1
|
Xing C, Fu X, Du Y, Liu K, Yuan H, Liu J, Yang J. Microalgal glutaredoxin 1 interacts with transcription factor bZIP to resist cadmium stress via lipid metabolism alteration. BIORESOURCE TECHNOLOGY 2025; 433:132708. [PMID: 40412560 DOI: 10.1016/j.biortech.2025.132708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Triacylglycerol (TAG), a universal energy reserve and biodiesel feedstock, accumulates under stress in microalgae. However, the regulatory mechanisms linking stress signals to TAG synthesis remain unclear. In this study, we identified ApGRX1724, a novel glutaredoxin 1 family member found in Auxenochlorella protothecoides, that could translocate to the nucleus and interact with the transcription factor ApbZIP4896, which regulating TAG synthesis by interacting with the synthetase ApPAP6812. Additionally, ApbZIP4896 modulated the levels of reactive oxygen species (ROS) and influenced TAG polyunsaturation. This shifted the carbon metabolism of microalgae from lipid production to growth by interacting with ApMyb_rel4269 and ApbZIP0838, ultimately enhancing the resistance of microalgae to cadmium (Cd). This study revealed a novel signaling pathway involving ApGRX1724 and ApbZIP4896 that positively mediates resistance to Cd-induced ROS stress and promotes TAG accumulation, providing valuable insights into how microalgae resist Cd toxicity.
Collapse
Affiliation(s)
- Chao Xing
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuan Fu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaru Du
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kui Liu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongli Yuan
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jin Liu
- Center for Algae Innovation & Engineering Research, School of Resources, and Environment, Nanchang University, Nanchang 330031, China
| | - Jinshui Yang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Zhong C, Li W, Zhang X, Zhang D, Wen Z, Song W, Jiang Z, Gao Z, Guo H, Bi G, Liu Z, Li D, Dinesh-Kumar SP, Zhang Y. A cell wall-associated kinase phosphorylates NLR immune receptor to negatively regulate resistosome formation. NATURE PLANTS 2025; 11:561-579. [PMID: 40119183 DOI: 10.1038/s41477-025-01949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/21/2025] [Indexed: 03/24/2025]
Abstract
Plants deploy intracellular nucleotide-binding leucine-rich repeats (NLRs) to detect pathogen effectors and initiate immune responses. Although the activation mechanism of some plant NLRs forming resistosomes has been elucidated, whether NLR resistosome assembly is regulated to fine-tune immunity remains enigmatic. Here we used an antiviral coiled coil-nucleotide-binding site-leucine rich repeat, Barley Stripe Resistance 1 (BSR1), as a model and demonstrate that BSR1 is phosphorylated. Using a proximity labelling approach, we identified a wall-associated kinase-like protein 20 (WAKL20) which negatively regulates BSR1-mediated immune responses by directly phosphorylating the Ser470 residue in the NB-ARC domain of BSR1. Mechanistically, Ser470 phosphorylation results in a steric clash of intramolecular domains of BSR1, thereby compromising BSR1 oligomerization. The phosphorylation site is conserved among multiple plant NLRs and our results show that WAKL20 participates in other NLR-mediated immune responses besides BSR1. Together, our data reveal phosphorylation as a mechanism for modulating plant resistosome assembly, and provide new insight into NLR-mediated plant immunity.
Collapse
Affiliation(s)
- Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Song
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhihao Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zongyu Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hailong Guo
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Guozhi Bi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Feng L, Luo X, Huang L, Zhang Y, Li F, Li S, Zhang Z, Yang X, Wang X, OuYang X, Shi X, Zhang D, Tao X, Chen J, Yang J, Zhang S, Liu Y. A viral protein activates the MAPK pathway to promote viral infection by downregulating callose deposition in plants. Nat Commun 2024; 15:10548. [PMID: 39632828 PMCID: PMC11618657 DOI: 10.1038/s41467-024-54467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved in both plants and animals and play critical roles in activating innate immunity to defend against various pathogens. However, the role of MAPK cascades in positively regulating or enhancing viral infections in plants is unclear. In this study, we investigate the involvement of MAPK cascades in infection by the positive-strand RNA virus tomato chlorosis virus (ToCV). Our findings reveal that ToCV infection activates MAPK cascades, promoting virus spread within plants. Specifically, ToCV P7, a pathogenicity determinant protein, localizes to the plasma membrane and recruits NbMPK3/6 from the nucleus. Subsequently, P7 is directly phosphorylated on serine 59 by NbMPK3/6. Phosphorylated P7 interacts with NbREM1.1 and inhibits its ability to induce callose deposition at plasmodesmata. These results demonstrate that NbMPK3/6 directly phosphorylate ToCV P7, modulating antiviral defence mechanisms by downregulating callose deposition at plasmodesmata and thereby enhancing ToCV transmission in N. benthamiana. This study sheds light on the intricate arms race between host defence and viral counter-defence strategies.
Collapse
Affiliation(s)
- Lixiao Feng
- Longping Branch, Biology College of Hunan University, Changsha, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Liping Huang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shijun Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhanhong Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Xiao Yang
- Longping Branch, Biology College of Hunan University, Changsha, China
| | - Xin Wang
- Longping Branch, Biology College of Hunan University, Changsha, China
| | - Xian OuYang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiaobin Shi
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Deyong Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
- Yuelushan Laboratory, Changsha, China.
| | - Songbai Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China.
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China.
- Yuelushan Laboratory, Changsha, China.
| | - Yong Liu
- Longping Branch, Biology College of Hunan University, Changsha, China.
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China.
