influence of MyD88 and αβ T cells on mesenteric lymph node innate lymphoid cell populations during Toxoplasma gondii infection. PLoS One 2025; 20:e0322116. [PMID: 40299872 PMCID: PMC12040133 DOI: 10.1371/journal.pone.0322116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/17/2025] [Indexed: 05/01/2025] Open
Abstract
First encounter of Toxoplasma with the host immune system occurs within tissues of the intestine, including the intestinal mucosa and draining lymph nodes. In this study, we focused on the mesenteric lymph node compartment, the central hub of adaptive immune induction following orally acquired infection. We examined innate lymphoid cells (ILC) in mesenteric lymph nodes during Toxoplasma infection, determining the influence of MyD88 and the T lymphocyte compartment on ILC subset distribution, IFN-γ production, MHC class II expression and proliferation. Collectively, we observed an ILC1-dominated response that was impacted by both MyD88 and T lymphocytes. We also found a population of putative ILC that were negative for signature transcription factors associated with ILC1, 2 and 3 subsets. This study increases our understanding of ILC-mediated immunity during Toxoplasma infection and points to the complex interactions with which these cells engage T cell and MyD88-dependent immunity.
Collapse
Affiliation(s)
- Jessica Belmares-Ortega
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Fatouma Zara Issoufou Kapran
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Eric Y. Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
2
|
Doherty CM, Patterson PR, Emeanuwa JA, Belmares Ortega J, Fox BA, Bzik DJ, Denkers EY. T lymphocyte-dependent IL-10 down-regulates a cytokine storm driven by Toxoplasma gondii GRA24. mBio 2024; 15:e0145524. [PMID: 39440975 PMCID: PMC11559025 DOI: 10.1128/mbio.01455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
As a model organism in the study of immunity to infection, Toxoplasma gondii has been instrumental in establishing key principles of host anti-microbial defense and its regulation. Here, we employed an attenuated uracil auxotroph strain of Type I Toxoplasma designated OMP to further untangle the early immune response to this parasitic pathogen. Experiments using αβ T cell-deficient Tcrb-/- mice unexpectedly revealed that an intact αβ T lymphocyte compartment was essential to survive infection with OMP. Subsequent antibody depletion and knockout mouse experiments demonstrated contributions from CD4+ T cells and most predominantly CD8+ T cells in resistance. Using transgenic knockout mice, we found only a partial requirement for IFN-γ and a lack of requirement for Toll-like receptor (TLR) adaptor MyD88 in resistance. In contrast to other studies on Toxoplasma, the ability to survive OMP infection did not require IL-12p40. Surprisingly, T cell-dependent IL-10 was found to be critical for survival, and deficiency of this cytokine triggered an abnormally high systemic inflammatory response. We also found that parasite molecule GRA24, a dense granule protein that triggers TLR-independent IL-12 production, acts as a virulence factor contributing to death of OMP-infected Tcrb-/- and IL-10-/- mice. Furthermore, resistance against OMP was restored in Tcrb-/- mice via monoclonal depletion of IL-12p40, suggesting that GRA24-induced IL-12 underlies the fatal immunopathology observed. Collectively, our studies provide insight into a novel and rapidly arising T lymphocyte-dependent anti-inflammatory response to T. gondii which operates independently of MyD88 and IL-12 and that depends on the function of parasite-dense granule protein GRA24.IMPORTANCEAs a model infectious microbe and an important human pathogen, the apicomplexan Toxoplasma gondii has provided many important insights into innate and adaptive immunity to infection. We show here that a low virulence uracil auxotrophic Toxoplasma strain emerges as a virulent parasite in the absence of an intact T cell compartment. Both CD4+ and CD8+ T lymphocytes are required for optimal protection, in line with previous findings in other models of Toxoplasma infection. Nevertheless, several novel aspects of the response were identified in our study. Protection occurs independently of IL-12 and MyD88 and only partially requires IFN-γ. This is noteworthy particularly because the cytokines IL-12 and IFN-γ have previously been regarded as essential for protective immunity to T. gondii. Instead, we identified the anti-inflammatory effects of T cell-dependent IL-10 as the critical factor enabling host survival. The parasite dense granule protein GRA24, a host-directed mitogen-activated protein kinase activator, was identified as a major virulence factor in T cell-deficient hosts. Collectively, our results provide new and unexpected insights into host resistance to Toxoplasma.
Collapse
Affiliation(s)
- Claire M. Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Paige R. Patterson
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Julie A. Emeanuwa
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jessica Belmares Ortega
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Eric Y. Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
3
|
Merritt EF, Kochanowsky JA, Hervé P, Watson AA, Koshy AA. Toxoplasma type II effector GRA15 has limited influence in vivo. PLoS One 2024; 19:e0300764. [PMID: 38551902 PMCID: PMC10980211 DOI: 10.1371/journal.pone.0300764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/03/2024] [Indexed: 04/01/2024] Open
Abstract
Toxoplasma gondii is an intracellular parasite that establishes a long-term infection in the brain of many warm-blooded hosts, including humans and rodents. Like all obligate intracellular microbes, Toxoplasma uses many effector proteins to manipulate the host cell to ensure parasite survival. While some of these effector proteins are universal to all Toxoplasma strains, some are polymorphic between Toxoplasma strains. One such polymorphic effector is GRA15. The gra15 allele carried by type II strains activates host NF-κB signaling, leading to the release of cytokines such as IL-12, TNF, and IL-1β from immune cells infected with type II parasites. Prior work also suggested that GRA15 promotes early host control of parasites in vivo, but the effect of GRA15 on parasite persistence in the brain and the peripheral immune response has not been well defined. For this reason, we sought to address this gap by generating a new IIΔgra15 strain and comparing outcomes at 3 weeks post infection between WT and IIΔgra15 infected mice. We found that the brain parasite burden and the number of macrophages/microglia and T cells in the brain did not differ between WT and IIΔgra15 infected mice. In addition, while IIΔgra15 infected mice had a lower number and frequency of splenic M1-like macrophages and frequency of PD-1+ CTLA-4+ CD4+ T cells and NK cells compared to WT infected mice, the IFN-γ+ CD4 and CD8 T cell populations were equivalent. In summary, our results suggest that in vivo GRA15 may have a subtle effect on the peripheral immune response, but this effect is not strong enough to alter brain parasite burden or parenchymal immune cell number at 3 weeks post infection.
