1
|
Li X, Li T, Liu S, Zhao Y, Chen Y, Abudureyimu A, Zhang S, Ge L, Yang Q, Meng Y, Liu J, Musha J, Zhan J. Scar-associated macrophages and biliary epithelial cells interaction exacerbates hepatic fibrosis in biliary atresia. Pediatr Res 2025:10.1038/s41390-025-04100-2. [PMID: 40383871 DOI: 10.1038/s41390-025-04100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/21/2025] [Accepted: 03/25/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Biliary atresia (BA) is a severe pediatric biliary disorder characterized by the progressive obstruction of liver bile ducts. In the absence of treatment, fibrosis advances rapidly in most affected children. Despite the identification of various factors contributing to fibrosis progression, comprehensive investigations into the microenvironmental alterations within the liver are still scarce. METHODS Single-cell RNA sequencing (scRNA-seq) was conducted on two normal tissues adjacent to liver tumors, two choledochal cyst liver tissues, and four BA liver tissues. This analysis, combined with spatial localization data, elucidated the heterogeneity of the livers affected by BA. Ultimately, a diagnostic model for BA was developed, leveraging high-resolution fibrosis-related gene signatures. RESULTS We identified scar-associated macrophages (SAMs) originating from monocytes, which played a pivotal role in fibrosis progression and may be implicated in the epithelial-mesenchymal transition (EMT) of biliary epithelial cells (BECs). Furthermore, the hub genes CD96, EVL, S100A6, and S100A11 were found to be upregulated in SAMs and regulatory T cells (Tregs), aiding in the diagnosis of BA. CONCLUSION SAMs and BECs not only exhibited a pro-fibrotic phenotype but also co-localized within fibrotic regions. Their interaction may facilitate the activation of EMT, highlighting a potential therapeutic target for BA treatment. IMPACT Analysis of the immune landscape: Through single-cell and spatial transcriptomic techniques, the paper reveals the complex immune landscape associated with BA fibrosis. Exploration of new therapeutic targets: This paper reveals that SAMs can promote the progression of liver fibrosis by regulating the EMT conversion of BECs, opening up a new therapeutic approach. Application of diagnostic markers: The paper identifies biomarkers that may improve early diagnostic accuracy and postoperative prognosis and recommends their incorporation into clinical practice.
Collapse
Affiliation(s)
- Xin Li
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Urumqi Children's Hospital, Xinjiang, China
| | - Tengfei Li
- Graduate School, Tianjin Medical University, Tianjin, China
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Shaowen Liu
- Graduate School, Tianjin Medical University, Tianjin, China
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Yilin Zhao
- Graduate School, Tianjin Medical University, Tianjin, China
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Yuqiang Chen
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Urumqi Children's Hospital, Xinjiang, China
| | | | - Shujian Zhang
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Liang Ge
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Qianhui Yang
- Graduate School, Tianjin Medical University, Tianjin, China
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Yu Meng
- Graduate School, Tianjin Medical University, Tianjin, China
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Jiaying Liu
- Graduate School, Tianjin Medical University, Tianjin, China
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Jiayinaxi Musha
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Urumqi Children's Hospital, Xinjiang, China
| | - Jianghua Zhan
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China.
| |
Collapse
|
2
|
Heym S, Krebs P, Ott K, Donhauser N, Kemeter LM, Simon F, Millen S, Thoma-Kress AK. A Novel Tax-Responsive Reporter T-Cell Line to Analyze Infection of HTLV-1. Pathogens 2024; 13:1015. [PMID: 39599568 PMCID: PMC11597676 DOI: 10.3390/pathogens13111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infects CD4+ T-cells through close cell-cell contacts. The viral Tax-1 (Tax) protein regulates transcription by transactivating the HTLV-1 U3R promoter in the 5' long terminal repeat of the integrated provirus. Here, we generated a clonal Tax-responsive T-cell line to track HTLV-1 infection at the single-cell level using flow cytometry, bypassing intracellular viral protein staining. Jurkat T-cells stably transduced with the SMPU vector carrying green fluorescent protein (GFP) under control of 18 × 21 bp Tax-responsive element repeats of the U3R were evaluated. Among 40 clones analyzed for Tax responsiveness, the top two were characterized. Upon overexpression of Tax, over 40% of the cells showed GFP positivity, and approximately 90% of the Tax-positive cells were GFP-positive, indicating efficient reporter activity. However, with CREB-deficient Tax mutant M47, both total GFP-positive cell counts and those within the Tax-positive group significantly decreased. Co-culture with chronically HTLV-1-infected MT-2 or C91-PL cells led to an average of 0.9% or 2.4% GFP-positive cells, respectively, confirming the suitability to monitor HTLV-1 transmission and that HTLV-1 infection is very low. Thus, the novel Tax-responsive reporter T-cell line is a suitable tool to monitor infection of HTLV-1 on the single-cell level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (K.O.); (N.D.); (L.M.K.); (F.S.)
