1
|
Luo S, Deng Q, Liang C, Zhang P, Zou P, Deng S, Zhang M, Zeng F, Zhang L, Fu Y, Li C, Li T. Protection of Novel Adenovirus Vectored Vaccine in Rats Against Wild-Type Hepacivirus and Variant Infections. Liver Int 2025; 45:e70045. [PMID: 40095396 DOI: 10.1111/liv.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND AND AIMS Hepatitis C virus (HCV) vaccines are urgently needed to achieve WHO's goal for the elimination of viral hepatitis by 2030. The lack of suitable animal models for evaluating vaccine efficacy has greatly hindered the development of HCV vaccines. By using the rat model chronically infected with rodent hepacivirus from Rattus norvegicus (RHV-rn1), a hepacivirus homologously close to HCV as a surrogate model of HCV infection, we assessed the protective effectiveness of the RHV-rn1 vaccine Sad23L-RHVns. METHODS Sad23L-RHVns vaccine was constructed with the nonstructural proteins (NS) 3-5B genes of RHV-rn1. SD rats were immunised with Sad23L-RHVns by prime or prime-boost regimen via intramuscular injection, then challenged 4 weeks post vaccination by RHV-rn1. A part of the rats were rechallenged with a variant 15 weeks post the first challenge of RHV-rn1. RESULTS The specific T-cell responses to NS3-5B antigens were induced by prime immunisation, which were significantly enhanced by boost vaccination. The inoculated rats and controls were challenged by wild-type RHV-rn1, of all the primed and control rats having persistently high levels of viremia, whereas 7 of 9 (77.8%) boosted rats cleared RHV-rn1 infection. Interestingly, the resolver acquired immune protection against re-challenging with variant and showed significantly higher T-cell responses than the nonresolver in 25 weeks post rechallenge. CONCLUSIONS Sad23L-RHVns with prime-boost regimen protected 77.8% of rats against wild-type RHV-rn1 infection, and resolvers showed high levels and maintenance of T cell immunity against the variant. Our findings that maintenance of effective T cell immunity is required for RHV-rn1 resolution may provide insight to develop the HCV vaccine in humans.
Collapse
Affiliation(s)
- Shengxue Luo
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, China
| | - Qitao Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chaolan Liang
- Department of Blood Transfusion, Shenzhen Third People's Hospital, Shenzhen, China
| | - Panli Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou, China
| | - Peng Zou
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Meng Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Feifeng Zeng
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, China
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yongshui Fu
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, China
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Blood Transfusion and Hematology, Guangzhou Blood Center, Guangzhou Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Shenzhen Bao'an District Central Blood Station, Shenzhen, People's Republic of China
| |
Collapse
|
2
|
Tang X, Zhang W, Zhang Z. Developing T Cell Epitope-Based Vaccines Against Infection: Challenging but Worthwhile. Vaccines (Basel) 2025; 13:135. [PMID: 40006681 PMCID: PMC11861332 DOI: 10.3390/vaccines13020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
T cell epitope-based vaccines are designed to elicit long-lived pathogen-specific memory T cells that can quickly activate protective effector functions in response to subsequent infections. These vaccines have the potential to provide sustained protection against mutated variants, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which are increasingly capable of evading neutralizing antibodies. Recent advancements in epitope discovery, T cell receptor analysis, and bioinformatics have enabled the precise selection of epitopes and the sophisticated design of epitope-based vaccines. This review outlines the development process for T cell epitope-based vaccines. We summarize the current progress in T cell epitope discovery technologies, highlighting the advantages and disadvantages of each method. We also examine advancements in the design and optimization of epitope-based vaccines, particularly through bioinformatics tools. Additionally, we discuss the challenges of validating the accurate processing and presentation of individual epitopes and establishing suitable rodent models to evaluate vaccine immunogenicity and protective efficacy.
Collapse
Affiliation(s)
- Xian Tang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China; (X.T.); (W.Z.)
| | - Wei Zhang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China; (X.T.); (W.Z.)
| | - Zheng Zhang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China; (X.T.); (W.Z.)
- Guangdong Key Laboratory for Anti-Infection Drug Quality Evaluation, Shenzhen 518112, China
| |
Collapse
|
3
|
Dravid P, Murthy S, Attia Z, Cassady C, Chandra R, Trivedi S, Vyas A, Gridley J, Holland B, Kumari A, Grakoui A, Cullen JM, Walker CM, Sharma H, Kapoor A. Phenotype and fate of liver-resident CD8 T cells during acute and chronic hepacivirus infection. PLoS Pathog 2023; 19:e1011697. [PMID: 37812637 PMCID: PMC10602381 DOI: 10.1371/journal.ppat.1011697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/26/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Immune correlates of hepatitis C virus (HCV) clearance and control remain poorly defined due to the lack of an informative animal model. We recently described acute and chronic rodent HCV-like virus (RHV) infections in lab mice. Here, we developed MHC class I and class II tetramers to characterize the serial changes in RHV-specific CD8 and CD4 T cells during acute and chronic infection in C57BL/6J mice. RHV infection induced rapid expansion of T cells targeting viral structural and nonstructural proteins. After virus clearance, the virus-specific T cells transitioned from effectors to long-lived liver-resident memory T cells (TRM). The effector and memory CD8 and CD4 T cells primarily produced Th1 cytokines, IFN-γ, TNF-α, and IL-2, upon ex vivo antigen stimulation, and their phenotype and transcriptome differed significantly between the liver and spleen. Rapid clearance of RHV reinfection coincided with the proliferation of virus-specific CD8 TRM cells in the liver. Chronic RHV infection was associated with the exhaustion of CD8 T cells (Tex) and the development of severe liver diseases. Interestingly, the virus-specific CD8 Tex cells continued proliferation in the liver despite the persistent high-titer viremia and retained partial antiviral functions, as evident from their ability to degranulate and produce IFN-γ upon ex vivo antigen stimulation. Thus, RHV infection in mice provides a unique model to study the function and fate of liver-resident T cells during acute and chronic hepatotropic infection.
Collapse
Affiliation(s)
- Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Zayed Attia
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Cole Cassady
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Rahul Chandra
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ashish Vyas
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - John Gridley
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - Brantley Holland
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - Anuradha Kumari
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - Arash Grakoui
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Division of Infectious Diseases, Atlanta, Georgia, United States of America
| | - John M. Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Christopher M. Walker
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Himanshu Sharma
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
4
|
Mutational escape from cellular immunity in viral hepatitis: variations on a theme. Curr Opin Virol 2021; 50:110-118. [PMID: 34454351 DOI: 10.1016/j.coviro.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
Approx. 320 million individuals worldwide are chronically infected with hepatitis viruses, contributing to viral hepatitis being one of the 10 leading causes of death. Cellular adaptive immunity, namely CD4+ and CD8+ T cells, plays an important role in viral clearance and control. Two main mechanisms, however, may lead to failure of the virus-specific T-cell response: T-cell exhaustion and mutational viral escape. Viral escape has been studied in detail in hepatitis C virus (HCV) infection, where it is thought to affect approx. 50% of virus-specific CD8+ T-cell responses in persistent infection, to influence natural infection outcome and to contribute to failure of preventive vaccination strategies. In hepatitis B virus (HBV) as well as HBV/hepatitis D virus (HDV) co-infection, the impact of viral escape has been studied in detail only recently.
Collapse
|