Collapse
Affiliation(s)
- Emily F. Merritt
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Joshua A. Kochanowsky
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Perrine Hervé
- Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Université de Bordeaux, Bordeaux, France
| | - Alison A. Watson
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Anita A. Koshy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
4
|
Zhao XY, Lempke SL, Urbán Arroyo JC, Brown IG, Yin B, Magaj MM, Holness NK, Smiley J, Redemann S, Ewald SE. iNOS is necessary for GBP-mediated T. gondii clearance in murine macrophages via vacuole nitration and intravacuolar network collapse. Nat Commun 2024; 15:2698. [PMID: 38538595 PMCID: PMC10973475 DOI: 10.1038/s41467-024-46790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.
Collapse
Affiliation(s)
- Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samantha L Lempke
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jan C Urbán Arroyo
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Isabel G Brown
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bocheng Yin
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Magdalena M Magaj
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nadia K Holness
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jamison Smiley
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Brito RMDM, de Lima Bessa G, Bastilho AL, Dantas-Torres F, de Andrade-Neto VF, Bueno LL, Fujiwara RT, Magalhães LMD. Genetic diversity of Toxoplasma gondii in South America: occurrence, immunity, and fate of infection. Parasit Vectors 2023; 16:461. [PMID: 38115102 PMCID: PMC10729521 DOI: 10.1186/s13071-023-06080-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023] Open
Abstract
Toxoplasma gondii is an intracellular parasite with a worldwide distribution. Toxoplasma gondii infections are of great concern for public health, and their impact is usually most severe in pregnant women and their foetuses, and in immunocompromised individuals. Displaying considerable genetic diversity, T. gondii strains differ widely according to geographical location, with archetypal strains predominantly found in the Northern Hemisphere and non-archetypal (atypical) strains, with highly diverse genotypes, found mainly in South America. In this review, we present an overview of the identification and distribution of non-archetypal strains of T. gondii. Special attention is paid to the strains that have been isolated in Brazil, their interaction with the host immunological response, and their impact on disease outcomes. The genetic differences among the strains are pivotal to the distinct immunological responses that they elicit. These differences arise from polymorphisms of key proteins released by the parasite, which represent important virulence factors. Infection with divergent non-archetypal strains can lead to unusual manifestations of the disease, even in immunocompetent individuals.
Collapse
Affiliation(s)
- Ramayana Morais de Medeiros Brito
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Alexandre Lazoski Bastilho
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Luisa M D Magalhães
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Li JM, Yao YD, Luo JF, Liu JX, Lu LL, Liu ZQ, Dong Y, Xie Y, Zhou H. Pharmacological mechanisms of sinomenine in anti-inflammatory immunity and osteoprotection in rheumatoid arthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155114. [PMID: 37816287 DOI: 10.1016/j.phymed.2023.155114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Sinomenine (SIN) is the main pharmacologically active component of Sinomenii Caulis and protects against rheumatoid arthritis (RA). In recent years, many studies have been conducted to elucidate the pharmacological mechanisms of SIN in the treatment of RA. However, the molecular mechanism of SIN in RA has not been fully elucidated. PURPOSE To summarize the pharmacological effects and molecular mechanisms of SIN in RA and clarify the most valuable regulatory mechanisms of SIN to provide clues and a basis for basic research and clinical applications. METHODS We systematically searched SciFinder, Web of Science, PubMed, China National Knowledge Internet (CNKI), the Wanfang Databases, and the Chinese Scientific Journal Database (VIP). We organized our work based on the PRISMA statement and selected studies for review based on predefined selection criteria. OUTCOME After screening, we identified 201 relevant studies, including 88 clinical trials and 113 in vivo and in vitro studies on molecular mechanisms. Among these studies, we selected key results for reporting and analysis. CONCLUSIONS We found that most of the known pharmacological mechanisms of SIN are indirect effects on certain signaling pathways or proteins. SIN was manifested to reduce the release of inflammatory cytokines such as Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), and IL-1β, thereby reducing the inflammatory response, and apparently blocking the destruction of bone and cartilage. The regulatory effects on inflammation and bone destruction make SIN a promising drug to treat RA. More notably, we believe that the modulation of α7nAChR and the regulation of methylation levels at specific GCG sites in the mPGES-1 promoter by SIN, and its mechanism of directly targeting GBP5, certainly enriches the possibilities and the underlying rationale for SIN in the treatment of inflammatory immune-related diseases.