| |
Collapse
|
3
|
Domingues W, Folgosi VÂ, Sanabani SS, Leite Junior PD, Assone T, Casseb J. Novel approaches for HTLV-1 therapy: innovative applications of CRISPR-Cas9. Rev Inst Med Trop Sao Paulo 2024; 66:e48. [PMID: 39194140 DOI: 10.1590/s1678-9946202466048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 08/29/2024] Open
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) is a single-stranded positive-sense RNA virus that belongs to the Retroviridae family, genus Deltaretro, and infects approximately five to 10 million people worldwide. Although a significant number of individuals living with HTLV-1 remain asymptomatic throughout their lives, some develop one or more severe clinical conditions, such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a progressive and debilitating disease, and/or a subtype of non-Hodgkin's lymphoma with a more threatening course known as adult T-cell leukemia/lymphoma (ATLL). Moreover, current therapeutic options are limited and focus primarily on treating symptoms and controlling viral latency. CRISPR-Cas9 gene editing is proposed as a promising tool to address the intricate links associated with HTLV-1. By targeting or silencing key genes during initial infection and dysregulating immune signaling pathways, CRISPR-Cas9 offers potential intervention opportunities. In this review, we address the therapeutic potential of CRISPR-Cas9 gene editing, as well as examine the primary mechanisms involved in editing potential target genes and discuss the existing evidence in the current scientific literature.
Collapse
Affiliation(s)
- Wilson Domingues
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Victor Ângelo Folgosi
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Sabri Saeed Sanabani
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Pedro Domingos Leite Junior
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Tatiane Assone
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| | - Jorge Casseb
- Universidade de São Paulo, Faculdade de Medicina, Divisão de Dermatologia, Laboratório de Investigação Médica LIM-56, São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Simon F, Thoma-Kress AK. Intercellular Transport of Viral Proteins. Results Probl Cell Differ 2024; 73:435-474. [PMID: 39242389 DOI: 10.1007/978-3-031-62036-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Viruses are vehicles to exchange genetic information and proteins between cells and organisms by infecting their target cells either cell-free, or depending on cell-cell contacts. Several viruses like certain retroviruses or herpesviruses transmit by both mechanisms. However, viruses have also evolved the properties to exchange proteins between cells independent of viral particle formation. This exchange of viral proteins can be directed to target cells prior to infection to interfere with restriction factors and intrinsic immunity, thus, making the target cell prone to infection. However, also bystander cells, e.g. immune cell populations, can be targeted by viral proteins to dampen antiviral responses. Mechanistically, viruses exploit several routes of cell-cell communication to exchange viral proteins like the formation of extracellular vesicles or the formation of long-distance connections like tunneling nanotubes. Although it is known that viral nucleic acids can be transferred between cells as well, this chapter concentrates on viral proteins of human pathogenic viruses covering all Baltimore classes and summarizes our current knowledge on intercellular transport of viral proteins between cells.
Collapse
Affiliation(s)
- Florian Simon
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
5
|
Silva De Castro I, Granato A, Mariante RM, Lima MA, Leite ACC, Espindola ODM, Pise-Masison CA, Franchini G, Linden R, Echevarria-Lima J. HTLV-1 p12 modulates the levels of prion protein (PrP C) in CD4 + T cells. Front Microbiol 2023; 14:1175679. [PMID: 37637115 PMCID: PMC10449582 DOI: 10.3389/fmicb.2023.1175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Infection with human T cell lymphotropic virus type 1 (HTLV-1) is endemic in Brazil and is linked with pro-inflammatory conditions including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic neuroinflammatory incapacitating disease that culminates in loss of motor functions. The mechanisms underlying the onset and progression of HAM/TSP are incompletely understood. Previous studies have demonstrated that inflammation and infectious agents can affect the expression of cellular prion protein (PrPC) in immune cells. Methods Here, we investigated whether HTLV-1 infection affected PrPC content in cell lines and primary CD4+cells in vitro using flow cytometry and western blot assays. Results We found that HTLV-1 infection decreased the expression levels of PrPC and HTLV-1 Orf I encoded p12, an endoplasmic reticulum resident protein also known to affect post-transcriptionally cellular proteins such as MHC-class I and the IL-2 receptor. In addition, we observed a reduced percentage of CD4+ T cells from infected individuals expressing PrPC, which was reflected by IFN type II but not IL-17 expression. Discussion These results suggested that PrPC downregulation, linked to both HTLV-1 p12 and IFN-γ expression in CD4+ cells, may play a role in the neuropathogenesis of HTLV-1 infection.
