1
|
De Maio F, Bianco DM, Santarelli G, Rosato R, Monzo FR, Fiori B, Sanguinetti M, Posteraro B. Profiling the gut microbiota to assess infection risk in Klebsiella pneumoniae-colonized patients. Gut Microbes 2025; 17:2468358. [PMID: 39964311 PMCID: PMC11845061 DOI: 10.1080/19490976.2025.2468358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
Vornhagen et al. introduced a model combining gut microbiota structure and Klebsiella pneumoniae genotype to assess infection risk in K. pneumoniae-colonized patients. Building on their findings, we investigated the gut microbiota composition and K. pneumoniae genotype in 16 colonized patients, five of whom had bloodstream infections at the time of fecal sampling. Importantly, we did not apply the original machine learning model due to the small sample size of our cohort. Instead, we explored the distribution of key antimicrobial resistance and stress resistance genes and analyzed gut community structure based on amplicon sequence variants (ASVs) of the V3-V4 16S rRNA region. Notably, distinct gene profiles were observed in both infected and non-infected patients, and three patients without bloodstream infections showed no detectable Klebsiella ASVs despite microbiological confirmation of colonization. These findings highlight the need to integrate gut microbiota composition data into infection risk assessment and address limitations in taxonomic resolution and sample size. Future studies should aim to develop streamlined tools for clinical application in K. pneumoniae-colonized patients.
Collapse
Affiliation(s)
- Flavio De Maio
- Department of Laboratory and Hematological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Microbiota Analysis & Microbial WGS Research Core Facility, GSTeP, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Delia Mercedes Bianco
- Department of Infectious Diseases, Castle Hill Hospital, East Riding of Yorkshire, Cottingham, UK
| | - Giulia Santarelli
- Microbiota Analysis & Microbial WGS Research Core Facility, GSTeP, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberto Rosato
- Microbiota Analysis & Microbial WGS Research Core Facility, GSTeP, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesca Romana Monzo
- Department of Laboratory and Hematological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Microbiota Analysis & Microbial WGS Research Core Facility, GSTeP, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Fiori
- Department of Laboratory and Hematological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maurizio Sanguinetti
- Department of Laboratory and Hematological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Microbiota Analysis & Microbial WGS Research Core Facility, GSTeP, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Brunella Posteraro
- Microbiota Analysis & Microbial WGS Research Core Facility, GSTeP, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Precision Medicine in Clinical Microbiology Unit, Direzione Scientifica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
2
|
Unverdorben LV, Pirani A, Gontjes K, Moricz B, Holmes CL, Snitkin ES, Bachman MA. Klebsiella pneumoniae evolution in the gut leads to spontaneous capsule loss and decreased virulence potential. mBio 2025; 16:e0236224. [PMID: 40162782 PMCID: PMC12077207 DOI: 10.1128/mbio.02362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Klebsiella pneumoniae (Kp) is an opportunistic pathogen that poses a major threat in healthcare settings. The gut is a primary Kp reservoir in hospitalized patients, and colonization is a major risk factor for Kp infection. The stability of virulence determinants such as capsule and lipopolysaccharide during gut colonization is largely unexplored. In a murine gut colonization model, we demonstrated that spontaneous capsule loss occurs rapidly but varies by Kp pathotype. A classical Kp strain and a carbapenem-resistant strain of the epidemic sequence type 258 lineage had significant levels (median of 25% and 9.5%, respectively) of capsule loss. In contrast, a hypervirulent strain did not lose capsule to a significant degree (median 0.1%), despite readily losing capsule during in vitro passage. Insertion sequences (ISs) or mutations were found disrupting capsule operon genes of all isolates and in O-antigen encoding genes in a subset of isolates. Mouse-derived acapsular isolates from two pathotypes had significant fitness defects in a murine pneumonia model. Removal of the IS in the capsule operon in a mouse-derived acapsular classical isolate restored capsule production to wild-type levels. Genomic analysis of Klebsiella rectal isolates from hospitalized patients found that 18 of 245 strains (7%) had at least one IS disrupting the capsule operon. Combined, these data indicate that Kp capsule loss can occur during gut colonization in a strain-dependent manner, not only impacting strain virulence but also potentially altering patient infection risk. IMPORTANCE In hospitalized patients, gut colonization by the bacterial pathogen Klebsiella pneumoniae (Kp) is a major risk factor for the development of infections. The genome of Kp varies across isolates, and the presence of certain virulence genes is associated with the ability to progress from colonization to infection. Here, we identified that virulence genes encoding capsule and lipopolysaccharide, which normally protect bacteria from the immune system, are disrupted by mutations during murine gut colonization. These mutations occurred frequently in some isolates of Kp but not others, and these virulence gene mutants from the gut were defective in causing infections. An analysis of 245 human gut isolates demonstrated that this capsule loss also occurred in patients. This work highlights that mutations that decrease virulence occur during gut colonization, the propensity for these mutations differs by isolate, and that stability of virulence genes is important to consider when assessing infection risk in patients.
Collapse
Affiliation(s)
- Lavinia V. Unverdorben
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ali Pirani
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kyle Gontjes
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bridget Moricz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Caitlyn L. Holmes
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Evan S. Snitkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Yang R, Han S, Yu Y, Li H, Helmann JD, Schaufler K, Johnson MDL, Yang QE, Rensing C. The Klebsiella pneumoniae tellurium resistance gene terC contributes to both tellurite and zinc resistance. Microbiol Spectr 2025; 13:e0263424. [PMID: 40202338 PMCID: PMC12054061 DOI: 10.1128/spectrum.02634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Klebsiella pneumoniae is widely recognized as a pathogen responsible for hospital-acquired infections and community-acquired invasive infections. It has rapidly become a significant global public health threat due to the emergence of hypervirulent and multidrug-resistant strains, which have increased the challenges associated with treating life-threatening infections. Tellurium resistance genes are widespread on virulence plasmids in K. pneumoniae isolates. However, the core function of the ter operon (terZABCDEF) in K. pneumoniae remains unclear. In this study, the multidrug-resistant K. pneumoniae P1927 strain was isolated from the sputum of a hospitalized pneumonia patient. The ter operon, along with antimicrobial resistance and virulence genes, was identified on a large hybrid plasmid in K. pneumoniae P1927. We generated a terC deletion mutant and demonstrated that this mutant exhibited reduced virulence in a Galleria mellonella larva infection model. Further physiological functional analysis revealed that terC is not only important for Te(IV) resistance but also for resistance to Zn(II), Mn(II), and phage infection. All genes of the ter operon were highly inducible by Zn(II), which is a stronger inducer than Te(IV), and the terBCDE genes were also induced by Mn(II). Collectively, our study demonstrates novel physiological functions of TerC in Zn(II) resistance and virulence in K. pneumoniae.IMPORTANCEKlebsiella pneumoniae has rapidly become a global threat to public health. Although the ter operon is widely identified in clinical isolates, its physiological function remains unclear. It has been proposed that proteins encoded by the ter operon form a multi-site metal-binding complex, but its exact function is still unknown. TerC, a central component of the tellurium resistance determinant, was previously shown to interact with outer membrane proteins OmpA and KpsD in Escherichia coli, suggesting potential changes in outer membrane structure and properties. Here, we report that TerC confers resistance to Zn(II), Mn(II), and phage infection, and Zn(II) was shown to be a strong inducer of the ter operon. Furthermore, TerC was identified as a novel virulence factor. Taken together, our results expand our understanding of the physiological functions encoded by the ter operon and its role in the virulence of K. pneumoniae, providing deeper insights into the link between heavy metal(loid) resistance determinants and virulence in pathogenic bacteria.