Collapse
Affiliation(s)
- Juan-Min Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yun-Da Yao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Jin-Fang Luo
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang, Guizhou, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510405, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
7
|
Rich KD, Srivastava S, Muthye VR, Wasmuth JD. Identification of potential molecular mimicry in pathogen-host interactions. PeerJ 2023; 11:e16339. [PMID: 37953771 PMCID: PMC10637249 DOI: 10.7717/peerj.16339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Pathogens have evolved sophisticated strategies to manipulate host signaling pathways, including the phenomenon of molecular mimicry, where pathogen-derived biomolecules imitate host biomolecules. In this study, we resurrected, updated, and optimized a sequence-based bioinformatics pipeline to identify potential molecular mimicry candidates between humans and 32 pathogenic species whose proteomes' 3D structure predictions were available at the start of this study. We observed considerable variation in the number of mimicry candidates across pathogenic species, with pathogenic bacteria exhibiting fewer candidates compared to fungi and protozoans. Further analysis revealed that the candidate mimicry regions were enriched in solvent-accessible regions, highlighting their potential functional relevance. We identified a total of 1,878 mimicked regions in 1,439 human proteins, and clustering analysis indicated diverse target proteins across pathogen species. The human proteins containing mimicked regions revealed significant associations between these proteins and various biological processes, with an emphasis on host extracellular matrix organization and cytoskeletal processes. However, immune-related proteins were underrepresented as targets of mimicry. Our findings provide insights into the broad range of host-pathogen interactions mediated by molecular mimicry and highlight potential targets for further investigation. This comprehensive analysis contributes to our understanding of the complex mechanisms employed by pathogens to subvert host defenses and we provide a resource to assist researchers in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Kaylee D. Rich
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Shruti Srivastava
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Viraj R. Muthye
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - James D. Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Zhao XY, Lempke SL, Urbán Arroyo JC, Yin B, Holness NK, Smiley J, Ewald SE. Inducible nitric oxide synthase (iNOS) is necessary for GBP-mediated T. gondii restriction in murine macrophages via vacuole nitration and intravacuolar network collapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.549965. [PMID: 37546987 PMCID: PMC10402109 DOI: 10.1101/2023.07.24.549965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Toxoplasma gondii is an obligate intracellular, protozoan pathogen of rodents and humans. T. gondii's ability to grow within cells and evade cell-autonomous immunity depends on the integrity of the parasitophorous vacuole (PV). Interferon-inducible guanylate binding proteins (GBPs) are central mediators of T. gondii clearance, however, the precise mechanism linking GBP recruitment to the PV and T. gondii restriction is not clear. This knowledge gap is linked to heterogenous GBP-targeting across a population of vacuoles and the lack of tools to selectively purify the intact PV. To identify mediators of parasite clearance associated with GBP2-positive vacuoles, we employed a novel protein discovery tool automated spatially targeted optical micro proteomics (autoSTOMP). This approach identified inducible nitric oxide synthetase (iNOS) enriched at levels similar to the GBPs in infected bone marrow-derived myeloid cells. iNOS expression on myeloid cells was necessary for mice to control T. gondii growth in vivo and survive acute infection. T. gondii infection of IFNγ-primed macrophage was sufficient to robustly induce iNOS expression. iNOS restricted T. gondii infection through nitric oxide synthesis rather than arginine depletion, leading to robust and selective nitration of the PV. Optimal parasite restriction by iNOS and vacuole nitration depended on the chromosome 3 GBPs. Notably, GBP2 recruitment and ruffling of the PV membrane occurred in iNOS knockouts, however, these vacuoles contained dividing parasites. iNOS activity was necessary for the collapse of the intravacuolar network of nanotubular membranes which connects parasites to each other and the host cytosol. Based on these data we conclude reactive nitrogen species generated by iNOS cooperate with the chromosome 3 GBPs to target distinct biology of the PV that are necessary for optimal parasite clearance in murine myeloid cells.
Collapse
Affiliation(s)
- Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Samantha L. Lempke
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jan C. Urbán Arroyo
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Bocheng Yin
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nadia K. Holness
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jamison Smiley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
A. PORTES JULIANA, C. VOMMARO ROSSIANE, AYRES CALDAS LUCIO, S. MARTINS-DUARTE ERICA. Intracellular life of protozoan Toxoplasma gondii: Parasitophorous vacuole establishment and survival strategies. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
10
|
Ten Hoeve AL, Braun L, Rodriguez ME, Olivera GC, Bougdour A, Belmudes L, Couté Y, Saeij JPJ, Hakimi MA, Barragan A. The Toxoplasma effector GRA28 promotes parasite dissemination by inducing dendritic cell-like migratory properties in infected macrophages. Cell Host Microbe 2022; 30:1570-1588.e7. [PMID: 36309013 PMCID: PMC9710525 DOI: 10.1016/j.chom.2022.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 11/03/2022]
Abstract
Upon pathogen detection, macrophages normally stay sessile in tissues while dendritic cells (DCs) migrate to secondary lymphoid tissues. The obligate intracellular protozoan Toxoplasma gondii exploits the trafficking of mononuclear phagocytes for dissemination via unclear mechanisms. We report that, upon T. gondii infection, macrophages initiate the expression of transcription factors normally attributed to DCs, upregulate CCR7 expression with a chemotactic response, and perform systemic migration when adoptively transferred into mice. We show that parasite effector GRA28, released by the MYR1 secretory pathway, cooperates with host chromatin remodelers in the host cell nucleus to drive the chemotactic migration of parasitized macrophages. During in vivo challenge studies, bone marrow-derived macrophages infected with wild-type T. gondii outcompeted those challenged with MYR1- or GRA28-deficient strains in migrating and reaching secondary organs. This work reveals how an intracellular parasite hijacks chemotaxis in phagocytes and highlights a remarkable migratory plasticity in differentiated cells of the mononuclear phagocyte system.
Collapse
Affiliation(s)
- Arne L Ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Laurence Braun
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Matias E Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Gabriela C Olivera
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Alexandre Bougdour
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Lucid Belmudes
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, CA 95616, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
11
|
Griffith MB, Pearce CS, Heaslip AT. Dense granule biogenesis, secretion, and function in Toxoplasma gondii. J Eukaryot Microbiol 2022; 69:e12904. [PMID: 35302693 PMCID: PMC9482668 DOI: 10.1111/jeu.12904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite and the causative agent of Toxoplasmosis. A key to understanding and treating the disease lies with determining how the parasite can survive and replicate within cells of its host. Proteins released from specialized secretory vesicles, named the dense granules (DGs), have diverse functions that are critical for adapting the intracellular environment, and are thus key to survival and pathogenicity. In this review, we describe the current understanding and outstanding questions regarding dense granule biogenesis, trafficking, and regulation of secretion. In addition, we provide an overview of dense granule protein ("GRA") function upon secretion, with a focus on proteins that have recently been identified.
