1
|
Koyanagi N, Hengphasatporn K, Kato A, Nobe M, Takeshima K, Maruzuru Y, Maenaka K, Shigeta Y, Kawaguchi Y. Regulatory mimicry of cyclin-dependent kinases by a conserved herpesvirus protein kinase. Proc Natl Acad Sci U S A 2025; 122:e2500264122. [PMID: 40238458 PMCID: PMC12037052 DOI: 10.1073/pnas.2500264122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Herpesviruses encode conserved protein kinases (CHPKs) that target cellular cyclin-dependent kinase (CDK) phosphorylation sites; thus, they are termed viral CDK-like kinases. Tyrosine 15 in the GxGxxG motifs of CDK1 and CDK2, whose phosphorylation down-regulates their catalytic activities, is conserved in the corresponding motifs of CHPKs. We found that CHPK UL13, the corresponding Tyr-162 in herpes simplex virus 2 (HSV-2), was phosphorylated in HSV-2-infected cells. Mutational analyses of HSV-2 UL13 Tyr-162 suggested that phosphorylation of UL13 Tyr-162 reduced the phosphorylation of all UL13 substrates tested in HSV-2-infected cells. These findings suggested that HSV-2 UL13 mimicked the regulatory mechanism of CDKs and that this CHPK has regulatory and functional mimicry with CDKs. Furthermore, phosphorylation of HSV-2 UL13 Tyr-162 was suggested to be required for the downregulation of viral replication and pathogenicity, specifically in the brains of mice, and for efficient viral recurrence in guinea pigs. These findings highlight the dual impact of the regulatory mimicry of CDKs by CHPK on the fine-tuned regulation of lytic and latent HSV-2 infections in vivo.
Collapse
Grants
- JP20wm0125002 Japan Agency for Medical Research and Development (AMED)
- JP22fk0108640 Japan Agency for Medical Research and Development (AMED)
- JP22gm1610008 Japan Agency for Medical Research and Development (AMED)
- JP223fa627001 Japan Agency for Medical Research and Development (AMED)
- JP23wm0225031 Japan Agency for Medical Research and Development (AMED)
- JP23wm0225035 Japan Agency for Medical Research and Development (AMED)
- 20H05692 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H00338 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H04803 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H00417 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05584 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMJPR22R5 MEXT | Japan Science and Technology Agency (JST)
Collapse
Affiliation(s)
- Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Research Center for Asian Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, Tsukuba305-8577, Ibaraki, Japan
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Research Center for Asian Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Moeka Nobe
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Kosuke Takeshima
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Yuhei Maruzuru
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Research Center for Asian Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku060-0812, Sapporo, Japan
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku060-0812, Sapporo, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba305-8577, Ibaraki, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Research Center for Asian Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center, Minato-ku 108-8639, Tokyo, Japan
| |
Collapse
|
2
|
Dunn G, Domanico LF, Taylor MP. The producer cell type of HSV-1 alters the proteomic contents and infectious capacity of virions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647173. [PMID: 40236157 PMCID: PMC11996478 DOI: 10.1101/2025.04.04.647173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The cell that a virus replicates in i.e., the producer cell, can alter the macromolecular composition and infectious capacity of the virions that are produced. Herpes Simplex virus type 1 (HSV-1) primarily infects keratinocytes of the epidermis or oral mucosa prior to establishing latency in neurons of the peripheral nervous system, where the virus can persist for the lifetime of the host. Many cell lines that are used to amplify HSV-1 are derived from species and tissue types that are less physiologically relevant to HSV-1 disease. To understand if the producer cell type influences HSV-1 infection, we tested the infectivity of HSV-1 derived from immortalized African green monkey kidney cells (vero), immortalized human keratinocytes (HaCaT), and primary human foreskin fibroblasts (HFF-1). We observed that the producer cell type alters the capacity of HSV-1 to produce viral proteins and infectious virions from infected cells and susceptibility to inhibition of replication by interferon treatment. HaCaT-derived HSV-1 consistently exhibited enhanced replication over HFF-1 or vero-derived virus. To determine if the producer cell type changes the protein composition of virions, we performed an untargeted LC/MS-MS analysis of virions purified from each cell line. Comparison of virion associated proteins revealed quantitative differences in composition of both cellular and viral proteins including ICP0, pUL24 and pUL42. These results highlight the influence that the producer cell-type has on HSV-1 infection outcomes and suggest that cell type specific factors can alter HSV-1 and impact viral replication. Importance Approximately 67% of the human population harbors HSV-1 infection. To study HSV-1 infection, laboratories utilize several different cell lines to propagate HSV-1 for downstream experiments. The type of cell used to produce a virus, i.e. the producer cell type, can alter the macromolecular composition, immunogenicity, and infectivity of the virions that are produced across several virus families. We found that the producer cell type of HSV-1 alters virion infectivity and virion protein composition. Therefore, the producer cell type may have implications in the spread of HSV-1 and subsequent disease outcomes in humans. Our results also raise concerns about how the use of different ceil types to propagate HSV-1 may alter the outcome, interpretation, and reproducibility of experimental results.