Collapse
Affiliation(s)
- Ruixiang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongru Li
- Fujian Provincial Key Laboratory of Medical Big Data Engineering, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Respiratory and Critical Care Medicine, Fujian Shengli Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Katharina Schaufler
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Centre for Infection Research HZI, Helmholtz Institute for One Health, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Michael D. L. Johnson
- Department of Immunobiology, The University of Arizona College of Medicine Tucson, Tucson, Arizona, USA
| | - Qiu E. Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Holmes CL, Albin OR, Mobley HLT, Bachman MA. Bloodstream infections: mechanisms of pathogenesis and opportunities for intervention. Nat Rev Microbiol 2025; 23:210-224. [PMID: 39420097 DOI: 10.1038/s41579-024-01105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
Bloodstream infections (BSIs) are common in hospitals, often life-threatening and increasing in prevalence. Microorganisms in the blood are usually rapidly cleared by the immune system and filtering organs but, in some cases, they can cause an acute infection and trigger sepsis, a systemic response to infection that leads to circulatory collapse, multiorgan dysfunction and death. Most BSIs are caused by bacteria, although fungi also contribute to a substantial portion of cases. Escherichia coli, Staphylococcus aureus, coagulase-negative Staphylococcus, Klebsiella pneumoniae and Candida albicans are leading causes of BSIs, although their prevalence depends on patient demographics and geographical region. Each species is equipped with unique factors that aid in the colonization of initial sites and dissemination and survival in the blood, and these factors represent potential opportunities for interventions. As many pathogens become increasingly resistant to antimicrobials, new approaches to diagnose and treat BSIs at all stages of infection are urgently needed. In this Review, we explore the prevalence of major BSI pathogens, prominent mechanisms of BSI pathogenesis, opportunities for prevention and diagnosis, and treatment options.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Owen R Albin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Harry L T Mobley
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Panchal J, Prajapati J, Dabhi M, Patel A, Patel S, Rawal R, Saraf M, Goswami D. Comprehensive computational investigation for ligand recognition and binding dynamics of SdiA: a degenerate LuxR -type receptor in Klebsiella pneumoniae. Mol Divers 2024; 28:3897-3918. [PMID: 38212453 DOI: 10.1007/s11030-023-10785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/26/2023] [Indexed: 01/13/2024]
Abstract
SdiA is a LuxR-type receptor that controls the virulence of Klebsiella pneumoniae, a Gram-negative bacterium that causes various infections in humans. SdiA senses exogenous acyl-homoserine lactones (AHLs) and autoinducer-2 (AI-2), two types of quorum sensing signals produced by other bacterial species. However, the molecular details of how SdiA recognizes and binds to different ligands and how this affects its function and regulation in K. pneumoniae still need to be better understood. This study uses computational methods to explore the protein-ligand binding dynamics of SdiA with 11 AHLs and 2 AI-2 ligands. The 3D structure of SdiA was predicted through homology modeling, followed by molecular docking with AHLs and AI-2 ligands. Binding affinities were quantified using MM-GBSA, and complex stability was assessed via Molecular Dynamics (MD) simulations. Results demonstrated that SdiA in Klebsiella pneumoniae exhibits a degenerate binding nature, capable of interacting with multiple AHLs and AI-2. Specific ligands, namely C10-HSL, C8-HSL, 3-oxo-C8-HSL, and 3-oxo-C10-HSL, were found to have high binding affinities and formed critical hydrogen bonds with key amino acid residues of SdiA. This finding aligns with the observed preference of SdiA for AHLs having 8 to 10 carbon-length acyl chains and lacking hydroxyl groups. In contrast, THMF and HMF demonstrated poor binding properties. Furthermore, AI-2 exhibited a low affinity, corroborating the inference that SdiA is not the primary receptor for AI-2 in K. pneumoniae. These findings provide insights into the protein-ligand binding dynamics of SdiA and its role in quorum sensing and virulence of K. pneumoniae.
Collapse
Affiliation(s)
- Janki Panchal
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Milan Dabhi
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Arun Patel
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Kamdhenu University, Sardarkrushinagar 385505, Gujarat, India
| | - Sandip Patel
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Kamdhenu University, Sardarkrushinagar 385505, Gujarat, India
| | - Rakesh Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
6
|
Tsugawa H, Tsubaki S, Tanaka R, Nashimoto S, Imai J, Matsuzaki J, Hozumi K. Macrophage-depleted young mice are beneficial in vivo models to assess the translocation of Klebsiella pneumonia from the gastrointestinal tract to the liver in the elderly. Microbes Infect 2024; 26:105371. [PMID: 38849070 DOI: 10.1016/j.micinf.2024.105371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Pathobionts are commensal intestinal microbiota capable of causing systemic infections under specific conditions, such as environmental changes or aging. However, it is unclear how pathobionts are recognized by the intestinal mucosal immune system under physiological conditions. This study demonstrates that the gut pathobiont Klebsiella pneumoniae causes injury to the epithelium and translocates to the liver in specific pathogen-free mice treated with clodronate-liposomes that depleted macrophages. In the clodronate-liposome-treated mice, indigenous classical K. pneumoniae (cKp) with non-K1/K2 capsular serotypes were isolated from the liver, indicating that gut commensal cKp translocated from the gastrointestinal tract to the liver due to the depletion of intestinal macrophages. Oral inoculation of isolated cKp to clodronate-liposome-treated mice significantly reduced the survival rates compared to that of non-treated mice. Our findings demonstrate that intestinal mucosal macrophages play a pivotal role in sensing commensal cKp and suppressing their translocation to the liver. This study demonstrates that clodronate-liposome-treated mouse models are effective for screening and evaluating drugs that prevent the translocation of cKp to the liver, providing new insights into the development of preventive protocols against K. pneumoniae infection.
Collapse
Affiliation(s)
- Hitoshi Tsugawa
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan.
| | - Shogo Tsubaki
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Rika Tanaka
- Department of Immunology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Sho Nashimoto
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Jin Imai
- Department of Clinical Health Science, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, 105-8512, Japan
| | - Katsuto Hozumi
- Department of Immunology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan
| |
Collapse
|
7
|
Bray AS, Zafar MA. Deciphering the gastrointestinal carriage of Klebsiella pneumoniae. Infect Immun 2024; 92:e0048223. [PMID: 38597634 PMCID: PMC11384780 DOI: 10.1128/iai.00482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Bacterial infections pose a significant global health threat, accounting for an estimated 7.7 million deaths. Hospital outbreaks driven by multi-drug-resistant pathogens, notably Klebsiella pneumoniae (K. pneumoniae), are of grave concern. This opportunistic pathogen causes pneumonia, urinary tract infections, and bacteremia, particularly in immunocompromised individuals. The rise of hypervirulent K. pneumoniae adds complexity, as it increasingly infects healthy individuals. Recent epidemiological data suggest that asymptomatic gastrointestinal carriage serves as a reservoir for infections in the same individual and allows for host-to-host transmission via the fecal-oral route. This review focuses on K. pneumoniae's gastrointestinal colonization, delving into epidemiological evidence, current animal models, molecular colonization mechanisms, and the protective role of the resident gut microbiota. Moreover, the review sheds light on in vivo high-throughput approaches that have been crucial for identifying K. pneumoniae factors in gut colonization. This comprehensive exploration aims to enhance our understanding of K. pneumoniae gut pathogenesis, guiding future intervention and prevention strategies.