Collapse
Affiliation(s)
- Michael B Griffith
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Camille S Pearce
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Aoife T Heaslip
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
12
|
Hu H, Lu Z, Feng H, Chen G, Wang Y, Yang C, Yue Z. DGPD: a knowledge database of dense granule proteins of the Apicomplexa. Database (Oxford) 2022; 2022:6718167. [PMID: 36164976 PMCID: PMC9513560 DOI: 10.1093/database/baac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
Apicomplexan parasites cause severe diseases in human and livestock. Dense granule proteins (GRAs), specific to the Apicomplexa, participate in the maintenance of intracellular parasitism of host cells. GRAs have better immunogenicity and they can be emerged as important players in vaccine development. Although studies on GRAs have increased gradually in recent years, due to incompleteness and complexity of data collection, biologists have difficulty in the comprehensive utilization of information. Thus, there is a desperate need of user-friendly resource to integrate with existing GRAs. In this paper, we developed the Dense Granule Protein Database (DGPD), the first knowledge database dedicated to the integration and analysis of typical GRAs properties. The current version of DGPD includes annotated GRAs metadata of 245 samples derived from multiple web repositories and literature mining, involving five species that cause common diseases (Plasmodium falciparum, Toxoplasma gondii, Hammondia hammondi, Neospora caninum and Cystoisospora suis). We explored the baseline characteristics of GRAs and found that the number of introns and transmembrane domains in GRAs are markedly different from those of non-GRAs. Furthermore, we utilized the data in DGPD to explore the prediction algorithms for GRAs. We hope DGPD will be a good database for researchers to study GRAs. Database URL: http://dgpd.tlds.cc/DGPD/index/
Collapse
Affiliation(s)
- Hang Hu
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| | - Zhenxiao Lu
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| | - Haisong Feng
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| | - Guojun Chen
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| | - Yongmei Wang
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| | - Congshan Yang
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| | - Zhenyu Yue
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| |
Collapse
|
13
|
Sardinha-Silva A, Alves-Ferreira EVC, Grigg ME. Intestinal immune responses to commensal and pathogenic protozoa. Front Immunol 2022; 13:963723. [PMID: 36211380 PMCID: PMC9533738 DOI: 10.3389/fimmu.2022.963723] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The physical barrier of the intestine and associated mucosal immunity maintains a delicate homeostatic balance between the host and the external environment by regulating immune responses to commensals, as well as functioning as the first line of defense against pathogenic microorganisms. Understanding the orchestration and characteristics of the intestinal mucosal immune response during commensal or pathological conditions may provide novel insights into the mechanisms underlying microbe-induced immunological tolerance, protection, and/or pathogenesis. Over the last decade, our knowledge about the interface between the host intestinal mucosa and the gut microbiome has been dominated by studies focused on bacterial communities, helminth parasites, and intestinal viruses. In contrast, specifically how commensal and pathogenic protozoa regulate intestinal immunity is less well studied. In this review, we provide an overview of mucosal immune responses induced by intestinal protozoa, with a major focus on the role of different cell types and immune mediators triggered by commensal (Blastocystis spp. and Tritrichomonas spp.) and pathogenic (Toxoplasma gondii, Giardia intestinalis, Cryptosporidium parvum) protozoa. We will discuss how these various protozoa modulate innate and adaptive immune responses induced in experimental models of infection that benefit or harm the host.
Collapse
|
14
|
Snyder LM, Belmares-Ortega J, Doherty CM, Denkers EY. Impact of MyD88, Microbiota, and Location on Type 1 and Type 3 Innate Lymphoid Cells during Toxoplasma gondii Infection. Immunohorizons 2022; 6:660-670. [PMID: 36096673 PMCID: PMC10994198 DOI: 10.4049/immunohorizons.2200070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii induces strong IFN-γ-based immunity. Innate lymphoid cells (ILC), in particular ILC1, are an important innate source of this protective cytokine during infection. Our objective was to determine how MyD88-dependent signaling influences ILC function during peroral compared with i.p. infection with T. gondii. MyD88 +/+ and MyD88 -/- mice were orally inoculated with ME49 cysts, and small intestinal lamina propria ILC were assessed using flow cytometry. We observed T-bet+ ILC1, retinoic acid-related orphan receptor γt+ ILC3, and a population of T-bet+retinoic acid-related orphan receptor γt+ double-positive ILC. In MyD88 -/- mice, IFN-γ-producing T-bet+ ILC1 frequencies were reduced compared with wild-type. Treatment of MyD88 -/- mice with an antibiotic mixture to deplete microflora reduced IFN-γ+ ILC1 frequencies. To examine ILC responses outside of the mucosal immune system, peritoneal exudate cells were collected from wild-type and knockout mice after i.p. inoculation with ME49 cysts. In this compartment, ILC were highly polarized to the ILC1 subset that increased significantly and became highly positive for IFN-γ over the course of infection. Increased ILC1 was associated with expression of the Ki67 cell proliferation marker, and the response was driven by IL-12p40. In the absence of MyD88, IFN-γ expression by ILC1 was not maintained, but proliferation remained normal. Collectively, these data reveal new aspects of ILC function that are influenced by location of infection and shaped further by MyD88-dependent signaling.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Center for Evolutionary & Theoretical Immunology, University of New Mexico, Albuquerque, NM; and Department of Biology, University of New Mexico, Albuquerque, NM
| | - Jessica Belmares-Ortega
- Center for Evolutionary & Theoretical Immunology, University of New Mexico, Albuquerque, NM; and Department of Biology, University of New Mexico, Albuquerque, NM
| | - Claire M Doherty
- Center for Evolutionary & Theoretical Immunology, University of New Mexico, Albuquerque, NM; and Department of Biology, University of New Mexico, Albuquerque, NM
| | - Eric Y Denkers
- Center for Evolutionary & Theoretical Immunology, University of New Mexico, Albuquerque, NM; and Department of Biology, University of New Mexico, Albuquerque, NM
| |
Collapse
|
15
|
Immune responses to Toxoplasma gondii. Curr Opin Immunol 2022; 77:102226. [PMID: 35785567 DOI: 10.1016/j.coi.2022.102226] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can cause severe complications in the newborn and immunocompromised individuals. The parasite evokes a strong innate immune response in the infected hosts which is followed by a robust adaptive immunity. In the last few years, importance of innate immune mechanisms dependent on the role of MyD-88 independent pathways, inflammatory monocytes and innate lymphocyte have been identified. However, notwithstanding the strong immune response to the parasite, the chronic infection persists in the host. The inability to prevent chronic infection can be attributed to aberration in the memory CD8 T cell response caused by an increased expression of inhibitory receptors that leads to their dysfunctionality.