- Yuelushan Laboratory, Changsha, China.
| |
Collapse
|
4
|
Takata S, Kawano S, Mine A, Mise K, Takano Y, Ohtsu M, Kaido M. Unveiling crucial amino acid residues in the red clover necrotic mosaic virus movement protein for dynamic subcellular localization and viral cell-to-cell movement. Virology 2024; 600:110215. [PMID: 39255728 DOI: 10.1016/j.virol.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Emerging evidence suggests that the localization of viral movement proteins (MPs) to both plasmodesmata (PD) and viral replication complexes (VRCs) is the key to viral cell-to-cell movement. However, the molecular mechanism that establishes the subcellular localization of MPs is not fully understood. Here, we investigated the PD localization pathway of red clover necrotic mosaic virus (RCNMV) MP and the functional regions of MP that are crucial for MP localization to PD and VRCs. Disruption analysis of the transport pathway suggested that RCNMV MP does not rely on the ER-Golgi pathway or the cytoskeleton for the localization to the PD. Furthermore, mutagenesis analysis identified amino acid residues within the alpha helix regions responsible for localization to the PD or VRCs. These α-helix regions were also essential for efficient viral cell-to-cell movement, highlighting the importance of these dynamic localization of the MPs for viral infection.
Collapse
Affiliation(s)
- Shota Takata
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Saho Kawano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Mina Ohtsu
- Laboratory of Plant Symbiosis, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
5
|
Wen Z, Hu R, Pi Q, Zhang D, Duan J, Li Z, Li Q, Zhao X, Yang M, Zhao X, Liu D, Su Z, Li D, Zhang Y. DEAD-box RNA helicase RH20 positively regulates RNAi-based antiviral immunity in plants by associating with SGS3/RDR6 bodies. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3295-3311. [PMID: 39166471 PMCID: PMC11606427 DOI: 10.1111/pbi.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
RNA silencing plays a crucial role in defending against viral infections in diverse eukaryotic hosts. Despite extensive studies on core components of the antiviral RNAi pathway such as DCLs, AGOs and RDRs proteins, host factors involved in antiviral RNAi remain incompletely understood. In this study, we employed the proximity labelling approach to identify the host factors required for antiviral RNAi in Nicotiana benthamiana. Using the barley stripe mosaic virus (BSMV)-encoded γb, a viral suppressor of RNA silencing (VSR), as the bait protein, we identified the DEAD-box RNA helicase RH20, a broadly conserved protein in plants and animals with a homologous human protein known as DDX5. We demonstrated the interaction between RH20 and BSMV γb. Knockdown or knockout of RH20 attenuates the accumulation of viral small interfering RNAs, leading to increased susceptibility to BSMV, while overexpression of RH20 enhances resistance to BSMV, a process requiring the cytoplasmic localization and RNA-binding activity of RH20. In addition to BSMV, RH20 also negatively regulates the infection of several other positive-sense RNA viruses, suggesting the broad-spectrum antiviral activity of RH20. Mechanistic analysis revealed the colocalization and interaction of RH20 with SGS3/RDR6, and disruption of either SGS3 or RDR6 undermines the antiviral function of RH20, suggesting RH20 as a new component of the SGS3/RDR6 bodies. As a counter-defence, BSMV γb VSR subverts the RH20-mediated antiviral defence by interfering with the RH20-SGS3 interaction. Our results uncover RH20 as a new positive regulator of antiviral RNAi and provide new potential targets for controlling plant viral diseases.
Collapse
Affiliation(s)
- Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Rujian Hu
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qinglin Pi
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jiangning Duan
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qian Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Meng Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaofei Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Deshui Liu
- Beijing Life Science AcademyBeijingChina
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
6
|
Chen D, Zhang HY, Hu SM, He Z, Wu YQ, Zhang ZY, Wang Y, Han CG. The P2 protein of wheat yellow mosaic virus acts as a viral suppressor of RNA silencing in Nicotiana benthamiana to facilitate virus infection. PLANT, CELL & ENVIRONMENT 2024; 47:4543-4556. [PMID: 39016637 DOI: 10.1111/pce.15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Wheat yellow mosaic virus (WYMV) causes severe viral wheat disease in Asia. The WYMV P1 protein encoded by RNA2 has viral suppressor of RNA silencing (VSR) activity to facilitate virus infection, however, VSR activity has not been identified for P2 protein encoded by RNA2. In this study, P2 protein exhibited strong VSR activity in Nicotiana benthamiana at the four-leaf stage, and point mutants P70A and G230A lost VSR activity. Protein P2 interacted with calmodulin (CaM) protein, a gene-silencing associated protein, while point mutants P70A and G230A did not interact with it. Competitive bimolecular fluorescence complementation and competitive co-immunoprecipitation experiments showed that P2 interfered with the interaction between CaM and calmodulin-binding transcription activator 3 (CAMTA3), but the point mutants P70A and G230A could not. Mechanical inoculation of wheat with in vitro transcripts of WYMV infectious cDNA clone further confirmed that VSR-deficient mutants P70A and G230A decreased WYMV infection in wheat plants compared with the wild type. In addition, RNA silencing, temperature, ubiquitination and autophagy had significant effects on accumulation of P2 protein in N. benthamiana leaves. In conclusion, WYMV P2 plays a VSR role in N. benthamiana and promotes virus infection by interfering with calmodulin-related antiviral RNAi defense.