Collapse
Affiliation(s)
- Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
8
|
Vornhagen J, Rao K, Bachman MA. Gut community structure as a risk factor for infection in Klebsiella pneumoniae-colonized patients. mSystems 2024; 9:e0078624. [PMID: 38975759 PMCID: PMC11334466 DOI: 10.1128/msystems.00786-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The primary risk factor for infection with members of the Klebsiella pneumoniae species complex is prior gut colonization, and infection is often caused by the colonizing strain. Despite the importance of the gut as a reservoir for infectious K. pneumoniae, little is known about the association between the gut microbiome and infection. To explore this relationship, we undertook a case-control study comparing the gut community structure of K. pneumoniae-colonized intensive care and hematology/oncology patients. Cases were K. pneumoniae-colonized patients infected by their colonizing strain (N = 83). Controls were K. pneumoniae-colonized patients who remained asymptomatic (N = 149). First, we characterized the gut community structure of K. pneumoniae-colonized patients agnostic to case status. Next, we determined that gut community data is useful for classifying cases and controls using machine learning models and that the gut community structure differed between cases and controls. K. pneumoniae relative abundance, a known risk factor for infection, had the greatest feature importance, but other gut microbes were also informative. Finally, we show that integration of gut community structure with bacterial genotype data enhanced the ability of machine learning models to discriminate cases and controls. Interestingly, inclusion of patient clinical variables failed to improve the ability of machine learning models to discriminate cases and controls. This study demonstrates that including gut community data with K. pneumoniae-derived biomarkers improves our ability to classify infection in K. pneumoniae-colonized patients.IMPORTANCEColonization is generally the first step in pathogenesis for bacteria with pathogenic potential. This step provides a unique window for intervention since a given potential pathogen has yet to cause damage to its host. Moreover, intervention during the colonization stage may help alleviate the burden of therapy failure as antimicrobial resistance rises. Yet, to understand the therapeutic potential of interventions that target colonization, we must first understand the biology of colonization and if biomarkers at the colonization stage can be used to stratify infection risk. The bacterial genus Klebsiella includes many species with varying degrees of pathogenic potential. Members of the K. pneumoniae species complex have the highest pathogenic potential. Patients colonized in their gut by these bacteria are at higher risk of subsequent infection with their colonizing strain. However, we do not understand if other members of the gut microbiota can be used as a biomarker to predict infection risk. In this study, we show that the gut microbiota differs between colonized patients who develop an infection versus those who do not. Additionally, we show that integrating gut microbiota data with bacterial factors improves the ability to classify infections. Surprisingly, patient clinical factors were not useful for classifying infections alone or when added to microbiota-based models. This indicates that the bacterial genotype and the microbial community in which it exists may determine the progression to infection. As we continue to explore colonization as an intervention point to prevent infections in individuals colonized by potential pathogens, we must develop effective means for predicting and stratifying infection risk.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Krishna Rao
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Todd K, Gunter K, Bowen JM, Holmes CL, Tilston-Lunel NL, Vornhagen J. Type-2 diabetes mellitus enhances Klebsiella pneumoniae pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596766. [PMID: 38853822 PMCID: PMC11160788 DOI: 10.1101/2024.05.31.596766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen and an important cause of pneumonia, bacteremia, and urinary tract infection. K. pneumoniae infections are historically associated with diabetes mellitus. There is a fundamental gap in our understanding of how diabetes mellitus, specifically type 2 diabetes, influences K. pneumoniae pathogenesis. K. pneumoniae pathogenesis is a multifactorial process that often begins with gut colonization, followed by an escape from the gut to peripheral sites, leading to host damage and infection. We hypothesized that type 2 diabetes enhances K. pneumoniae pathogenesis. To test this, we used well-established mouse models of K. pneumoniae colonization and lung infection in conjunction with a mouse model of spontaneous type 2 diabetes mellitus (T2DM). We show that T2DM enhances susceptibility to both K. pneumoniae colonization and infection. The enhancement of gut colonization is dependent on T2DM-induced modulation of the gut microbiota community structure. In contrast, lung infection is exacerbated by the increased availability of amino acids in the lung, which is associated with higher levels of vascular endothelial growth factor. These data lay the foundation for mechanistic interrogation of the relationship between K. pneumoniae pathogenesis and type 2 diabetes mellitus, and explicitly establish T2DM as a risk factor for K. pneumoniae disease.
Collapse
Affiliation(s)
- Katlyn Todd
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, USA
| | - Krista Gunter
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, USA
| | - James M. Bowen
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, USA
| | - Caitlyn L. Holmes
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Natasha L. Tilston-Lunel
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, USA
| | - Jay Vornhagen
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, USA
| |
Collapse
|
10
|
Vávrová S, Grones J, Šoltys K, Celec P, Turňa J. The tellurite resistance gene cluster of pathogenic bacteria and its effect on oxidative stress response. Folia Microbiol (Praha) 2024; 69:433-444. [PMID: 38261148 PMCID: PMC11003894 DOI: 10.1007/s12223-024-01133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Tellurite resistance gene clusters have been identified in numerous pathogenic bacteria, including clinical isolates of Escherichia coli. The rareness of tellurium in host organisms and the noncontaminated environment raises a question about the true functionality of tellurite resistance gene clusters in pathogenesis and their possible contribution to bacterial fitness. The study aims to point out the beneficial effects of the tellurite resistance gene cluster of pathogenic bacteria to survive in ROS-rich environments. Here, we analysed the bacterial response to oxidative stress conditions with and without tellurite resistance gene clusters, which are composed of terWY1XY2Y3 and terZABCDEF genes. By measuring the levels of protein carbonylation, lipid peroxidation, and expression changes of oxidative stress genes upon oxidative stress, we propose a tellurite resistance gene cluster contribution to the elimination of oxidative damage, potentially increasing fitness and resistance to reactive oxygen species during macrophage attack. We have shown a different beneficial effect of various truncated versions of the tellurite resistance gene cluster on cell survival. The terBCDEF genes increased the survival of E. coli strain MC4100 by 13.21%, terW and terZABCDEF by 10.09%, and terWY1XY2Y3 and terZABCDEF by 25.57%, respectively. The ability to survive tellurite treatment is the most significant at 44.8% in wild clinical strain KL53 compared to laboratory strain E. coli MC4100 due to a complete wild-type plasmid presence.
Collapse
Affiliation(s)
- Silvia Vávrová
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Bratislava, Slovak Republic.
| | - Jozef Grones
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Katarína Šoltys
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Peter Celec
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovak Republic
- Faculty of Medicine, Institute of Pathophysiology, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ján Turňa
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
11
|
Tan YH, Arros P, Berríos-Pastén C, Wijaya I, Chu WHW, Chen Y, Cheam G, Mohamed Naim AN, Marcoleta AE, Ravikrishnan A, Nagarajan N, Lagos R, Gan YH. Hypervirulent Klebsiella pneumoniae employs genomic island encoded toxins against bacterial competitors in the gut. THE ISME JOURNAL 2024; 18:wrae054. [PMID: 38547398 PMCID: PMC11020217 DOI: 10.1093/ismejo/wrae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
The hypervirulent lineages of Klebsiella pneumoniae (HvKp) cause invasive infections such as Klebsiella-liver abscess. Invasive infection often occurs after initial colonization of the host gastrointestinal tract by HvKp. Over 80% of HvKp isolates belong to the clonal group 23 sublineage I that has acquired genomic islands (GIs) GIE492 and ICEKp10. Our analysis of 12 361 K. pneumoniae genomes revealed that GIs GIE492 and ICEKp10 are co-associated with the CG23-I and CG10118 HvKp lineages. GIE492 and ICEKp10 enable HvKp to make a functional bacteriocin microcin E492 (mccE492) and the genotoxin colibactin, respectively. We discovered that GIE492 and ICEKp10 play cooperative roles and enhance gastrointestinal colonization by HvKp. Colibactin is the primary driver of this effect, modifying gut microbiome diversity. Our in vitro assays demonstrate that colibactin and mccE492 kill or inhibit a range of Gram-negative Klebsiella species and Escherichia coli strains, including Gram-positive bacteria, sometimes cooperatively. Moreover, mccE492 and colibactin kill human anaerobic gut commensals that are similar to the taxa found altered by colibactin in the mouse intestines. Our findings suggest that GIs GIE492 and ICEKp10 enable HvKp to kill several commensal bacterial taxa during interspecies interactions in the gut. Thus, acquisition of GIE492 and ICEKp10 could enable better carriage in host populations and explain the dominance of the CG23-I HvKp lineage.