Collapse
|
16
|
Sasai M, Yamamoto M. Anti-toxoplasma host defense systems and the parasitic counterdefense mechanisms. Parasitol Int 2022; 89:102593. [DOI: 10.1016/j.parint.2022.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
|
17
|
Tylvalosin demonstrates anti-parasitic activity and protects mice from acute toxoplasmosis. Life Sci 2022; 294:120373. [DOI: 10.1016/j.lfs.2022.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
|
18
|
Sana M, Rashid M, Rashid I, Akbar H, Gomez-Marin JE, Dimier-Poisson I. Immune response against toxoplasmosis-some recent updates RH: Toxoplasma gondii immune response. Int J Immunopathol Pharmacol 2022; 36:3946320221078436. [PMID: 35227108 PMCID: PMC8891885 DOI: 10.1177/03946320221078436] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Cytokines, soluble mediators of immunity, are key factors of the innate and adaptive immune system. They are secreted from and interact with various types of immune cells to manipulate host body's immune cell physiology for a counter-attack on the foreign body. A study was designed to explore the mechanism of Toxoplasma gondii (T. gondii) resistance from host immune response. METHODS AND RESULTS The published data on aspect of host (murine and human) immune response against T. gondii was taken from Google scholar and PubMed. Most relevant literature was included in this study. The basic mechanism of immune response starts from the interactions of antigens with host immune cells to trigger the production of cytokines (pro-inflammatory and anti-inflammatory) which then act by forming a cytokinome (network of cytokine). Their secretory equilibrium is essential for endowing resistance to the host against infectious diseases, particularly toxoplasmosis. A narrow balance lying between Th1, Th2, and Th17 cytokines (as demonstrated until now) is essential for the development of resistance against T. gondii as well as for the survival of host. Excessive production of pro-inflammatory cytokines leads to tissue damage resulting in the production of anti-inflammatory cytokines which enhances the proliferation of Toxoplasma. Stress and other infectious diseases (human immunodeficiency virus (HIV)) that weaken the host immunity particularly the cellular component, make the host susceptible to toxoplasmosis especially in pregnant women. CONCLUSION The current review findings state that in vitro harvesting of IL12 from DCs, Np and MΦ upon exposure with T. gondii might be a source for therapeutic use in toxoplasmosis. Current review also suggests that therapeutic interventions leading to up-regulation/supplementation of SOCS-3, IL12, and IFNγ to the infected host could be a solution to sterile immunity against T. gondii infection. This would be of interest particularly in patients passing through immunosuppression owing to any reason like the ones receiving anti-cancer therapy, the ones undergoing immunosuppressive therapy for graft/transplantation, the ones suffering from immunodeficiency virus (HIV) or having AIDS. Another imortant suggestion is to launch the efforts for a vaccine based on GRA6Nt or other similar antigens of T. gondii as a probable tool to destroy tissue cysts.
Collapse
Affiliation(s)
- Madiha Sana
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, 66920The Islamia University of Bahawalpur, Pakistan
| | - Imran Rashid
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haroon Akbar
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jorge E Gomez-Marin
- Grupo Gepamol, Centro de Investigaciones Biomedicas, Universidad del Quindio, Armenia, CO, South America
| | - Isabelle Dimier-Poisson
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| |
Collapse
|
19
|
Wei H, Xie H, Qu J, Xie A, Xie S, Huang H, Li J, Fang C, Shi F, Qiu H, Qi Y, Tian X, Yang Q, Huang J. TLR7 modulating B-cell immune responses in the spleen of C57BL/6 mice infected with Schistosoma japonicum. PLoS Negl Trop Dis 2021; 15:e0009943. [PMID: 34788282 PMCID: PMC8598019 DOI: 10.1371/journal.pntd.0009943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
B cells played an important role in Schistosoma infection-induced diseases. TLR7 is an intracellular member of the innate immune receptor. The role of TLR7 on B cells mediated immune response is still unclear. Here, C57BL/6 mice were percutaneously infected by S. japonicum for 5-6 weeks. The percentages and numbers of B cells increased in the infected mice (p < 0.05), and many activation and function associated molecules were also changed on B cells. More splenic cells of the infected mice expressed TLR7, and B cells were served as the main cell population. Moreover, a lower level of soluble egg antigen (SEA) specific antibody and less activation associated molecules were found on the surface of splenic B cells from S. japonicum infected TLR7 gene knockout (TLR7 KO) mice compared to infected wild type (WT) mice (p < 0.05). Additionally, SEA showed a little higher ability in inducing the activation of B cells from naive WT mice than TLR7 KO mice (p < 0.05). Finally, the effects of TLR7 on B cells are dependent on the activation of NF-κB p65. Altogether, TLR7 was found modulating the splenic B cell responses in S. japonicum infected C57BL/6 mice.