Collapse
Affiliation(s)
- Dao Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Hui-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Shu-Ming Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Zheng He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong Qi Wu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Zong-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Chen S, Zhong Q, Liao X, Wang H, Xiao B, He J, Li C. Modulation of the unfolded protein response by white spot syndrome virus via wsv406 targeting BiP to facilitate viral replication. Virol Sin 2024; 39:938-950. [PMID: 39490792 PMCID: PMC11738776 DOI: 10.1016/j.virs.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Outbreaks of diseases are often linked to environmental stress, which can lead to endoplasmic reticulum (ER) stress and subsequently trigger the unfolded protein response (UPR). The replication of the white spot syndrome virus (WSSV), the most serious pathogen in shrimp aquaculture, has been shown to rely on the UPR signaling pathway, although the detailed mechanisms remain poorly understood. In this study, we discovered that WSSV enhances its replication by hijacking the UPR pathway via the viral protein wsv406. Our analysis revealed a significant upregulation of wsv406 in the hemocytes and gills of infected shrimp. Mass spectrometry analysis identified that wsv406 interacts specifically with the immunoglobulin heavy-chain-binding protein (BiP) in shrimp Litopenaeus vannamei. Further examination revealed that wsv406 binds to multiple domains of LvBiP, inhibiting its ATPase activity without disrupting its binding to UPR stress receptors. Silencing either wsv406 or LvBiP resulted in a reduction in WSSV replication and improved shrimp survival rates. Further, wsv406 activation of the PRKR-like ER kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α) and activating transcription factor 6 (ATF6) pathways was demonstrated by a decrease in the phosphorylation of eIF2α and the nuclear translocation of ATF6 when wsv406 was silenced during WSSV infection. This activation facilitated the transcription of WSSV genes, promoting viral replication. In summary, these findings reveal that wsv406 manipulates the host UPR by targeting LvBiP, thereby enhancing WSSV replication through the PERK-eIF2α and ATF6 pathways. These insights into the interaction between WSSV and host cellular machinery offer potential targets for developing therapeutic interventions to control WSSV outbreaks in shrimp aquaculture.
Collapse
Affiliation(s)
- Shihan Chen
- School of Marine Sciences, Sun Yat-sen University, State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiqi Zhong
- School of Marine Sciences, Sun Yat-sen University, State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xuzheng Liao
- School of Marine Sciences, Sun Yat-sen University, State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haiyang Wang
- School of Marine Sciences, Sun Yat-sen University, State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bang Xiao
- School of Marine Sciences, Sun Yat-sen University, State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China; China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chaozheng Li
- School of Marine Sciences, Sun Yat-sen University, State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China; China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
8
|
Lee S, Seo YE, Choi J, Yan X, Kim T, Choi D, Lee JH. Nucleolar actions in plant development and stress responses. PLANT, CELL & ENVIRONMENT 2024; 47:5189-5204. [PMID: 39169813 DOI: 10.1111/pce.15099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
The nucleolus is conventionally acknowledged for its role in ribosomal RNA (rRNA) synthesis and ribosome biogenesis. Recent research has revealed its multifaceted involvement in plant biology, encompassing regulation of the cell cycle, development, and responses to environmental stresses. This comprehensive review explores the diverse roles of the nucleolus in plant growth and responses to environmental stresses. The introduction delves into its traditional functions in rRNA synthesis and potential participation in nuclear liquid-liquid phase separation. By examining the multifaceted roles of nucleolar proteins in plant development, we highlight the impacts of various nucleolar mutants on growth, development, and embryogenesis. Additionally, we reviewed the involvement of nucleoli in responses to abiotic and biotic stresses. Under abiotic stress conditions, the nucleolar structure undergoes morphological changes. In the context of biotic stress, the nucleolus emerges as a common target for effectors of pathogens for manipulation of host immunity to enhance pathogenicity. The detailed exploration of how pathogens interact with nucleoli and manipulate host responses provides valuable insights into plant stress responses as well as plant growth and development. Understanding these processes may pave the way for promising strategies to enhance crop resilience and mitigate the impact of biotic and abiotic stresses in agricultural systems.
Collapse
Affiliation(s)
- Soeui Lee
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ye-Eun Seo
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Jeen Choi
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Xin Yan
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Taewon Kim
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Yue N, Jiang Z, Pi Q, Yang M, Gao Z, Wang X, Zhang H, Wu F, Jin X, Li M, Wang Y, Zhang Y, Li D. Zn2+-dependent association of cysteine-rich protein with virion orchestrates morphogenesis of rod-shaped viruses. PLoS Pathog 2024; 20:e1012311. [PMID: 38885273 PMCID: PMC11213338 DOI: 10.1371/journal.ppat.1012311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/28/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.
Collapse
Affiliation(s)
- Ning Yue
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhihao Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qinglin Pi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Meng Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zongyu Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueting Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - He Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengtong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuejiao Jin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Menglin Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Mu F, Zheng H, Zhao Q, Zhu M, Dong T, Kai L, Li Z. Genome-wide systematic survey and analysis of the RNA helicase gene family and their response to abiotic stress in sweetpotato. BMC PLANT BIOLOGY 2024; 24:193. [PMID: 38493089 PMCID: PMC10944623 DOI: 10.1186/s12870-024-04824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/14/2024] [Indexed: 03/18/2024]
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.
Collapse
Affiliation(s)
- Fangfang Mu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hao Zheng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Qiaorui Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tingting Dong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
11
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
12
|
Chen D, Zhang HY, Hu SM, Tian MY, Zhang ZY, Wang Y, Sun LY, Han CG. The P1 protein of wheat yellow mosaic virus exerts RNA silencing suppression activity to facilitate virus infection in wheat plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1717-1736. [PMID: 37751381 DOI: 10.1111/tpj.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.