Collapse
Affiliation(s)
- Yi Han Tan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, MD4, Level 2, Singapore 117545, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore 117596, Republic of Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore 138672, Republic of Singapore
| | - Patricio Arros
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Departamento de Biología, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile
| | - Camilo Berríos-Pastén
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Departamento de Biología, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile
| | - Indrik Wijaya
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore 138672, Republic of Singapore
| | - Wilson H W Chu
- National Public Health Laboratory, National Centre for Infectious Diseases, 16 Jln Tan Tock Seng, Singapore 308442, Republic of Singapore
| | - Yahua Chen
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, MD4, Level 2, Singapore 117545, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore 117596, Republic of Singapore
| | - Guoxiang Cheam
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, MD4, Level 2, Singapore 117545, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore 117596, Republic of Singapore
| | - Ahmad Nazri Mohamed Naim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore 138672, Republic of Singapore
| | - Andrés E Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Departamento de Biología, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile
| | - Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore 138672, Republic of Singapore
| | - Niranjan Nagarajan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, MD4, Level 2, Singapore 117545, Republic of Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore 138672, Republic of Singapore
| | - Rosalba Lagos
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Departamento de Biología, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, MD4, Level 2, Singapore 117545, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore 117596, Republic of Singapore
| |
Collapse
|
12
|
Byarugaba DK, Wokorach G, Alafi S, Erima B, Najjuka F, Mworozi EA, Kibuuka H, Wabwire-Mangen F. Whole Genome Sequencing Reveals High Genetic Diversity, Diverse Repertoire of Virulence-Associated Genes and Limited Antibiotic Resistance Genes among Commensal Escherichia coli from Food Animals in Uganda. Microorganisms 2023; 11:1868. [PMID: 37630428 PMCID: PMC10457813 DOI: 10.3390/microorganisms11081868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/27/2023] Open
Abstract
Commensal Escherichia coli with broad repertoire of virulence and antimicrobial resistance (AMR) genes pose serious public health risks as reservoirs of AMR and virulence. This study undertook whole genome characterization of commensal E. coli from food-producing animals in Uganda to investigate their genome variability (resistome and virulome). We established that the E. coli had high genomic diversity with 38 sequence types, 24 FimH types, and 33 O-antigen serotypes randomly distributed within three phylogroups (A, B1, and E). A greater proportion (≥93.65%) of the E. coli were resistant to amoxicillin/clavulanate and ampicillin antibiotics. The isolates were AmpC beta-lactamase producers dominated by blaEC-15 (71.88%) and tet(A) (20.31%) antimicrobial resistant genes besides a diverse armory of virulence-associated genes in the class of exotoxin, adhesins, iron uptake, and serine protease autotransporters which varied by host species. Cattle were found to be the major source of E. coli carrying Shiga toxin genes, whereas swine was the main source of E. coli carrying colicin-like Usp toxin gene. The study underscores the importance of livestock as the carrier of E. coli with antimicrobial resistance and a large repertoire of virulence traits with a potential of causing disease in animals and humans by acquiring more genetic traits.
Collapse
Affiliation(s)
- Denis K. Byarugaba
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- College of Veterinary Medicine, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Godfrey Wokorach
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- Gulu University Multifunctional Research Laboratories, Gulu P.O. Box 166, Uganda
| | - Stephen Alafi
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
| | - Bernard Erima
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
| | - Florence Najjuka
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Edison A. Mworozi
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
| | - Fred Wabwire-Mangen
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (G.W.); (S.A.); (B.E.); (H.K.); (F.W.-M.)
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| |
Collapse
|
13
|
Vornhagen J, Rao K, Bachman MA. Gut community structure as a risk factor for infection in Klebsiella -colonized patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.18.23288742. [PMID: 37131824 PMCID: PMC10153327 DOI: 10.1101/2023.04.18.23288742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The primary risk factor for infection with members of the Klebsiella pneumoniae species complex is prior gut colonization, and infection is often caused by the colonizing strain. Despite the importance of the gut as a reservoir for infectious Klebsiella , little is known about the association between the gut microbiome and infection. To explore this relationship, we undertook a case-control study comparing the gut community structure of Klebsiella -colonized intensive care and hematology/oncology patients. Cases were Klebsiella -colonized patients infected by their colonizing strain (N = 83). Controls were Klebsiella -colonized patients that remained asymptomatic (N = 149). First, we characterized the gut community structure of Klebsiella -colonized patients agnostic to case status. Next, we determined that gut community data is useful for classifying cases and controls using machine learning models and that the gut community structure differed between cases and controls. Klebsiella relative abundance, a known risk factor for infection, had the greatest feature importance but other gut microbes were also informative. Finally, we show that integration of gut community structure with bacterial genotype or clinical variable data enhanced the ability of machine learning models to discriminate cases and controls. This study demonstrates that including gut community data with patient- and Klebsiella -derived biomarkers improves our ability to predict infection in Klebsiella -colonized patients. Importance Colonization is generally the first step in pathogenesis for bacteria with pathogenic potential. This step provides a unique window for intervention since a given potential pathogen has yet to cause damage to its host. Moreover, intervention during the colonization stage may help alleviate the burden of therapy failure as antimicrobial resistance rises. Yet, to understand the therapeutic potential of interventions that target colonization, we must first understand the biology of colonization and if biomarkers at the colonization stage can be used to stratify infection risk. The bacterial genus Klebsiella includes many species with varying degrees of pathogenic potential. Members of the K. pneumoniae species complex have the highest pathogenic potential. Patients colonized in their gut by these bacteria are at higher risk of subsequent infection with their colonizing strain. However, we do not understand if other members of the gut microbiota can be used as a biomarker to predict infection risk. In this study, we show that the gut microbiota differs between colonized patients that develop an infection versus those that do not. Additionally, we show that integrating gut microbiota data with patient and bacterial factors improves the ability to predict infections. As we continue to explore colonization as an intervention point to prevent infections in individuals colonized by potential pathogens, we must develop effective means for predicting and stratifying infection risk.