Collapse
Affiliation(s)
- Haixia Wei
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiale Qu
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shihao Xie
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - He Huang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feihu Shi
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huaina Qiu
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Qi
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Tian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- * E-mail: (XT); (QY); (JH)
| | - Quan Yang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- * E-mail: (XT); (QY); (JH)
| | - Jun Huang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- * E-mail: (XT); (QY); (JH)
| |
Collapse
|
20
|
Zhu YC, Elsheikha HM, Wang JH, Fang S, He JJ, Zhu XQ, Chen J. Synergy between Toxoplasma gondii type I Δ GRA17 immunotherapy and PD-L1 checkpoint inhibition triggers the regression of targeted and distal tumors. J Immunother Cancer 2021; 9:jitc-2021-002970. [PMID: 34725213 PMCID: PMC8562526 DOI: 10.1136/jitc-2021-002970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/28/2022] Open
Abstract
Background In this study, we hypothesize that the ability of the protozoan Toxoplasma gondii to modulate immune response within the tumor might improve the therapeutic effect of immune checkpoint blockade. We examined the synergetic therapeutic activity of attenuated T. gondii RH ΔGRA17 strain and programmed death ligand-1 (PD-L1) treatment on both targeted and distal tumors in mice. Methods The effects of administration of T. gondii RH ΔGRA17 strain on the tumor volume and survival rate of mice bearing flank B16-F10, MC38, or LLC tumors were studied. We characterized the effects of ΔGRA17 on tumor biomarkers’ expression, PD-L1 expression, immune cells infiltrating the tumors, and expression of immune-related genes by using immunohistochemistry, immunofluorescence, flow cytometry, NanoString platform, and real-time quantitative PCR, respectively. The role of immune cells in the efficacy of ΔGRA17 plus PD-L1 blockade therapy was determined via depletion of immune cell subtypes. Results Treatment with T. gondii ΔGRA17 tachyzoites and anti-PD-L1 therapy significantly extended the survival of mice and suppressed tumor growth in preclinical mouse models of melanoma, Lewis lung carcinoma, and colon adenocarcinoma. Attenuation of the tumor growth was detected in the injected and distant tumors, which was associated with upregulation of innate and adaptive immune pathways. Complete regression of tumors was underpinned by late interferon-gamma-producing CD8+ cytotoxic T cells. Conclusion The results from these models indicate that intratumoral injection of ΔGRA17 induced a systemic effect, improved mouse immune response, and sensitized immunologically ‘cold’ tumors and rendered them sensitive to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yu-Chao Zhu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China.,Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Jian-Hua Wang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China.,Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Shuai Fang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China.,Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China .,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jia Chen
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China .,Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| |
Collapse
|
21
|
Frickel EM, Hunter CA. Lessons from Toxoplasma: Host responses that mediate parasite control and the microbial effectors that subvert them. J Exp Med 2021; 218:212714. [PMID: 34670268 PMCID: PMC8532566 DOI: 10.1084/jem.20201314] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii has long provided a tractable experimental system to investigate how the immune system deals with intracellular infections. This review highlights the advances in defining how this organism was first detected and the studies with T. gondii that contribute to our understanding of how the cytokine IFN-γ promotes control of vacuolar pathogens. In addition, the genetic tractability of this eukaryote organism has provided the foundation for studies into the diverse strategies that pathogens use to evade antimicrobial responses and now provides the opportunity to study the basis for latency. Thus, T. gondii remains a clinically relevant organism whose evolving interactions with the host immune system continue to teach lessons broadly relevant to host–pathogen interactions.
Collapse
Affiliation(s)
- Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Snyder LM, Doherty CM, Mercer HL, Denkers EY. Induction of IL-12p40 and type 1 immunity by Toxoplasma gondii in the absence of the TLR-MyD88 signaling cascade. PLoS Pathog 2021; 17:e1009970. [PMID: 34597344 PMCID: PMC8513874 DOI: 10.1371/journal.ppat.1009970] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/13/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is an orally acquired pathogen that induces strong IFN-γ based immunity conferring protection but that can also be the cause of immunopathology. The response in mice is driven in part by well-characterized MyD88-dependent signaling pathways. Here we focus on induction of less well understood immune responses that do not involve this Toll-like receptor (TLR)/IL-1 family receptor adaptor molecule, in particular as they occur in the intestinal mucosa. Using eYFP-IL-12p40 reporter mice on an MyD88-/- background, we identified dendritic cells, macrophages, and neutrophils as cellular sources of MyD88-independent IL-12 after peroral T. gondii infection. Infection-induced IL-12 was lower in the absence of MyD88, but was still clearly above noninfected levels. Overall, this carried through to the IFN-γ response, which while generally decreased was still remarkably robust in the absence of MyD88. In the latter mice, IL-12 was strictly required to induce type I immunity. Type 1 and type 3 innate lymphoid cells (ILC), CD4+ T cells, and CD8+ T cells each contributed to the IFN-γ pool. We report that ILC3 were expanded in infected MyD88-/- mice relative to their MyD88+/+ counterparts, suggesting a compensatory response triggered by loss of MyD88. Furthermore, bacterial flagellin and Toxoplasma specific CD4+ T cell populations in the lamina propria expanded in response to infection in both WT and KO mice. Finally, we show that My88-independent IL-12 and T cell mediated IFN-γ production require the presence of the intestinal microbiota. Our results identify MyD88-independent intestinal immune pathways induced by T. gondii including myeloid cell derived IL-12 production, downstream type I immunity and IFN-γ production by ILC1, ILC3, and T lymphocytes. Collectively, our data reveal an underlying network of immune responses that do not involve signaling through MyD88. Toxoplasma gondii is an apicomplexan parasite estimated to infect 30–50% of humans worldwide. The parasite normally establishes latency in brain and muscle tissue marked by persistent asymptomatic infection. T. gondii masterfully strikes a balance between eliciting strong, anti-parasite immunity while also persisting in the host. Although the murine host recognizes Toxoplasma profilin via MyD88 and Toll-like receptors 11/12, humans lack these receptors and MyD88 deficient patients retain resistance to T. gondii infection. Given these observations, it is important to identify MyD88 independent pathways of immunity. Using an oral infection mouse model, we identified cellular sources of IL-12 and IFN-γ, two cytokines that are essential for host resistance to this microbial pathogen. We determined how these responses are impacted by the presence and absence of MyD88 and the intestinal microbiota. Our data demonstrate that T. gondii triggers MyD88-independent innate and adaptive immunity in the intestinal mucosa that requires the presence of intestinal microbes. These pathways may be conserved among species and understanding how they work in rodents will likely help determine how humans recognize and respond to T. gondii infection.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Claire M Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Heather L Mercer
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
23
|
Tomita T, Guevara RB, Shah LM, Afrifa AY, Weiss LM. Secreted Effectors Modulating Immune Responses to Toxoplasma gondii. Life (Basel) 2021; 11:988. [PMID: 34575137 PMCID: PMC8467511 DOI: 10.3390/life11090988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that chronically infects a third of humans. It can cause life-threatening encephalitis in immune-compromised individuals. Congenital infection also results in blindness and intellectual disabilities. In the intracellular milieu, parasites encounter various immunological effectors that have been shaped to limit parasite infection. Parasites not only have to suppress these anti-parasitic inflammatory responses but also ensure the host organism's survival until their subsequent transmission. Recent advancements in T. gondii research have revealed a plethora of parasite-secreted proteins that suppress as well as activate immune responses. This mini-review will comprehensively examine each secreted immunomodulatory effector based on the location of their actions. The first section is focused on secreted effectors that localize to the parasitophorous vacuole membrane, the interface between the parasites and the host cytoplasm. Murine hosts are equipped with potent IFNγ-induced immune-related GTPases, and various parasite effectors subvert these to prevent parasite elimination. The second section examines several cytoplasmic and ER effectors, including a recently described function for matrix antigen 1 (MAG1) as a secreted effector. The third section covers the repertoire of nuclear effectors that hijack transcription factors and epigenetic repressors that alter gene expression. The last section focuses on the translocation of dense-granule effectors and effectors in the setting of T. gondii tissue cysts (the bradyzoite parasitophorous vacuole).