Collapse
Affiliation(s)
- Dao Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hui-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shu-Ming Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meng-Yuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Zong-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Li-Ying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Zhang K, Gu T, Xu X, Gan H, Qin L, Feng C, He Z. Sugarcane streak mosaic virus P1 protein inhibits unfolded protein response through direct suppression of bZIP60U splicing. PLoS Pathog 2023; 19:e1011738. [PMID: 37883577 PMCID: PMC10697598 DOI: 10.1371/journal.ppat.1011738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/05/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
The unfolded protein response (UPR) is a cell-designated strategy that maintains the balance of protein folding in the endoplasmic reticulum (ER). UPR features a network of signal transduction pathways that reprogram the transcription, mRNA translation, and protein post-translational modification to relieve the ER stresses from unfolded/misfolded proteins. Infection with plant viruses can induce the UPR, and activated UPR often promotes plant viral infections in turn. However, the mechanism used by plant viruses to balance UPR and achieve robust infection remain largely unknown. In this study, P1SCSMV was identified as a virus-encoded RNA silencing suppressor (VSR). Heterologous overexpression of P1SCSMV via potato virus X (PVX) was found lead to programmed cell death (PCD) in Nicotiana benthamiana. Furthermore, P1SCSMV was also found to inhibit the PVX infection-triggered UPR by downregulating UPR-related genes and directly induced the distortion and collapse of the ER polygonal meshes on PVX-P1SCSMV infected N. benthamiana. Moreover, self-interaction, VSR activity, UPR inhibition, and cell death phenotype of P1SCSMV were also found to be dependent on its bipartite nuclear localization signal (NLS) (251RKRKLFPRIPLK262). P1SCSMV was found to directly bind to the stem-loop region of NbbZIP60U via its NLS and inhibit the UPR pathways, ultimately resulting in a PCD phenotype in PVX-P1SCSMV infected N. benthamiana leaves. This study also revealed the balancing role of potyviruses encoded P1SCSMV in the UPR pathway to achieve robust viral infection. This may represent a novel virulence strategy for plant viruses.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - Tianxiao Gu
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Xiaowei Xu
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Haifeng Gan
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Lang Qin
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Chenwei Feng
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Zhen He
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
14
|
Wu Q, Cui Y, Jin X, Wang G, Yan L, Zhong C, Yu M, Li W, Wang Y, Wang L, Wang H, Dang C, Zhang X, Chen Y, Zhang P, Zhao X, Wu J, Fu D, Xia L, Nevo E, Vogel J, Huo N, Li D, Gu YQ, Jackson AO, Zhang Y, Liu Z. The CC-NB-LRR protein BSR1 from Brachypodium confers resistance to Barley stripe mosaic virus in gramineous plants by recognising TGB1 movement protein. THE NEW PHYTOLOGIST 2022; 236:2233-2248. [PMID: 36059081 DOI: 10.1111/nph.18457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Although some nucleotide binding, leucine-rich repeat immune receptor (NLR) proteins conferring resistance to specific viruses have been identified in dicot plants, NLR proteins involved in viral resistance have not been described in monocots. We have used map-based cloning to isolate the CC-NB-LRR (CNL) Barley stripe mosaic virus (BSMV) resistance gene barley stripe resistance 1 (BSR1) from Brachypodium distachyon Bd3-1 inbred line. Stable BSR1 transgenic Brachypodium line Bd21-3, barley (Golden Promise) and wheat (Kenong 199) plants developed resistance against BSMV ND18 strain. Allelic variation analyses indicated that BSR1 is present in several Brachypodium accessions collected from countries in the Middle East. Protein domain swaps revealed that the intact LRR domain and the C-terminus of BSR1 are required for resistance. BSR1 interacts with the BSMV ND18 TGB1 protein in planta and shows temperature-sensitive antiviral resistance. The R390 and T392 residues of TGB1ND (ND18 strain) and the G196 and K197 residues within the BSR1 P-loop motif are key amino acids required for immune activation. BSR1 is the first cloned virus resistance gene encoding a typical CNL protein in monocots, highlighting the utility of the Brachypodium model for isolation and analysis of agronomically important genes for crop improvement.