Collapse
|
14
|
Zheng R, Jiang Y, Yan C, Li Y, Song X, Zheng P. Intra-Abdominal Hypertension Contributes to the Development of Ventilator-Associated Pneumonia from Intestinal Bacteria. Infect Drug Resist 2023; 16:1913-1921. [PMID: 37025194 PMCID: PMC10072333 DOI: 10.2147/idr.s403714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction Ventilator-associated pneumonia (VAP) is an ICU (intensive care unit)-acquired pulmonary parenchymal infection that is complicated by mechanical ventilation and is associated with high morbidity and mortality. Klebsiella pneumoniae (KPN) is known to asymptomatically colonize the gastrointestinal tract and may increase the incidence of corresponding VAP. Our study aims were to investigate the exact origin of the carbapenem-resistant Klebsiella pneumoniae (CRKP) causing VAP in our patient. Methods Various environmental samples, including the patient's anal swab, were collected in order to find the source of the bacteria. Minimum inhibitory concentrations (MICs) for antimicrobial agents were determined according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI); resistant genes were detected by using PCR and sequencing; clone relationships were analyzed by using multilocus-sequence typing (MLST) and pulsed field gel electrophoresis (PFGE). The IAP values were obtained via urinary catheter. Results One CRKP strain was detected in the patient's anal swab; this strain was confirmed with the same gene type as the strain isolated from the sputum. We found that the patient's intra-abdominal pressure (IAP) was 29.41, 27.06, 24.12, and 22.66 mmHg; the IAP was either equal to or above 12 mmHg, on the operation day and the following three days. Intra-abdominal hypertension (IAH) occurred during the patient's hospitalization and was considered to be caused by the surgical procedure. Meanwhile, we found that there was a correlation between IAH and the detection of CRKP in the sputum. The findings suggested that his VAP was caused by intestinal colonial KPN, and not from the environment. Discussion Our research illustrated that the ST11 KPC-2-producing strain colonized the intestinal tract and caused the development of VAP when the IAP was elevated. Routine screening for the intestinal carriage of CRKP, among patients in ICUs, can limit and prevent current and future outbreaks.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Yaxian Jiang
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Cheng Yan
- Medical School, Kunming University of Science and Technology, The First People’s Hospital of Yunnan, Kunming, People’s Republic of China
| | - Yikun Li
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xiaozhou Song
- Department of Infection Control, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
- Xiaozhou Song, Department of Infection Control, The First People’s Hospital of Yunnan Province, No. 157 of Jingbi Road, Kunming, People’s Republic of China, Tel +86 013888144965, Email
| | - Pengcheng Zheng
- Department of Pharmacy, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
- Correspondence: Pengcheng Zheng, Department of Pharmacy, The First People’s Hospital of Yunnan Province, No. 157 of Jingbi Road, Kunming, People’s Republic of China, Tel +86 013888116045, Email
| |
Collapse
|
15
|
Mason S, Vornhagen J, Smith SN, Mike LA, Mobley HLT, Bachman MA. The Klebsiella pneumoniae ter Operon Enhances Stress Tolerance. Infect Immun 2023; 91:e0055922. [PMID: 36651775 PMCID: PMC9933665 DOI: 10.1128/iai.00559-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Healthcare-acquired infections are a leading cause of disease in patients that are hospitalized or in long-term-care facilities. Klebsiella pneumoniae (Kp) is a leading cause of bacteremia, pneumonia, and urinary tract infections in these settings. Previous studies have established that the ter operon, a genetic locus that confers tellurite oxide (K2TeO3) resistance, is associated with infection in colonized patients. Rather than enhancing fitness during infection, the ter operon increases Kp fitness during gut colonization; however, the biologically relevant function of this operon is unknown. First, using a murine model of urinary tract infection, we demonstrate a novel role for the ter operon protein TerC as a bladder fitness factor. To further characterize TerC, we explored a variety of functions, including resistance to metal-induced stress, resistance to radical oxygen species-induced stress, and growth on specific sugars, all of which were independent of TerC. Then, using well-defined experimental guidelines, we determined that TerC is necessary for tolerance to ofloxacin, polymyxin B, and cetylpyridinium chloride. We used an ordered transposon library constructed in a Kp strain lacking the ter operon to identify the genes that are required to resist K2TeO3-induced and polymyxin B-induced stress, which suggested that K2TeO3-induced stress is experienced at the bacterial cell envelope. Finally, we confirmed that K2TeO3 disrupts the Kp cell envelope, though these effects are independent of ter. Collectively, the results from these studies indicate a novel role for the ter operon as a stress tolerance factor, thereby explaining its role in enhancing fitness in the gut and bladder.
Collapse
Affiliation(s)
- Sophia Mason
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jay Vornhagen
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura A. Mike
- Department of Medical Microbiology & Immunology, University of Toledo, Toledo, Ohio, USA
| | - Harry L. T. Mobley
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Yujiao H, Xinyu T, Xue F, Zhe L, Lin P, Guangliang S, Shu L. Selenium deficiency increased duodenal permeability and decreased expression of antimicrobial peptides by activating ROS/NF-κB signal pathway in chickens. Biometals 2023; 36:137-152. [PMID: 36434352 DOI: 10.1007/s10534-022-00468-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Selenium (Se) is an essential trace element for the body. Various organs of the body, including the intestine, are affected by its deficiency. Se deficiency can induce oxidative stress and inflammatory responses in the intestine. It can also increase intestinal permeability and decrease intestinal immune function in mammals. However, the detailed studies, conducted on the intestinal molecular mechanisms of Se deficiency-induced injury in poultry, are limited. This study explored the adverse effects of Se deficiency on intestinal permeability and its mechanism. A Se-deficient chicken model was established, and the morphological changes in the chicken duodenum tissues were observed using a light microscope and transmission electron microscope (TEM). Western blotting, qRT-PCR, and other methods were used to detect the expression levels of selenoproteins, oxidative stress indicators, inflammatory factors, tight junction (TJ) proteins, antimicrobial peptides, and other related indicators in intestinal tissues. The results showed that Se deficiency could decrease the expression levels of selenoproteins and antioxidant capacity, activate the nuclear factor kappa-B (NF-κB) pathway, cause inflammation, and decrease the expression levels of TJ proteins and antimicrobial peptides in the duodenum tissues. The study also demonstrated that Se deficiency could increase intestinal permeability and decrease antimicrobial peptides via reactive oxygen species (ROS)/NF-κB. This study provided a theoretical basis for the scientific prevention and control of Se deficiency in poultry. Se deficiency decreased the expression levels of selenoproteins and increased ROS levels to activate the NF-κB pathway, resulting in the production of pro-inflammatory cytokines, reducing the expression levels of TJ protein, and weakening the expression of antimicrobial peptides, which contributed to the higher intestinal permeability. Oxidative stress weakened the expression of antimicrobial peptides.
Collapse
Affiliation(s)
- He Yujiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tang Xinyu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Xue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Li Zhe
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Peng Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shi Guangliang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
17
|
Liu J, Dai M, Sun Q, Fang W. A typical multisite invasive infection caused by hvKP: A case report and literature review. Medicine (Baltimore) 2022; 101:e32592. [PMID: 36595971 PMCID: PMC9803426 DOI: 10.1097/md.0000000000032592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Hypervirulent K. pneumoniae (hvKP) is a new variant of K. pneumoniae that can caused metastatic spreading by blood, including Splenic abscess, endogenous endophthalmitis, purulent meningitis. This report described a case of A typical multisite invasive infection caused by hvKP and carry out a historical review of the literature. PATIENT CONCERNS A 55-year-old man was referred to our hospital due to liver abscess. Diabetes was found during this hospitalization. Because of glycemic was uncontrolled, splenic abscess, endogenous endophthalmitis and purulent meningitis occurred during subsequent treatment. DIAGNOSES We made s diagnosis of liver abscess and invasive K. pneumoniae liver abscess syndrome through generation sequencing and imaging features. INTERVENTIONS AND OUTCOMES The patient recovered and was subsequently discharged after mechanical ventilation, continuous renal replacement therapy, laparoscopic exploration and various antimicrobials. LESSONS HvKP are very aggressive and can disseminate to multiple sites, especially in patient who have diabetes, which is a treatment challenge for clinician.
Collapse
Affiliation(s)
- Jia Liu
- College of Medicine, Qingdao University, Qingdao, China
| | - Mingying Dai
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Sun
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Fang
- Department of Critical Care Medicine, Shandong First Medical University Affiliated Province Hospital, Jinan, China
- * Correspondence: Wei Fang, Department of Critical Care Medicine, Shandong First Medical University Affiliated Province Hospital, Jinan 250000, China (e-mail: )
| |
Collapse
|
18
|
Liang Z, Wang Y, Lai Y, Zhang J, Yin L, Yu X, Zhou Y, Li X, Song Y. Host defense against the infection of Klebsiella pneumoniae: New strategy to kill the bacterium in the era of antibiotics? Front Cell Infect Microbiol 2022; 12:1050396. [PMID: 36506034 PMCID: PMC9730340 DOI: 10.3389/fcimb.2022.1050396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a typical gram-negative iatrogenic bacterium that often causes bacteremia, pneumonia and urinary tract infection particularly among those with low immunity. Although antibiotics is the cornerstone of anti-infections, the clinical efficacy of β-lactamase and carbapenems drugs has been weakened due to the emergence of drug-resistant K. pneumoniae. Recent studies have demonstrated that host defense plays a critical role in killing K. pneumoniae. Here, we summarize our current understanding of host immunity mechanisms against K. pneumoniae, including mechanical barrier, innate immune cells, cellular immunity and humoral immunity, providing a theoretical basis and the new strategy for the clinical treatment of K. pneumoniae through improving host immunity.