Collapse
Affiliation(s)
- Isabela Silva De Castro
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Alessandra Granato
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Rafael Meyer Mariante
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marco Antonio Lima
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Claudia Celestino Leite
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Otávio de Melo Espindola
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Rafael Linden
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Ahmadi Ghezeldasht S, Blackbourn DJ, Mosavat A, Rezaee SA. Pathogenicity and virulence of human T lymphotropic virus type-1 (HTLV-1) in oncogenesis: adult T-cell leukemia/lymphoma (ATLL). Crit Rev Clin Lab Sci 2023; 60:189-211. [PMID: 36593730 DOI: 10.1080/10408363.2022.2157791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy of CD4+ T lymphocytes caused by human T lymphotropic virus type-1 (HTLV-1) infection. HTLV-1 was brought to the World Health Organization (WHO) and researchers to address its impact on global public health, oncogenicity, and deterioration of the host immune system toward autoimmunity. In a minority of the infected population (3-5%), it can induce inflammatory networks toward HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), or hijacking the infected CD4+ T lymphocytes into T regulatory subpopulation, stimulating anti-inflammatory signaling networks, and prompting ATLL development. This review critically discusses the complex signaling networks in ATLL pathogenesis during virus-host interactions for better interpretation of oncogenicity and introduces the main candidates in the pathogenesis of ATLL. At least two viral factors, HTLV-1 trans-activator protein (TAX) and HTLV-1 basic leucine zipper factor (HBZ), are implicated in ATLL manifestation, interacting with host responses and deregulating cell signaling in favor of infected cell survival and virus dissemination. Such molecules can be used as potential novel biomarkers for ATLL prognosis or targets for therapy. Moreover, the challenging aspects of HTLV-1 oncogenesis introduced in this review could open new venues for further studies on acute leukemia pathogenesis. These features can aid in the discovery of effective immunotherapies when reversing the gene expression profile toward appropriate immune responses gradually becomes attainable.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran.,Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Pise-Masison CA, Franchini G. Hijacking Host Immunity by the Human T-Cell Leukemia Virus Type-1: Implications for Therapeutic and Preventive Vaccines. Viruses 2022; 14:2084. [PMID: 36298639 PMCID: PMC9609126 DOI: 10.3390/v14102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2024] Open
Abstract
Human T-cell Leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other inflammatory diseases. High viral DNA burden (VL) in peripheral blood mononuclear cells is a documented risk factor for ATLL and HAM/TSP, and patients with HAM/TSP have a higher VL in cerebrospinal fluid than in peripheral blood. VL alone is not sufficient to differentiate symptomatic patients from healthy carriers, suggesting the importance of other factors, including host immune response. HTLV-1 infection is life-long; CD4+-infected cells are not eradicated by the immune response because HTLV-1 inhibits the function of dendritic cells, monocytes, Natural Killer cells, and adaptive cytotoxic CD8+ responses. Although the majority of infected CD4+ T-cells adopt a resting phenotype, antigen stimulation may result in bursts of viral expression. The antigen-dependent "on-off" viral expression creates "conditional latency" that when combined with ineffective host responses precludes virus eradication. Epidemiological and clinical data suggest that the continuous attempt of the host immunity to eliminate infected cells results in chronic immune activation that can be further exacerbated by co-morbidities, resulting in the development of severe disease. We review cell and animal model studies that uncovered mechanisms used by HTLV-1 to usurp and/or counteract host immunity.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
8
|
Couteaudier M, Montange T, Njouom R, Bilounga-Ndongo C, Gessain A, Buseyne F. Plasma antibodies from humans infected with zoonotic simian foamy virus do not inhibit cell-to-cell transmission of the virus despite binding to the surface of infected cells. PLoS Pathog 2022; 18:e1010470. [PMID: 35605011 PMCID: PMC9166401 DOI: 10.1371/journal.ppat.1010470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/03/2022] [Accepted: 03/25/2022] [Indexed: 01/23/2023] Open
Abstract