Collapse
Affiliation(s)
- Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
| | - Rebekah B. Guevara
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
| | - Lamisha M. Shah
- Department of Biological Science, Lehman College of the City University of New York, Bronx, NY 10468, USA; (L.M.S.); (A.Y.A.)
| | - Andrews Y. Afrifa
- Department of Biological Science, Lehman College of the City University of New York, Bronx, NY 10468, USA; (L.M.S.); (A.Y.A.)
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
24
|
Matta SK, Rinkenberger N, Dunay IR, Sibley LD. Toxoplasma gondii infection and its implications within the central nervous system. Nat Rev Microbiol 2021; 19:467-480. [PMID: 33627834 DOI: 10.1038/s41579-021-00518-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Toxoplasma gondii is a parasite that infects a wide range of animals and causes zoonotic infections in humans. Although it normally only results in mild illness in healthy individuals, toxoplasmosis is a common opportunistic infection with high mortality in individuals who are immunocompromised, most commonly due to reactivation of infection in the central nervous system. In the acute phase of infection, interferon-dependent immune responses control rapid parasite expansion and mitigate acute disease symptoms. However, after dissemination the parasite differentiates into semi-dormant cysts that form within muscle cells and neurons, where they persist for life in the infected host. Control of infection in the central nervous system, a compartment of immune privilege, relies on modified immune responses that aim to balance infection control while limiting potential damage due to inflammation. In response to the activation of interferon-mediated pathways, the parasite deploys an array of effector proteins to escape immune clearance and ensure latent survival. Although these pathways are best studied in the laboratory mouse, emerging evidence points to unique mechanisms of control in human toxoplasmosis. In this Review, we explore some of these recent findings that extend our understanding for proliferation, establishment and control of toxoplasmosis in humans.
Collapse
Affiliation(s)
- Sumit K Matta
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas Rinkenberger
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L David Sibley
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
25
|
Clark JT, Christian DA, Gullicksrud JA, Perry JA, Park J, Jacquet M, Tarrant JC, Radaelli E, Silver J, Hunter CA. IL-33 promotes innate lymphoid cell-dependent IFN-γ production required for innate immunity to Toxoplasma gondii. eLife 2021; 10:e65614. [PMID: 33929319 PMCID: PMC8121546 DOI: 10.7554/elife.65614] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/29/2021] [Indexed: 12/29/2022] Open
Abstract
IL-33 is an alarmin required for resistance to the parasite Toxoplasma gondii, but its role in innate resistance to this organism is unclear. Infection with T. gondii promotes increased stromal cell expression of IL-33, and levels of parasite replication correlate with release of IL-33 in affected tissues. In response to infection, a subset of innate lymphoid cells (ILC) emerges composed of IL-33R+ NK cells and ILC1s. In Rag1-/-mice, where NK cells and ILC1 production of IFN-γ mediate innate resistance to T. gondii, the loss of the IL-33R resulted in reduced ILC responses and increased parasite replication. Furthermore, administration of IL-33 to Rag1-/- mice resulted in a marked decrease in parasite burden, increased production of IFN-γ, and the recruitment and expansion of inflammatory monocytes associated with parasite control. These protective effects of exogenous IL-33 were dependent on endogenous IL-12p40 and the ability of IL-33 to enhance ILC production of IFN-γ. These results highlight that IL-33 synergizes with IL-12 to promote ILC-mediated resistance to T. gondii.
Collapse
Affiliation(s)
- Joseph T Clark
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - David A Christian
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Jodi A Gullicksrud
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Joseph A Perry
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Jeongho Park
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
- Kangwon National University College of Veterinary Medicine and Institute of Veterinary ScienceChuncheonRepublic of Korea
| | - Maxime Jacquet
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
- Liver Immunology, Department of Biomedicine, University Hospital of Basel and University of BaselBaselSwitzerland
| | - James C Tarrant
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Jonathan Silver
- Department of Respiratory Inflammation and Autoimmunity, AstraZenecaGaithersburgUnited States
| | - Christopher A Hunter
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| |
Collapse
|
26
|
Ricci-Azevedo R, Mendonça-Natividade FC, Santana AC, Alcoforado Diniz J, Roque-Barreira MC. Microneme Proteins 1 and 4 From Toxoplasma gondii Induce IL-10 Production by Macrophages Through TLR4 Endocytosis. Front Immunol 2021; 12:655371. [PMID: 33912181 PMCID: PMC8071938 DOI: 10.3389/fimmu.2021.655371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023] Open
Abstract
The protozoan parasite Toxoplasma gondii modulates host cell responses to favor its success in the early stage of infections by secreting proteins from its apical organelles. Some of these proteins, including microneme proteins (MICs) 1 and 4, trigger pro-inflammatory host cell responses. The lectins MIC1 and MIC4 interact with N-linked glycans on TLR2 and TLR4, activating NF-κB and producing IL-12, TNF-α, and IL-6. Interestingly, MIC1 and MIC4 also trigger secretion of the anti-inflammatory cytokine IL-10 through mechanisms as yet unknown. Herein, we show that the ability of these MICs to induce macrophages to produce IL-10 depends on TLR4 internalization from the cell surface. Macrophages subjected to blockade of endocytosis by Dynasore continued to release TNF-α, but failed to produce IL-10, in response to MIC1 or MIC4 exposure. Similarly, IL-10 was not produced by Dynasore-conditioned T. gondii-infected macrophages. Furthermore, MIC1- or MIC4-stimulated macrophages gained transient tolerance to LPS. We report a previously undiscovered mechanism by which well-defined T. gondii components inhibit a host inflammatory response.