Collapse
Affiliation(s)
- Zihan Liang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yiyao Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yixiang Lai
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Jingyi Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Lanlan Yin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xiang Yu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yongqin Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xinzhi Li
- College of Basic Medical Science, China Three Gorges University, Yichang, China,Affiliated Renhe Hospital of China Three Gorges University, Yichang, China,*Correspondence: Yinhong Song, ; Xinzhi Li,
| | - Yinhong Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China,College of Basic Medical Science, China Three Gorges University, Yichang, China,*Correspondence: Yinhong Song, ; Xinzhi Li,
| |
Collapse
|
19
|
Pot M, Reynaud Y, Couvin D, Dereeper A, Ferdinand S, Bastian S, Foucan T, Pommier JD, Valette M, Talarmin A, Guyomard-Rabenirina S, Breurec S. Emergence of a Novel Lineage and Wide Spread of a blaCTX-M-15/IncHI2/ST1 Plasmid among Nosocomial Enterobacter in Guadeloupe. Antibiotics (Basel) 2022; 11:1443. [PMID: 36290101 PMCID: PMC9598596 DOI: 10.3390/antibiotics11101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 04/04/2024] Open
Abstract
Between April 2018 and August 2019, a total of 135 strains of Enterobacter cloacae complex (ECC) were randomly collected at the University Hospital Center of Guadeloupe to investigate the structure and diversity of the local bacterial population. These nosocomial isolates were initially identified genetically by the hsp60 typing method, which revealed the clinical relevance of E. xiangfangensis (n = 69). Overall, 57/94 of the third cephalosporin-resistant strains were characterized as extended-spectrum-β-lactamase (ESBL) producers, and their whole-genome was sequenced using Illumina technology to determine the clonal relatedness and diffusion of resistance genes. We found limited genetic diversity among sequence types (STs). ST114 (n = 13), ST1503 (n = 9), ST53 (n = 5) and ST113 (n = 4), which belong to three different Enterobacter species, were the most prevalent among the 57 ESBL producers. The blaCTXM-15 gene was the most prevalent ESBL determinant (56/57) and was in most cases associated with IncHI2/ST1 plasmid replicon carriage (36/57). To fully characterize this predominant blaCTXM-15/IncHI2/ST1 plasmid, four isolates from different lineages were also sequenced using Oxford Nanopore sequencing technology to generate long-reads. Hybrid sequence analyses confirmed the circulation of a well-conserved plasmid among ECC members. In addition, the novel ST1503 and its associated species (ECC taxon 4) were analyzed, in view of its high prevalence in nosocomial infections. These genetic observations confirmed the overall incidence of nosocomial ESBL Enterobacteriaceae infections acquired in this hospital during the study period, which was clearly higher in Guadeloupe (1.59/1000 hospitalization days) than in mainland France (0.52/1,000 hospitalization days). This project revealed issues and future challenges for the management and surveillance of nosocomial and multidrug-resistant Enterobacter in the Caribbean.
Collapse
Affiliation(s)
- Matthieu Pot
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Yann Reynaud
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - David Couvin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Alexis Dereeper
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Séverine Ferdinand
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Sylvaine Bastian
- Laboratory of Clinical Microbiology, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Tania Foucan
- Operational Hygiene Team, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Jean-David Pommier
- Division of Intensive Care, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Marc Valette
- Division of Intensive Care, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Antoine Talarmin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | | | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
- Faculty of Medicine Hyacinthe Bastaraud, University of the Antilles, 97157 Pointe-à-Pitre, France
- INSERM, Center for Clinical Investigation 1424, 97139 Les Abymes, France
| |
Collapse
|
20
|
Wu X, Zhan F, Zhang J, Chen S, Yang B. Identification of hypervirulent Klebsiella pneumoniae carrying terW gene by MacConkey-potassium tellurite medium in the general population. Front Public Health 2022; 10:946370. [PMID: 36091562 PMCID: PMC9448990 DOI: 10.3389/fpubh.2022.946370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/05/2022] [Indexed: 01/21/2023] Open
Abstract
Objectives To establish a MacConkey-potassium tellurium medium-based method for selectively culturing terW gene-positive Klebsiella pneumoniae (KP), to evaluate its performance and apply it to identifying particular clonal hypervirulent KP (hvKP) strains in epidemiological surveillance. Methods The virulence genes, rmpA, iutA, and terW, were detected by PCR. The minimum inhibitory concentration of potassium tellurite of hvKP (rmpA +/ iutA +) and classical KP (rmpA - and iutA -) was determined using the agar dilution method. The MacConkey medium containing 4 μg/ml potassium tellurite was prepared and the performance in detecting terW + KP was evaluated, including an agreement with PCR and positive/negative predictive value. Fecal samples from healthy volunteers in Fujian were collected and cultured in the medium, then positive strains were identified using MALDI-TOF MS, antimicrobial susceptibility was tested by Kirby-Bauer assays, and virulence genes and capsular serotype genes were tested by PCR. Results In KP isolated from clinical specimens (N = 198), the positive rate of terW was 37.9%, and the detection rate of terW in hvKP was significantly higher than that in classical KP (70.6% vs 13.3%). The potassium tellurite resistance levels of terW + (N = 75) and terW - (N = 55) KP were 8-128 μg/ml and <1-8 μg/ml, respectively, with significant differences. KP was selectively cultured on a MacConkey medium with 4 μg/ml potassium tellurite, and its agreement with PCR was good (Kappa=0.936), and the positive and negative percent agreement and positive and negative predictive values were 100% (75/75), 92.7% (51/55), 94.9% (75/79), and 100% (51/51), respectively. The prevalence of tellurite-resistant KP was 16.7% (86/516) in fecal samples from healthy volunteers, among which the positive rate of terW was 100% (86/86). The antimicrobial resistance characteristics of terW + KP showed no difference between healthy volunteers and inpatients. The most common capsular serotypes associated with high virulence were K1, K2, and K57. Conclusions The MacConkey medium containing 4 μg/ml potassium tellurite could easily select and culture terW + KP in fecal samples with high sensitivity and specificity, which is a practical method for the epidemic surveillance of hvKP in the general population.