Collapse
Affiliation(s)
- Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Guoxin Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lijie Yan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meihua Yu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hao Wang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chen Dang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhao
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiajie Wu
- College of Agronomy, Shandong Agriculture University, Taian, 271018, China
| | - Daolin Fu
- College of Agronomy, Shandong Agriculture University, Taian, 271018, China
| | - Lanqin Xia
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Eviatar Nevo
- Institute of Evolution, Haifa University, Haifa, 31905, Israel
| | - John Vogel
- Joint Genome Institute, DOE, Walnut Creek, CA, 94598, USA
| | - Naxin Huo
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Q Gu
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | - Andrew O Jackson
- Department of Plant and Microbiology, University of California, Berkeley, CA, 94720, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Solovyev AG, Atabekova AK, Lezzhov AA, Solovieva AD, Chergintsev DA, Morozov SY. Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:2403. [PMID: 36145804 PMCID: PMC9504206 DOI: 10.3390/plants11182403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Plant viruses exploit the endomembrane system of infected cells for their replication and cell-to-cell transport. The replication of viral RNA genomes occurs in the cytoplasm in association with reorganized endomembrane compartments induced by virus-encoded proteins and is coupled with the virus intercellular transport via plasmodesmata that connect neighboring cells in plant tissues. The transport of virus genomes to and through plasmodesmata requires virus-encoded movement proteins (MPs). Distantly related plant viruses encode different MP sets, or virus transport systems, which vary in the number of MPs and their properties, suggesting their functional differences. Here, we discuss two distinct virus transport pathways based on either the modification of the endoplasmic reticulum tubules or the formation of motile vesicles detached from the endoplasmic reticulum and targeted to endosomes. The viruses with the movement proteins encoded by the triple gene block exemplify the first, and the potyviral system is the example of the second type. These transport systems use unrelated mechanisms of endomembrane reorganization. We emphasize that the mode of virus interaction with cell endomembranes determines the mechanism of plant virus cell-to-cell transport.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Anastasia K. Atabekova
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A. Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
16
|
Yue N, Jiang Z, Zhang X, Li Z, Wang X, Wen Z, Gao Z, Pi Q, Zhang Y, Wang X, Han C, Yu J, Li D. Palmitoylation of γb protein directs a dynamic switch between Barley stripe mosaic virus replication and movement. EMBO J 2022; 41:e110060. [PMID: 35642376 PMCID: PMC9251889 DOI: 10.15252/embj.2021110060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Viral replication and movement are intimately linked; however, the molecular mechanisms regulating the transition between replication and subsequent movement remain largely unknown. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein promotes viral replication and movement by interacting with the αa replicase and TGB1 movement proteins. Here, we found that γb is palmitoylated at Cys-10, Cys-19, and Cys-60 in Nicotiana benthamiana, which supports BSMV infection. Intriguingly, non-palmitoylated γb is anchored to chloroplast replication sites and enhances BSMV replication, whereas palmitoylated γb protein recruits TGB1 to the chloroplasts and forms viral replication-movement intermediate complexes. At the late stages of replication, γb interacts with NbPAT15 and NbPAT21 and is palmitoylated at the chloroplast periphery, thereby shifting viral replication to intracellular and intercellular movement. We also show that palmitoylated γb promotes virus cell-to-cell movement by interacting with NbREM1 to inhibit callose deposition at the plasmodesmata. Altogether, our experiments reveal a model whereby palmitoylation of γb directs a dynamic switch between BSMV replication and movement events during infection.
Collapse
Affiliation(s)
- Ning Yue
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhihao Jiang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xuan Zhang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhenggang Li
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xueting Wang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhiyan Wen
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zongyu Gao
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qinglin Pi
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xian‐Bing Wang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Chenggui Han
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
17
|
Jiang Z, Jin X, Yang M, Pi Q, Cao Q, Li Z, Zhang Y, Wang XB, Han C, Yu J, Li D. Barley stripe mosaic virus γb protein targets thioredoxin h-type 1 to dampen salicylic acid-mediated defenses. PLANT PHYSIOLOGY 2022; 189:1715-1727. [PMID: 35325212 PMCID: PMC9237698 DOI: 10.1093/plphys/kiac137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/27/2022] [Indexed: 05/14/2023]
Abstract
Salicylic acid (SA) acts as a signaling molecule to perceive and defend against pathogen infections. Accordingly, pathogens evolve versatile strategies to disrupt the SA-mediated signal transduction, and how plant viruses manipulate the SA-dependent defense responses requires further characterization. Here, we show that barley stripe mosaic virus (BSMV) infection activates the SA-mediated defense signaling pathway and upregulates the expression of Nicotiana benthamiana thioredoxin h-type 1 (NbTRXh1). The γb protein interacts directly with NbTRXh1 in vivo and in vitro. The overexpression of NbTRXh1, but not a reductase-defective mutant, impedes BSMV infection, whereas low NbTRXh1 expression level results in increased viral accumulation. Similar with its orthologs in Arabidopsis (Arabidopsis thaliana), NbTRXh1 also plays an essential role in SA signaling transduction in N. benthamiana. To counteract NbTRXh1-mediated defenses, the BSMV γb protein targets NbTRXh1 to dampen its reductase activity, thereby impairing downstream SA defense gene expression to optimize viral cell-to-cell movement. We also found that NbTRXh1-mediated resistance defends against lychnis ringspot virus, beet black scorch virus, and beet necrotic yellow vein virus. Taken together, our results reveal a role for the multifunctional γb protein in counteracting plant defense responses and an expanded broad-spectrum antibiotic role of the SA signaling pathway.
Collapse
Affiliation(s)
- Zhihao Jiang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Meng Yang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qinglin Pi
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qing Cao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhenggang Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
18
|
Wang P. Battle for survival: the role of plant thioredoxin in the war against Barley stripe mosaic virus. PLANT PHYSIOLOGY 2022; 189:1199-1201. [PMID: 35417023 PMCID: PMC9237665 DOI: 10.1093/plphys/kiac169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
|
19
|
Bwalya J, Alazem M, Kim K. Photosynthesis-related genes induce resistance against soybean mosaic virus: Evidence for involvement of the RNA silencing pathway. MOLECULAR PLANT PATHOLOGY 2022; 23:543-560. [PMID: 34962034 PMCID: PMC8916206 DOI: 10.1111/mpp.13177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 05/17/2023]
Abstract
Increasing lines of evidence indicate that chloroplast-related genes are involved in plant-virus interactions. However, the involvement of photosynthesis-related genes in plant immunity is largely unexplored. Analysis of RNA-Seq data from the soybean cultivar L29, which carries the Rsv3 resistance gene, showed that several chloroplast-related genes were strongly induced in response to infection with an avirulent strain of soybean mosaic virus (SMV), G5H, but were weakly induced in response to a virulent strain, G7H. For further analysis, we selected the PSaC gene from the photosystem I and the ATP-synthase α-subunit (ATPsyn-α) gene whose encoded protein is part of the ATP-synthase complex. Overexpression of either gene within the G7H genome reduced virus levels in the susceptible cultivar Lee74 (rsv3-null). This result was confirmed by transiently expressing both genes in Nicotiana benthamiana followed by G7H infection. Both proteins localized in the chloroplast envelope as well as in the nucleus and cytoplasm. Because the chloroplast is the initial biosynthesis site of defence-related hormones, we determined whether hormone-related genes are involved in the ATPsyn-α- and PSaC-mediated defence. Interestingly, genes involved in the biosynthesis of several hormones were up-regulated in plants infected with SMV-G7H expressing ATPsyn-α. However, only jasmonic and salicylic acid biosynthesis genes were up-regulated following infection with the SMV-G7H expressing PSaC. Both chimeras induced the expression of several antiviral RNA silencing genes, which indicate that such resistance may be partially achieved through the RNA silencing pathway. These findings highlight the role of photosynthesis-related genes in regulating resistance to viruses.