Zoonotic simian foamy viruses (SFV) establish lifelong infection in their human hosts. Despite repeated transmission of SFV from nonhuman primates to humans, neither transmission between human hosts nor severe clinical manifestations have been reported. We aim to study the immune responses elicited by chronic infection with this retrovirus and previously reported that SFV-infected individuals generate potent neutralizing antibodies that block cell infection by viral particles. Here, we assessed whether human plasma antibodies block SFV cell-to-cell transmission and present the first description of cell-to-cell spreading of zoonotic gorilla SFV. We set-up a microtitration assay to quantify the ability of plasma samples from 20 Central African individuals infected with gorilla SFV and 9 uninfected controls to block cell-associated transmission of zoonotic gorilla SFV strains. We used flow-based cell cytometry and fluorescence microscopy to study envelope protein (Env) localization and the capacity of plasma antibodies to bind to infected cells. We visualized the cell-to-cell spread of SFV by real-time live imaging of a GFP-expressing prototype foamy virus (CI-PFV) strain. None of the samples neutralized cell-associated SFV infection, despite the inhibition of cell-free virus. We detected gorilla SFV Env in the perinuclear region, cytoplasmic vesicles and at the cell surface. We found that plasma antibodies bind to Env located at the surface of cells infected with primary gorilla SFV strains. Extracellular labeling of SFV proteins by human plasma samples showed patchy staining at the base of the cell and dense continuous staining at the cell apex, as well as staining in the intercellular connections that formed when previously connected cells separated from each other. In conclusion, SFV-specific antibodies from infected humans do not block cell-to-cell transmission, at least in vitro, despite their capacity to bind to the surface of infected cells. Trial registration: Clinical trial registration: www.clinicaltrials.gov, https://clinicaltrials.gov/ct2/show/NCT03225794/. Foamy viruses are the oldest known retroviruses and have been mostly described to be nonpathogenic in their natural animal hosts. Simian foamy viruses (SFVs) can be transmitted to humans, in whom they establish persistent infection, as have the simian viruses that led to the emergence of two major human pathogens, human immunodeficiency virus type 1 (HIV-1) and human T lymphotropic virus type 1 (HTLV-1). Such cross-species transmission of SFV is ongoing in many parts of the world where humans have contact with nonhuman primates. We previously showed high titers of neutralizing antibodies in the plasma of most SFV-infected individuals. These antiviral antibodies can inhibit cell-free virus entry. However, SFV efficiently spread from one cell to another. Here, we demonstrate that plasma antibodies do not block such cell-to-cell transmission, despite their capacity to bind to the surface of infected cells. In addition, we document for the first time the cell-to-cell spread of primary zoonotic gorilla SFV.
Collapse
Affiliation(s)
- Mathilde Couteaudier
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Thomas Montange
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | | | | | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Florence Buseyne
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
- * E-mail:
| |
Collapse
|
9
|
Gutowska A, McKinnon K, Sarkis S, Doster MN, Bissa M, Moles R, Stamos JD, Rahman MA, Washington-Parks R, Davis D, Yarchoan R, Franchini G, Pise-Masison CA. Transient Viral Activation in Human T Cell Leukemia Virus Type 1-Infected Macaques Treated With Pomalidomide. Front Med (Lausanne) 2022; 9:897264. [PMID: 35602479 PMCID: PMC9119179 DOI: 10.3389/fmed.2022.897264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) persists in the host despite a vigorous immune response that includes cytotoxic T cells (CTL) and natural killer (NK) cells, suggesting the virus has developed effective mechanisms to counteract host immune surveillance. We recently showed that in vitro treatment of HTLV-1-infected cells with the drug pomalidomide (Pom) increases surface expression of MHC-I, ICAM-1, and B7-2, and significantly increases the susceptibility of HTLV-1-infected cells to NK and CTL killing, which is dependent on viral orf-I expression. We reasoned that by restoring cell surface expression of these molecules, Pom treatment has the potential to reduce virus burden by rendering infected cells susceptible to NK and CTL killing. We used the rhesus macaque model to determine if Pom treatment of infected individuals activates the host immune system and allows recognition and clearance of HTLV-1-infected cells. We administered Pom (0.2 mg/kg) orally to four HTLV-1-infected macaques over a 24 day period and collected blood, urine, and bone marrow samples throughout the study. Pom treatment caused immune activation in all four animals and a marked increase in proliferating CD4+, CD8+, and NK cells as measured by Ki-67+ cells. Activation markers HLA-DR, CD11b, and CD69 also increased during treatment. While we detected an increased frequency of cells with a memory CD8+ phenotype, we also found an increased frequency of cells with a Treg-like phenotype. Concomitant with immune activation, the frequency of detection of viral DNA and the HTLV-1-specific humoral response increased as well. In 3 of 4 animals, Pom treatment resulted in increased antibodies to HTLV-1 antigens as measured by western blot and p24Gag ELISA. Consistent with Pom inducing immune and HTLV-1 activation, we measured elevated leukotrienes LTB4 and LTE4 in the urine of all animals. Despite an increase in plasma LTB4, no significant changes in plasma cytokine/chemokine levels were detected. In all cases, however, cellular populations, LTB4, and LTE4 decreased to baseline or lower levels 2 weeks after cessation of treatment. These results indicated that Pom treatment induces a transient HTLV-1-specific immune activation in infected individuals, but also suggest Pom may not be effective as a single-agent therapeutic.