Collapse
Affiliation(s)
- Xiufeng Wu
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fuguo Zhan
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,First Clinical College, Fujian Medical University, Fuzhou, China
| | - Jiawei Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,First Clinical College, Fujian Medical University, Fuzhou, China
| | - Shanjian Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,First Clinical College, Fujian Medical University, Fuzhou, China
| | - Bin Yang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,First Clinical College, Fujian Medical University, Fuzhou, China,*Correspondence: Bin Yang
| |
Collapse
|
21
|
Vornhagen J, Roberts EK, Unverdorben L, Mason S, Patel A, Crawford R, Holmes CL, Sun Y, Teodorescu A, Snitkin ES, Zhao L, Simner PJ, Tamma PD, Rao K, Kaye KS, Bachman MA. Combined comparative genomics and clinical modeling reveals plasmid-encoded genes are independently associated with Klebsiella infection. Nat Commun 2022; 13:4459. [PMID: 35915063 PMCID: PMC9343666 DOI: 10.1038/s41467-022-31990-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
Members of the Klebsiella pneumoniae species complex frequently colonize the gut and colonization is associated with subsequent infection. To identify genes associated with progression from colonization to infection, we undertook a case-control comparative genomics study. Concordant cases (N = 85), where colonizing and invasive isolates were identical strain types, were matched to asymptomatically colonizing controls (N = 160). Thirty-seven genes are associated with infection, 27 of which remain significant following adjustment for patient variables and bacterial phylogeny. Infection-associated genes are not previously characterized virulence factors, but instead a diverse group of stress resistance, regulatory and antibiotic resistance genes, despite careful adjustment for antibiotic exposure. Many genes are plasmid borne, and for some, the relationship with infection is mediated by gut dominance. Five genes were validated in a geographically-independent cohort of colonized patients. This study identifies several genes reproducibly associated with progression to infection in patients colonized by diverse Klebsiella.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Emily K Roberts
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lavinia Unverdorben
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sophia Mason
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alieysa Patel
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Crawford
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Caitlyn L Holmes
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yuang Sun
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra Teodorescu
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Evan S Snitkin
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lili Zhao
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia J Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MI, USA
| | - Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MI, USA
| | - Krishna Rao
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Keith S Kaye
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Kochan TJ, Nozick SH, Medernach RL, Cheung BH, Gatesy SWM, Lebrun-Corbin M, Mitra SD, Khalatyan N, Krapp F, Qi C, Ozer EA, Hauser AR. Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates. BMC Infect Dis 2022; 22:603. [PMID: 35799130 PMCID: PMC9263067 DOI: 10.1186/s12879-022-07558-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae strains have been divided into two major categories: classical K. pneumoniae, which are frequently multidrug-resistant and cause hospital-acquired infections in patients with impaired defenses, and hypervirulent K. pneumoniae, which cause severe community-acquired and disseminated infections in normal hosts. Both types of infections may lead to bacteremia and are associated with significant morbidity and mortality. The relative burden of these two types of K. pneumoniae among bloodstream isolates within the United States is not well understood. METHODS We evaluated consecutive K. pneumoniae isolates cultured from the blood of hospitalized patients at Northwestern Memorial Hospital (NMH) in Chicago, Illinois between April 2015 and April 2017. Bloodstream isolates underwent whole genome sequencing, and sequence types (STs), capsule loci (KLs), virulence genes, and antimicrobial resistance genes were identified in the genomes using the bioinformatic tools Kleborate and Kaptive. Patient demographic, comorbidity, and infection information, as well as the phenotypic antimicrobial resistance of the isolates were extracted from the electronic health record. Candidate hypervirulent isolates were tested in a murine model of pneumonia, and their plasmids were characterized using long-read sequencing. We also extracted STs, KLs, and virulence and antimicrobial resistance genes from the genomes of bloodstream isolates submitted from 33 United States institutions between 2007 and 2021 to the National Center for Biotechnology Information (NCBI) database. RESULTS Consecutive K. pneumoniae bloodstream isolates (n = 104, one per patient) from NMH consisted of 75 distinct STs and 51 unique capsule loci. The majority of these isolates (n = 58, 55.8%) were susceptible to all tested antibiotics except ampicillin, but 17 (16.3%) were multidrug-resistant. A total of 32 (30.8%) of these isolates were STs of known high-risk clones, including ST258 and ST45. In particular, 18 (17.3%) were resistant to ceftriaxone (of which 17 harbored extended-spectrum beta-lactamase genes) and 9 (8.7%) were resistant to meropenem (all of which harbored a carbapenemase genes). Four (3.8%) of the 104 isolates were hypervirulent K. pneumoniae, as evidenced by hypermucoviscous phenotypes, high levels of virulence in a murine model of pneumonia, and the presence of large plasmids similar to characterized hypervirulence plasmids. These isolates were cultured from patients who had not recently traveled to Asia. Two of these hypervirulent isolates belonged to the well characterized ST23 lineage and one to the re-emerging ST66 lineage. Of particular concern, two of these isolates contained plasmids with tra conjugation loci suggesting the potential for transmission. We also analyzed 963 publicly available genomes of K. pneumoniae bloodstream isolates from locations within the United States. Of these, 465 (48.3%) and 760 (78.9%) contained extended-spectrum beta-lactamase genes or carbapenemase genes, respectively, suggesting a bias towards submission of antibiotic-resistant isolates. The known multidrug-resistant high-risk clones ST258 and ST307 were the predominant sequence types. A total of 32 (3.3%) of these isolates contained aerobactin biosynthesis genes and 26 (2.7%) contained at least two genetic features of hvKP strains, suggesting elevated levels of virulence. We identified 6 (0.6%) isolates that were STs associated with hvKP: ST23 (n = 4), ST380 (n = 1), and ST65 (n = 1). CONCLUSIONS Examination of consecutive isolates from a single center demonstrated that multidrug-resistant high-risk clones are indeed common, but a small number of hypervirulent K. pneumoniae isolates were also observed in patients with no recent travel history to Asia, suggesting that these isolates are undergoing community spread in the United States. A larger collection of publicly available bloodstream isolate genomes also suggested that hypervirulent K. pneumoniae strains are present but rare in the USA; however, this collection appears to be heavily biased towards highly antibiotic-resistant isolates (and correspondingly away from hypervirulent isolates).
Collapse
Affiliation(s)
- Travis J Kochan
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Sophia H Nozick
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Rachel L Medernach
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Bettina H Cheung
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel W M Gatesy
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Marine Lebrun-Corbin
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Sumitra D Mitra
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Natalia Khalatyan
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Fiorella Krapp
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Chao Qi
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
23
|
Venturini C, Bowring B, Partridge SR, Ben Zakour NL, Fajardo-Lubian A, Lopez Ayala A, Qin J, Totsika M, van Galen G, Norris J, Iredell J. Co-Occurrence of Multidrug Resistant Klebsiella pneumoniae Pathogenic Clones of Human Relevance in an Equine Pneumonia Case. Microbiol Spectr 2022; 10:e0215821. [PMID: 35579468 PMCID: PMC9241755 DOI: 10.1128/spectrum.02158-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
The global epidemiology of multidrug resistant Klebsiella pneumoniae, a serious threat to both animal and human health, is dominated by the spread of pathogenic clones, each separately evolving via acquisition of transferable antibiotic resistance or niche-specific virulence determinants. In horses, K. pneumoniae infection can lead to severe respiratory illness. Here, we characterized multiple isolates recovered from bronchial aspirates of a mare with pneumonia refractory to antibiotics. First, we used a combination of standard microbiology, bacteriophage cross-susceptibility and antibiotic resistance testing to profile the infecting K. pneumoniae population. The genomes of isolates with distinct fingerprints (pulsed-field gel electrophoresis) and unique combined bacteriophage/antibiotic profiles were then further analyzed using whole-genome sequencing. Adhesion to human epithelial cells and biofilm production were also measured as virulence indicators. Although it is commonly expected for one clone to dominate an infection episode, we identified five coexisting multidrug resistant K. pneumoniae sharing the same niche. One was a novel sequence type (ST4656), while the other four were all members of emerging human pathogenic clonal groups (ST307, ST628, ST893 and ST392). These isolates did not display significant differences from one another in terms of virulence or resistance and differed only in plasmid content from isolates implicated in severe human infections, with equal potential to prolong duration and severity of infection when sharing the same niche. This study highlights the importance of more precise surveillance and detection measures to uncover bacterial heterogeneity, reminding us that the "single clone" concept is not an absolute in invasive bacterial infections. IMPORTANCE Multidrug resistant Klebsiella pneumoniae are agents of life-threatening infections in animals and humans, with several multidrug resistant clones causing outbreaks of disease worldwide. It is generally accepted that only one clone will be dominant in an infection episode. In this study, we investigated K. pneumoniae isolates from a horse with severe pneumonia and demonstrated co-occurrence of multiple sequence types previously identified as emerging human pathogens. The equine isolates are not significantly different from one another in terms of virulence or resistance, with equal potential to prolong duration and severity of infection, and are indistinguishable from isolates recovered from humans, except for plasmid content. Our study highlights how the "one dominant clone" concept is not an absolute in severe infection, illustrating the need for improved diagnostics to track heterogeneity of infection, and reinforces the importance of cross-monitoring of environmental and human reservoirs of multidrug resistant pathogens.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Sally R. Partridge
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney School of Medicine, University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney Local Health District (WSLHD), Westmead, New South Wales, Australia
| | - Nouri L. Ben Zakour
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney School of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Alicia Fajardo-Lubian
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney School of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Ariana Lopez Ayala
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney School of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gaby van Galen
- Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Jacqueline Norris
- Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney School of Medicine, University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney Local Health District (WSLHD), Westmead, New South Wales, Australia
| |
Collapse
|
24
|
Peng W, Wang Y, Fu Y, Deng Z, Lin S, Liang R. Characterization of the Tellurite-Resistance Properties and Identification of the Core Function Genes for Tellurite Resistance in Pseudomonas citronellolis SJTE-3. Microorganisms 2022; 10:microorganisms10010095. [PMID: 35056544 PMCID: PMC8779313 DOI: 10.3390/microorganisms10010095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Tellurite is highly toxic to bacteria and commonly used in the clinical screening for pathogens; it is speculated that there is a potential relationship between tellurite resistance and bacterial pathogenicity. Until now, the core function genes of tellurite resistance and their characteristics are still obscure. Pseudomonas citronellolis SJTE-3 was found able to resist high concentrations of tellurite (250 μg/mL) and formed vacuole-like tellurium nanostructures. The terZABCDE gene cluster located in the large plasmid pRBL16 endowed strain SJTE-3 with the tellurite resistance of high levels. Although the terC and terD genes were identified as the core function genes for tellurite reduction and resistance, the inhibition of cell growth was observed when they were used solely. Interestingly, co-expression of the terA gene or terZ gene could relieve the burden caused by the expression of the terCD genes and recover normal cell growth. TerC and TerD proteins commonly shared the conserved sequences and are widely distributed in many pathogenic bacteria, highly associated with the pathogenicity factors.