Collapse
Affiliation(s)
- John Bwalya
- Department of Agriculture BiotechnologyCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Mazen Alazem
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Kook‐Hyung Kim
- Department of Agriculture BiotechnologyCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulRepublic of Korea
- Research of Institute Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
20
|
Li Z, Yang X, Li W, Wen Z, Duan J, Jiang Z, Zhang D, Xie X, Wang X, Li F, Li D, Zhang Y. SAMDC3 enhances resistance to Barley stripe mosaic virus by promoting the ubiquitination and proteasomal degradation of viral γb protein. THE NEW PHYTOLOGIST 2022; 234:618-633. [PMID: 35075654 DOI: 10.1111/nph.17993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Posttranslational modifications (PTMs) play important roles in virus-host interplay. We previously demonstrated that Barley stripe mosaic virus (BSMV) γb protein is phosphorylated by different host kinases to support or impede viral infection. However, whether and how other types of PTMs participate in BSMV infection remains to be explored. Here, we report that S-adenosylmethionine decarboxylase 3 (SAMDC3) from Nicotiana benthamiana or wheat (Triticum aestivum) interacts with γb. BSMV infection induced SAMDC3 expression. Overexpression of SAMDC3 led to the destabilization of γb and reduction in viral infectivity, whereas knocking out NbSAMDC3 increased susceptibility to BSMV. NbSAMDC3 positively regulated the 26S proteasome-mediated degradation of γb via its PEST domain. Further mechanistic studies revealed that γb can be ubiquitinated in planta and that NbSAMDC3 promotes the proteasomal degradation of γb by increasing γb ubiquitination. We also found evidence that ubiquitination occurs at nonlysine residues (Ser-133 and Cys-144) within γb. Together, our results provide a function for SAMDC3 in defence against BSMV infection through targeting of γb abundance, which contributes to our understanding of how a plant host deploys the ubiquitin-proteasome system to mount defences against viral infections.
Collapse
Affiliation(s)
- Zhaolei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinxin Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhiyan Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiangning Duan
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhihao Jiang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dingliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xialin Xie
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueting Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
21
|
Li J, Feng H, Liu S, Liu P, Chen X, Yang J, He L, Yang J, Chen J. Phosphorylated viral protein evades plant immunity through interfering the function of RNA-binding protein. PLoS Pathog 2022; 18:e1010412. [PMID: 35294497 PMCID: PMC8959173 DOI: 10.1371/journal.ppat.1010412] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/28/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Successful pathogen infection in plant depends on a proper interaction between the invading pathogen and its host. Post-translational modification (PTM) plays critical role(s) in plant-pathogen interaction. However, how PTM of viral protein regulates plant immunity remains poorly understood. Here, we found that S162 and S165 of Chinese wheat mosaic virus (CWMV) cysteine-rich protein (CRP) are phosphorylated by SAPK7 and play key roles in CWMV infection. Furthermore, the phosphorylation-mimic mutant of CRP (CRPS162/165D) but not the non-phosphorylatable mutant of CRP (CRPS162/165A) interacts with RNA-binding protein UBP1-associated protein 2C (TaUBA2C). Silencing of TaUBA2C expression in wheat plants enhanced CWMV infection. In contrast, overexpression of TaUBA2C in wheat plants inhibited CWMV infection. TaUBA2C inhibits CWMV infection through recruiting the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to induce cell death and H2O2 production. This effect can be supressed by CRPS162/165D through changing TaUBA2C chromatin-bound status and attenuating it’s the RNA- or DNA-binding activities. Taken together, our findings provide new knowledge on how CRP phosphorylation affects CWMV infection as well as the arms race between virus and wheat plants. Chinese wheat mosaic virus (CWMV) causes a damaging disease in cereal plants. However, CWMV interacts with host factors to facilitate virus infection is not clear yet. Here, we found that S162 and S165 of CWMV cysteine-rich protein (CRP) are phosphorylated by SAPK7 in vivo and in vitro. Mutational analyses have indicated that these two phosphorylation sites of CRP (CRPS162/165D) promoting CWMV infection in plants, due to the supressed cell death and H2O2 production. Further investigations found the CRPS162/165D can interact with TaUBA2C, while the non-phosphorylatable mutant of CRP (CRPS162/165A) does not. Futhermore, we have determined that CRPS162/165D and TaUBA2C interaction inhibited the formation of TaUBA2C speckles in nucleus to attenuate its RNA- and DNA-binding activity. We also showed that TaUBA2C recruit the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to up-regulated these genes expressions and then induce cell death and H2O2 production in plant. This effect can be supressed by the expression of CRPS162/165D, in a dose-dependent manner. Taken together, our discovery may provide a new sight for the arms race between virus and its host plants.