Collapse
Affiliation(s)
- Anna Gutowska
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Ramona Moles
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - James D. Stamos
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - David Davis
- HIV and AIDS Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Robert Yarchoan
- HIV and AIDS Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
- *Correspondence: Cynthia A. Pise-Masison,
| |
Collapse
|
10
|
Moles R, Sarkis S, Galli V, Omsland M, Artesi M, Bissa M, McKinnon K, Brown S, Hahaut V, Washington-Parks R, Welsh J, Venzon DJ, Gutowska A, Doster MN, Breed MW, Killoran KE, Kramer J, Jones J, Moniuszko M, Van den Broeke A, Pise-Masison CA, Franchini G. NK cells and monocytes modulate primary HTLV-1 infection. PLoS Pathog 2022; 18:e1010416. [PMID: 35377924 PMCID: PMC9022856 DOI: 10.1371/journal.ppat.1010416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/21/2022] [Accepted: 03/04/2022] [Indexed: 12/21/2022] Open
Abstract
We investigated the impact of monocytes, NK cells, and CD8+ T-cells in primary HTLV-1 infection by depleting cell subsets and exposing macaques to either HTLV-1 wild type (HTLV-1WT) or to the HTLV-1p12KO mutant unable to infect replete animals due to a single point mutation in orf-I that inhibits its expression. The orf-I encoded p8/p12 proteins counteract cytotoxic NK and CD8+ T-cells and favor viral DNA persistence in monocytes. Double NK and CD8+ T-cells or CD8 depletion alone accelerated seroconversion in all animals exposed to HTLV-1WT. In contrast, HTLV-1p12KO infectivity was fully restored only when NK cells were also depleted, demonstrating a critical role of NK cells in primary infection. Monocyte/macrophage depletion resulted in accelerated seroconversion in all animals exposed to HTLV-1WT, but antibody titers to the virus were low and not sustained. Seroconversion did not occur in most animals exposed to HTLV-1p12KO.In vitro experiments in human primary monocytes or THP-1 cells comparing HTLV-1WT and HTLV-1p12KO demonstrated that orf-I expression is associated with inhibition of inflammasome activation in primary cells, with increased CD47 “don’t-eat-me” signal surface expression in virus infected cells and decreased monocyte engulfment of infected cells. Collectively, our data demonstrate a critical role for innate NK cells in primary infection and suggest a dual role of monocytes in primary infection. On one hand, orf-I expression increases the chances of viral transmission by sparing infected cells from efferocytosis, and on the other may protect the engulfed infected cells by modulating inflammasome activation. These data also suggest that, once infection is established, the stoichiometry of orf-I expression may contribute to the chronic inflammation observed in HTLV-1 infection by modulating monocyte efferocytosis. The immune cells that inhibit or favor HTLV-1 infection are still unknown and their identification is critical for understanding viral pathogenesis and for the development of an effective HTLV-1 vaccine. Neutralizing antibodies are produced in natural HTLV-1 infection, but their impact is likely hampered by the virus’s ability to be transmitted from cell to cell via the virological synapse, cellular conduits, and biofilms. By depleting specific immune cell subsets in blood, we found that NK cells play a critical role in the containment of early HTLV-1 infection. Moreover, transient depletion of monocytes/macrophages results in early, but not sustained seroconversion, suggesting that early engagement of monocytes may be necessary for long-term productive infection. The engulfment of apoptotic T-cells infected by HTLV-1 may represent a viral strategy to persist in the host since the viral proteins encoded by orf-I and orf-II affect the function of receptors and proteins involved in efferocytosis. These results suggest that effective HTLV-1 vaccines must also elicit durable innate responses able to promptly clear virus invasion of monocytes through engulfment of infected T-cells to avoid the establishment of a vicious cycle that leads to chronic inflammation.