Collapse
Affiliation(s)
- Wanli Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanqiu Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yali Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel./Fax: +86-21-34204192
| |
Collapse
|
25
|
Martin MJ, Corey BW, Sannio F, Hall LR, MacDonald U, Jones BT, Mills EG, Harless C, Stam J, Maybank R, Kwak Y, Schaufler K, Becker K, Hübner NO, Cresti S, Tordini G, Valassina M, Cusi MG, Bennett JW, Russo TA, McGann PT, Lebreton F, Docquier JD. Anatomy of an extensively drug-resistant Klebsiella pneumoniae outbreak in Tuscany, Italy. Proc Natl Acad Sci U S A 2021; 118:e2110227118. [PMID: 34819373 PMCID: PMC8640832 DOI: 10.1073/pnas.2110227118] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
A protracted outbreak of New Delhi metallo-β-lactamase (NDM)-producing carbapenem-resistant Klebsiella pneumoniae started in Tuscany, Italy, in November 2018 and continued in 2020 and through 2021. To understand the regional emergence and transmission dynamics over time, we collected and sequenced the genomes of 117 extensively drug-resistant, NDM-producing K. pneumoniae isolates cultured over a 20-mo period from 76 patients at several healthcare facilities in southeast Tuscany. All isolates belonged to high-risk clone ST-147 and were typically nonsusceptible to all first-line antibiotics. Albeit sporadic, resistances to colistin, tigecycline, and fosfomycin were also observed as a result of repeated, independent mutations. Genomic analysis revealed that ST-147 isolates circulating in Tuscany were monophyletic and highly genetically related (including a network of 42 patients from the same hospital and sharing nearly identical isolates), and shared a recent ancestor with clinical isolates from the Middle East. While the blaNDM-1 gene was carried by an IncFIB-type plasmid, our investigations revealed that the ST-147 lineage from Italy also acquired a hybrid IncFIB/IncHIB-type plasmid carrying the 16S methyltransferase armA gene as well as key virulence biomarkers often found in hypervirulent isolates. This plasmid shared extensive homologies with mosaic plasmids circulating globally including from ST-11 and ST-307 convergent lineages. Phenotypically, the carriage of this hybrid plasmid resulted in increased siderophore production but did not confer virulence to the level of an archetypical, hypervirulent K. pneumoniae in a subcutaneous model of infection with immunocompetent CD1 mice. Our findings highlight the importance of performing genomic surveillance to identify emerging threats.
Collapse
Affiliation(s)
- Melissa J Martin
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Brendan W Corey
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, University of Siena I-53100 Siena, Italy
| | - Lindsey R Hall
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Ulrike MacDonald
- Veterans Administration Western New York Healthcare System, University at Buffalo, State University of New York, Buffalo, NY 14215
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY 14203
| | - Brendan T Jones
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Emma G Mills
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Casey Harless
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Jason Stam
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Rosslyn Maybank
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Yoon Kwak
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Katharina Schaufler
- Institute of Pharmacy, Pharmaceutical Microbiology, University of Greifswald, 17489 Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University of Kiel, 24105 Kiel, Germany
- Institute of Infection Medicine, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Karsten Becker
- Friedrich Loeffler Institute of Medical Microbiology, University of Greifswald, 17475 Greifswald, Germany
| | - Nils-Olaf Hübner
- Central Unit for Infection Prevention and Control, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stefania Cresti
- Dipartimento di Biotecnologie Mediche, University of Siena I-53100 Siena, Italy
- Unita Operativa Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria Senese, I-53100 Siena, Italy
| | - Giacinta Tordini
- Dipartimento di Biotecnologie Mediche, University of Siena I-53100 Siena, Italy
- Unita Operativa Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria Senese, I-53100 Siena, Italy
| | - Marcello Valassina
- Unita Operativa Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria Senese, I-53100 Siena, Italy
| | - Maria Grazia Cusi
- Dipartimento di Biotecnologie Mediche, University of Siena I-53100 Siena, Italy
- Unita Operativa Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria Senese, I-53100 Siena, Italy
| | - Jason W Bennett
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Thomas A Russo
- Veterans Administration Western New York Healthcare System, University at Buffalo, State University of New York, Buffalo, NY 14215
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY 14203
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY 14203
- The Witebsky Center for Microbial Pathogenesis, University at Buffalo, State University of New York, Buffalo, NY 14203
| | - Patrick T McGann
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Francois Lebreton
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD 20910;
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, University of Siena I-53100 Siena, Italy;
- Centre d'Ingénierie des Protéines-InBioS, Université de Liège B-4000 Liège, Belgium
| |
Collapse
|
26
|
Parra-Flores J, Holý O, Riffo F, Lepuschitz S, Maury-Sintjago E, Rodríguez-Fernández A, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Troncoso M, Figueroa G, Ruppitsch W, Forsythe S. Profiling the Virulence and Antibiotic Resistance Genes of Cronobacter sakazakii Strains Isolated From Powdered and Dairy Formulas by Whole-Genome Sequencing. Front Microbiol 2021; 12:694922. [PMID: 34276629 PMCID: PMC8278472 DOI: 10.3389/fmicb.2021.694922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cronobacter sakazakii is an enteropathogen that causes neonatal meningitis, septicemia, and necrotizing enterocolitis in preterm infants and newborns with a mortality rate of 15 to 80%. Powdered and dairy formulas (P-DF) have been implicated as major transmission vehicles and subsequently the presence of this pathogen in P-DF led to product recalls in Chile in 2017. The objective of this study was to use whole genome sequencing (WGS) and laboratory studies to characterize Cronobacter strains from the contaminated products. Seven strains were identified as C. sakazakii, and the remaining strain was Franconibacter helveticus. All C. sakazakii strains adhered to a neuroblastoma cell line, and 31 virulence genes were predicted by WGS. The antibiograms varied between strains. and included mcr-9.1 and bla CSA genes, conferring resistance to colistin and cephalothin, respectively. The C. sakazakii strains encoded I-E and I-F CRISPR-Cas systems, and carried IncFII(pECLA), Col440I, and Col(pHHAD28) plasmids. In summary, WGS enabled the identification of C. sakazakii strains and revealed multiple antibiotic resistance and virulence genes. These findings support the decision to recall the contaminated powdered and dairy formulas from the Chilean market in 2017.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondrej Holý
- Department of Public Health, Palacký University Olomouc, Olomouc, Czechia
| | | | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Faculty of Medicine, Biological Sciences Graduate Program, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | |
Collapse
|