Collapse
Affiliation(s)
- Juan Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Huimin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shuang Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jin Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Long He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JY); (JC)
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JY); (JC)
| |
Collapse
|
22
|
Takata S, Mise K, Takano Y, Kaido M. Subcellular dynamics of red clover necrotic mosaic virus double-stranded RNAs in infected plant cells. Virology 2022; 568:126-139. [DOI: 10.1016/j.virol.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/23/2022] [Accepted: 01/29/2022] [Indexed: 11/29/2022]
|
23
|
Wang X, Jiang Z, Yue N, Jin X, Zhang X, Li Z, Zhang Y, Wang X, Han C, Yu J, Li D. Barley stripe mosaic virus γb protein disrupts chloroplast antioxidant defenses to optimize viral replication. EMBO J 2021; 40:e107660. [PMID: 34254679 PMCID: PMC8365260 DOI: 10.15252/embj.2021107660] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/21/2023] Open
Abstract
The plant antioxidant system plays important roles in response to diverse abiotic and biotic stresses. However, the effects of virus infection on host redox homeostasis and how antioxidant defense pathway is manipulated by viruses remain poorly understood. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein is recruited to the chloroplast by the viral αa replicase to enhance viral replication. Here, we show that BSMV infection induces chloroplast oxidative stress. The versatile γb protein interacts directly with NADPH-dependent thioredoxin reductase C (NTRC), a core component of chloroplast antioxidant systems. Overexpression of NbNTRC significantly impairs BSMV replication in Nicotiana benthamiana plants, whereas disruption of NbNTRC expression leads to increased viral accumulation and infection severity. To counter NTRC-mediated defenses, BSMV employs the γb protein to competitively interfere with NbNTRC binding to 2-Cys Prx. Altogether, this study indicates that beyond acting as a helicase enhancer, γb also subverts NTRC-mediated chloroplast antioxidant defenses to create an oxidative microenvironment conducive to viral replication.
Collapse
Affiliation(s)
- Xueting Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhihao Jiang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ning Yue
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xuejiao Jin
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xuan Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhaolei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xian‐Bing Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Chenggui Han
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
24
|
Zhang X, Wang X, Xu K, Jiang Z, Dong K, Xie X, Zhang H, Yue N, Zhang Y, Wang XB, Han C, Yu J, Li D. The serine/threonine/tyrosine kinase STY46 defends against hordeivirus infection by phosphorylating γb protein. PLANT PHYSIOLOGY 2021; 186:715-730. [PMID: 33576790 PMCID: PMC8154058 DOI: 10.1093/plphys/kiab056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
Protein phosphorylation is a common post-translational modification that frequently occurs during plant-virus interaction. Host protein kinases often regulate virus infectivity and pathogenicity by phosphorylating viral proteins. The Barley stripe mosaic virus (BSMV) γb protein plays versatile roles in virus infection and the coevolutionary arms race between plant defense and viral counter-defense. Here, we identified that the autophosphorylated cytosolic serine/threonine/tyrosine (STY) protein kinase 46 of Nicotiana benthamiana (NbSTY46) phosphorylates and directly interacts with the basic motif domain (aa 19-47) of γb in vitro and in vivo. Overexpression of wild-type NbSTY46, either transiently or transgenically, suppresses BSMV replication and ameliorates viral symptoms, whereas silencing of NbSTY46 leads to increased viral replication and exacerbated symptom. Moreover, the antiviral role of NbSTY46 requires its kinase activity, as the NbSTY46T436A mutant, lacking kinase activity, not only loses the ability to phosphorylate and interact with γb but also fails to impair BSMV infection when expressed in plants. NbSTY46 could also inhibit the replication of Lychnis ringspot virus, another chloroplast-replicating hordeivirus. In summary, we report a function of the cytosolic kinase STY46 in defending against plant viral infection by phosphorylating a viral protein in addition to its basal function in plant growth, development, and abiotic stress responses.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueting Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Zhihao Jiang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Dong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xialin Xie
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - He Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ning Yue
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Bagayoko I, Celli MG, Romay G, Poulicard N, Pinel-Galzi A, Julian C, Filloux D, Roumagnac P, Sérémé D, Bragard C, Hébrard E. Genetic Diversity of Rice stripe necrosis virus and New Insights into Evolution of the Genus Benyvirus. Viruses 2021; 13:v13050737. [PMID: 33922593 PMCID: PMC8145960 DOI: 10.3390/v13050737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023] Open
Abstract
The rice stripe necrosis virus (RSNV) has been reported to infect rice in several countries in Africa and South America, but limited genomic data are currently publicly available. Here, eleven RSNV genomes were entirely sequenced, including the first corpus of RSNV genomes of African isolates. The genetic variability was differently distributed along the two genomic segments. The segment RNA1, within which clusters of polymorphisms were identified, showed a higher nucleotidic variability than did the beet necrotic yellow vein virus (BNYVV) RNA1 segment. The diversity patterns of both viruses were similar in the RNA2 segment, except for an in-frame insertion of 243 nucleotides located in the RSNV tgbp1 gene. Recombination events were detected into RNA1 and RNA2 segments, in particular in the two most divergent RSNV isolates from Colombia and Sierra Leone. In contrast to BNYVV, the RSNV molecular diversity had a geographical structure with two main RSNV lineages distributed in America and in Africa. Our data on the genetic diversity of RSNV revealed unexpected differences with BNYVV suggesting a complex evolutionary history of the genus Benyvirus.