Collapse
Affiliation(s)
- Ramona Moles
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maria Artesi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sophia Brown
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vincent Hahaut
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Joshua Welsh
- Translational Nanobiology Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Matthew W. Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Kristin E. Killoran
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jennifer Jones
- Translational Nanobiology Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Marcin Moniuszko
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Anne Van den Broeke
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Nakamura H, Tsukamoto M, Nagasawa Y, Kitamura N, Shimizu T, Kawakami A, Nagata K, Takei M. Does HTLV-1 Infection Show Phenotypes Found in Sjögren's Syndrome? Viruses 2022; 14:100. [PMID: 35062304 PMCID: PMC8780498 DOI: 10.3390/v14010100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are a possible cause for Sjögren's syndrome (SS) as an environmental factor related to SS onset, which exhibits exocrine gland dysfunction and the emergence of autoantibodies. Although retroviruses may exhibit lymphocytic infiltration into exocrine glands, human T-cell leukemia virus type 1 (HTLV-1) has been postulated to be a causative agent for SS. Transgenic mice with HTLV-1 genes showed sialadenitis resembling SS, but their phenotypic symptoms differed based on the adopted region of HTLV-1 genes. The dominance of tax gene differed in labial salivary glands (LSGs) of SS patients with HTLV 1-associated myelopathy (HAM) and adult T-cell leukemia. Although HTLV-1 was transmitted to salivary gland epithelial cells (SGECs) by a biofilm-like structure, no viral synapse formation was observed. After infection to SGECs derived from SS patients, adhesion molecules and migration factors were time-dependently released from infected SGECs. The frequency of the appearance of autoantibodies including anti-Ro/SS-A, La/SS-B antibodies in SS patients complicated with HAM is unknown; the observation of less frequent ectopic germinal center formation in HTLV-1-seropositive SS patients was a breakthrough. In addition, HTLV-1 infected cells inhibited B-lymphocyte activating factor or C-X-C motif chemokine 13 through direct contact with established follicular dendritic cell-like cells. These findings show that HTLV-1 is directly involved in the pathogenesis of SS.
Collapse
Affiliation(s)
- Hideki Nakamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Masako Tsukamoto
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Yosuke Nagasawa
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Noboru Kitamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Toshimasa Shimizu
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.S.); (A.K.)
| | - Atsushi Kawakami
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.S.); (A.K.)
| | - Kinya Nagata
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| |
Collapse
|
12
|
Forlani G, Shallak M, Accolla RS, Romanelli MG. HTLV-1 Infection and Pathogenesis: New Insights from Cellular and Animal Models. Int J Mol Sci 2021; 22:ijms22158001. [PMID: 34360767 PMCID: PMC8347336 DOI: 10.3390/ijms22158001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the human T-cell leukemia virus-1 (HTLV-1), cellular and animal models have provided invaluable contributions in the knowledge of viral infection, transmission and progression of HTLV-associated diseases. HTLV-1 is the causative agent of the aggressive adult T-cell leukemia/lymphoma and inflammatory diseases such as the HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Cell models contribute to defining the role of HTLV proteins, as well as the mechanisms of cell-to-cell transmission of the virus. Otherwise, selected and engineered animal models are currently applied to recapitulate in vivo the HTLV-1 associated pathogenesis and to verify the effectiveness of viral therapy and host immune response. Here we review the current cell models for studying virus–host interaction, cellular restriction factors and cell pathway deregulation mediated by HTLV products. We recapitulate the most effective animal models applied to investigate the pathogenesis of HTLV-1-associated diseases such as transgenic and humanized mice, rabbit and monkey models. Finally, we summarize the studies on STLV and BLV, two closely related HTLV-1 viruses in animals. The most recent anticancer and HAM/TSP therapies are also discussed in view of the most reliable experimental models that may accelerate the translation from the experimental findings to effective therapies in infected patients.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Mariam Shallak
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Roberto Sergio Accolla
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Maria Grazia Romanelli
- Department of Biosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|