Collapse
Affiliation(s)
- Rafael Ricci-Azevedo
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Flavia Costa Mendonça-Natividade
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Carolina Santana
- Laboratory of Cellular and Molecular Biology of Mast Cells, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana Alcoforado Diniz
- Laboratory of Molecular Parasitology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Cristina Roque-Barreira
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
27
|
Kumar S, Singh SK, Rana B, Rana A. The regulatory function of mixed lineage kinase 3 in tumor and host immunity. Pharmacol Ther 2021; 219:107704. [PMID: 33045253 PMCID: PMC7887016 DOI: 10.1016/j.pharmthera.2020.107704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Protein kinases are the second most sought-after G-protein coupled receptors as drug targets because of their overexpression, mutations, and dysregulated catalytic activities in various pathological conditions. Till 2019, 48 protein kinase inhibitors have received FDA approval for the treatment of multiple illnesses, of which the majority of them are indicated for different malignancies. One of the attractive sub-group of protein kinases that has attracted attention for drug development is the family members of MAPKs that are recognized to play significant roles in different cancers. Several inhibitors have been developed against various MAPK members; however, none of them as monotherapy has shown sustainable efficacy. One of the MAPK members, called Mixed Lineage Kinase 3 (MLK3), has attracted considerable attention due to its role in inflammation and neurodegenerative diseases; however, its role in cancer is an emerging area that needs more investigation. Recent advances have shown that MLK3 plays a role in cancer cell survival, migration, drug resistance, cell death, and tumor immunity. This review describes how MLK3 regulates different MAPK pathways, cancer cell growth and survival, apoptosis, and host's immunity. We also discuss how MLK3 inhibitors can potentially be used along with immunotherapy for different malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
28
|
Snyder LM, Denkers EY. From Initiators to Effectors: Roadmap Through the Intestine During Encounter of Toxoplasma gondii With the Mucosal Immune System. Front Cell Infect Microbiol 2021; 10:614701. [PMID: 33505924 PMCID: PMC7829212 DOI: 10.3389/fcimb.2020.614701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
The gastrointestinal tract is a major portal of entry for many pathogens, including the protozoan parasite Toxoplasma gondii. Billions of people worldwide have acquired T. gondii at some point in their life, and for the vast majority this has led to latent infection in the central nervous system. The first line of host defense against Toxoplasma is located within the intestinal mucosa. Appropriate coordination of responses by the intestinal epithelium, intraepithelial lymphocytes, and lamina propria cells results in an inflammatory response that controls acute infection. Under some conditions, infection elicits bacterial dysbiosis and immune-mediated tissue damage in the intestine. Here, we discuss the complex interactions between the microbiota, the epithelium, as well as innate and adaptive immune cells in the intestinal mucosa that induce protective immunity, and that sometimes switch to inflammatory pathology as T. gondii encounters tissues of the gut.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
29
|
Ren B, Schmid M, Scheiner M, Mollenkopf HJ, Lucius R, Heitlinger E, Gupta N. Toxoplasma and Eimeria co-opt the host cFos expression for intracellular development in mammalian cells. Comput Struct Biotechnol J 2021; 19:719-731. [PMID: 33510872 PMCID: PMC7817532 DOI: 10.1016/j.csbj.2020.12.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/05/2022] Open
Abstract
Gene expression profiles differ significantly between Toxoplasma and Eimeria-infected host cells. Several distinct and shared host-signaling cascades are regulated by coccidian parasites. cFos is one of the few host transcripts mutually regulated during infection by both pathogens. Host cFos is required for optimal in vitro development of E. falciformis and T. gondii. Transcriptomics of parasitized wild-type and cFos-/- host cells reveals a perturbation of cFos network.
Successful asexual reproduction of intracellular pathogens depends on their potential to exploit host resources and subvert antimicrobial defense. In this work, we deployed two prevalent apicomplexan parasites of mammalian cells, namely Toxoplasma gondii and Eimeria falciformis, to identify potential host determinants of infection. Expression analyses of the young adult mouse colonic (YAMC) epithelial cells upon infection by either parasite showed regulation of several distinct transcripts, indicating that these two pathogens program their intracellular niches in a tailored manner. Conversely, parasitized mouse embryonic fibroblasts (MEFs) displayed a divergent transcriptome compared to corresponding YAMC epithelial cells, suggesting that individual host cells mount a fairly discrete response when encountering a particular pathogen. Among several host transcripts similarly altered by T. gondii and E. falciformis, we identified cFos, a master transcription factor, that was consistently induced throughout the infection. Indeed, asexual growth of both parasites was strongly impaired in MEF host cells lacking cFos expression. Last but not the least, our differential transcriptomics of the infected MEFs (parental and cFos-/- mutant) and YAMC epithelial cells disclosed a cFos-centered network, underlying signal cascades, as well as a repertoire of nucleotides- and ion-binding proteins, which presumably act in consort to acclimatize the mammalian cell and thereby facilitate the parasite development.
Collapse
Affiliation(s)
- Bingjian Ren
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Manuela Schmid
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Mattea Scheiner
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Microarray and Genomics Core Facility, Max-Planck Institute for Infection Biology, Berlin, Germany
| | - Richard Lucius
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Research Group Ecology and Evolution of Parasite Host Interactions, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Department of Biological Sciences, Birla Institute of Technology and Science Pilani (BITS-P), Hyderabad, India
| |
Collapse
|
30
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|
31
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the Host and Parasite Strain on the Immune Response During Toxoplasma Infection. Front Cell Infect Microbiol 2020; 10:580425. [PMID: 33178630 PMCID: PMC7593385 DOI: 10.3389/fcimb.2020.580425] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an exceptionally successful parasite that infects a very broad host range, including humans, across the globe. The outcome of infection differs remarkably between hosts, ranging from acute death to sterile infection. These differential disease patterns are strongly influenced by both host- and parasite-specific genetic factors. In this review, we discuss how the clinical outcome of toxoplasmosis varies between hosts and the role of different immune genes and parasite virulence factors, with a special emphasis on Toxoplasma-induced ileitis and encephalitis.
Collapse
Affiliation(s)
| | | | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|