Collapse
Affiliation(s)
- Issiaka Bagayoko
- Earth and Life Institute, Applied Microbiology-Phytopathology, Université Catholique de Louvain (UCLouvain), Croix du Sud 2 Bte L07.05.03, 1348 Louvain-la-Neuve, Belgium; (I.B.); (G.R.); (C.B.)
| | - Marcos Giovanni Celli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina;
- Instituto de Patología Vegetal (IPAVE, CIAP, INTA), Camino 60 cuadras Km 5, Cordoba 5119, Argentina
| | - Gustavo Romay
- Earth and Life Institute, Applied Microbiology-Phytopathology, Université Catholique de Louvain (UCLouvain), Croix du Sud 2 Bte L07.05.03, 1348 Louvain-la-Neuve, Belgium; (I.B.); (G.R.); (C.B.)
| | - Nils Poulicard
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
| | - Agnès Pinel-Galzi
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
| | - Charlotte Julian
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
- CIRAD, UMR PHIM, Campus International de Montferrier-Baillarguet, 34398 Montpellier, France
| | - Denis Filloux
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
- CIRAD, UMR PHIM, Campus International de Montferrier-Baillarguet, 34398 Montpellier, France
| | - Philippe Roumagnac
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
- CIRAD, UMR PHIM, Campus International de Montferrier-Baillarguet, 34398 Montpellier, France
| | - Drissa Sérémé
- Laboratoire de Laboratoire de Virologie et de Biotechnologies Végétales, INERA—Institut de l’Environnement et de Recherches Agricoles, LMI Patho-Bios, Ouagadougou 01 BP 476, Burkina Faso;
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology-Phytopathology, Université Catholique de Louvain (UCLouvain), Croix du Sud 2 Bte L07.05.03, 1348 Louvain-la-Neuve, Belgium; (I.B.); (G.R.); (C.B.)
| | - Eugénie Hébrard
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
- Correspondence:
| |
Collapse
|
26
|
Wang X, Ma J, Jin X, Yue N, Gao P, Mai KKK, Wang XB, Li D, Kang BH, Zhang Y. Three-dimensional reconstruction and comparison of vacuolar membranes in response to viral infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:353-364. [PMID: 33085164 DOI: 10.1111/jipb.13027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The vacuole is a unique plant organelle that plays an important role in maintaining cellular homeostasis under various environmental stress conditions. However, the effects of biotic stress on vacuole structure has not been examined using three-dimensional (3D) visualization. Here, we performed 3D electron tomography to compare the ultrastructural changes in the vacuole during infection with different viruses. The 3D models revealed that vacuoles are remodeled in cells infected with cucumber mosaic virus (CMV) or tobacco necrosis virus A Chinese isolate (TNV-AC ), resulting in the formation of spherules at the periphery of the vacuole. These spherules contain neck-like channels that connect their interior with the cytosol. Confocal microscopy of CMV replication proteins 1a and 2a and TNV-AC auxiliary replication protein p23 showed that all of these proteins localize to the tonoplast. Electron microscopy revealed that the expression of these replication proteins alone is sufficient to induce spherule formation on the tonoplast, suggesting that these proteins play prominent roles in inducing vacuolar membrane remodeling. This is the first report of the 3D structures of viral replication factories built on the tonoplasts. These findings contribute to our understanding of vacuole biogenesis under normal conditions and during assembly of plant (+) RNA virus replication complexes.
Collapse
Affiliation(s)
- Xueting Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Juncai Ma
- State Key Laboratory of Agro-Biotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xuejiao Jin
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ning Yue
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Gao
- State Key Laboratory of Agro-Biotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Keith Ka Ki Mai
- State Key Laboratory of Agro-Biotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Byung-Ho Kang
- State Key Laboratory of Agro-Biotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
27
|
Iswanto ABB, Shelake RM, Vu MH, Kim JY, Kim SH. Genome Editing for Plasmodesmal Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:679140. [PMID: 34149780 PMCID: PMC8207191 DOI: 10.3389/fpls.2021.679140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
Plasmodesmata (PD) are cytoplasmic canals that facilitate intercellular communication and molecular exchange between adjacent plant cells. PD-associated proteins are considered as one of the foremost factors in regulating PD function that is critical for plant development and stress responses. Although its potential to be used for crop engineering is enormous, our understanding of PD biology was relatively limited to model plants, demanding further studies in crop systems. Recently developed genome editing techniques such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associate protein (CRISPR/Cas) might confer powerful approaches to dissect the molecular function of PD components and to engineer elite crops. Here, we assess several aspects of PD functioning to underline and highlight the potential applications of CRISPR/Cas that provide new insight into PD biology and crop improvement.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Minh Huy Vu
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jae-Yean Kim
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
- Jae-Yean Kim,
| | - Sang Hee Kim
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Sang Hee Kim,
| |
Collapse
|
28
|
Wu X, Cheng X. Intercellular movement of plant RNA viruses: Targeting replication complexes to the plasmodesma for both accuracy and efficiency. Traffic 2020; 21:725-736. [PMID: 33090653 DOI: 10.1111/tra.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Replication and movement are two critical steps in plant virus infection. Recent advances in the understanding of the architecture and subcellular localization of virus-induced inclusions and the interactions between viral replication complex (VRC) and movement proteins (MPs) allow for the dissection of the intrinsic relationship between replication and movement, which has revealed that recruitment of VRCs to the plasmodesma (PD) via direct or indirect MP-VRC interactions is a common strategy used for cell-to-cell movement by most plant RNA viruses. In this review, we summarize the recent advances in the understanding of virus-induced inclusions and their roles in virus replication and cell-to-cell movement, analyze the advantages of such coreplicational movement from a viral point of view and discuss the possible mechanical force by which MPs drive the movement of virions or viral RNAs through the PD. Finally, we highlight the missing pieces of the puzzle of viral movement that are especially worth investigating in the near future.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|