Collapse
|
3
|
Ortigas-Vasquez A, Szpara M. Embracing Complexity: What Novel Sequencing Methods Are Teaching Us About Herpesvirus Genomic Diversity. Annu Rev Virol 2024; 11:67-87. [PMID: 38848592 DOI: 10.1146/annurev-virology-100422-010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The arrival of novel sequencing technologies throughout the past two decades has led to a paradigm shift in our understanding of herpesvirus genomic diversity. Previously, herpesviruses were seen as a family of DNA viruses with low genomic diversity. However, a growing body of evidence now suggests that herpesviruses exist as dynamic populations that possess standing variation and evolve at much faster rates than previously assumed. In this review, we explore how strategies such as deep sequencing, long-read sequencing, and haplotype reconstruction are allowing scientists to dissect the genomic composition of herpesvirus populations. We also discuss the challenges that need to be addressed before a detailed picture of herpesvirus diversity can emerge.
Collapse
Affiliation(s)
- Alejandro Ortigas-Vasquez
- Departments of Biology and of Biochemistry and Molecular Biology; Center for Infectious Disease Dynamics; and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Moriah Szpara
- Departments of Biology and of Biochemistry and Molecular Biology; Center for Infectious Disease Dynamics; and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
4
|
Shallal MJM, Nasser HA, Naif AAH. Sequence analysis of isolated strains of herpes zoster virus among patients with shingles. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:524-535. [PMID: 39267939 PMCID: PMC11389764 DOI: 10.18502/ijm.v16i4.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background and Objectives Herpes zoster, or shingles, is caused by the varicella-zoster virus (VZV), which initially presents as chickenpox in children. VZV is a global health concern, especially in winter and spring, affecting 10-20% of adults over 50 and posing a 30% risk for the general population. This study used PCR to detect VZV, confirming results with duplicated DNA samples and identifying 234 bp fragments by targeting the gpB gene. Materials and Methods This study examined 50 herpes zoster cases from October 2020 to April 2021, involving 30 males and 20 females aged 10 to 90, diagnosed by dermatologists. Data were collected via a questionnaire. PCR detected VZV by amplifying the gpB and MCP genes from skin lesion samples. Six positive 234-bp PCR products were sequenced at Macrogen Inc. in Seoul, South Korea. Results Six DNA samples with 234 bp amplicons were sequenced, showing 99-100% similarity to human alpha herpesvirus sequences in the gpB gene. NCBI BLAST matched these sequences to a reference (GenBank acc. MT370830.1), assigning accession numbers LC642111, LC642112, and LC642113. Eight nucleic acid substitutions caused amino acid changes in the gpB protein: isoleucine to threonine, serine to isoleucine, and threonine to Proline. These variants were deposited in NCBI GenBank as gpB3 samples. Conclusion The study found high sequence similarity to known VZV sequences, identifying six nucleic acid variations and eight SNPs. Notable amino acid changes in the gpB protein were deposited in NCBI GenBank as the gpB3 sample.
Collapse
Affiliation(s)
| | - Hind Ali Nasser
- Department of Microbiology, College of Medicine, University of Thi-Qar, Thi-Qar, Iraq
| | | |
Collapse
|
5
|
Höfler T, Nascimento MM, Zeitlow M, Kim JY, Trimpert J. Evolutionary Dynamics of Accelerated Antiviral Resistance Development in Hypermutator Herpesvirus. Mol Biol Evol 2024; 41:msae119. [PMID: 38879872 PMCID: PMC11226790 DOI: 10.1093/molbev/msae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/09/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024] Open
Abstract
Antiviral therapy is constantly challenged by the emergence of resistant pathogens. At the same time, experimental approaches to understand and predict resistance are limited by long periods required for evolutionary processes. Here, we present a herpes simplex virus 1 mutant with impaired proofreading capacity and consequently elevated mutation rates. Comparing this hypermutator to parental wild type virus, we study the evolution of antiviral drug resistance in vitro. We model resistance development and elucidate underlying genetic changes against three antiviral substances. Our analyzes reveal no principle difference in the evolutionary behavior of both viruses, adaptive processes are overall similar, however significantly accelerated for the hypermutator. We conclude that hypermutator viruses are useful for modeling adaptation to antiviral therapy. They offer the benefit of expedited adaptation without introducing apparent bias and can therefore serve as an accelerator to predict natural evolution.
Collapse
Affiliation(s)
- Thomas Höfler
- Institut für Virologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| | - Mariana Mara Nascimento
- Institut für Virologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| | - Michaela Zeitlow
- Institut für Virologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| | - Ji Yoon Kim
- Institut für Virologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
6
|
Sobkowiak B, Haghmaram P, Prystajecky N, Zlosnik JEA, Tyson J, Hoang LMN, Colijn C. The utility of SARS-CoV-2 genomic data for informative clustering under different epidemiological scenarios and sampling. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105484. [PMID: 37531976 DOI: 10.1016/j.meegid.2023.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES Clustering pathogen sequence data is a common practice in epidemiology to gain insights into the genetic diversity and evolutionary relationships among pathogens. We can find groups of cases with a shared transmission history and common origin, as well as identifying transmission hotspots. Motivated by the experience of clustering SARS-CoV-2 cases using whole genome sequence data during the COVID-19 pandemic to aid with public health investigation, we investigated how differences in epidemiology and sampling can influence the composition of clusters that are identified. METHODS We performed genomic clustering on simulated SARS-CoV-2 outbreaks produced with different transmission rates and levels of genomic diversity, along with varying the proportion of cases sampled. RESULTS In single outbreaks with a low transmission rate, decreasing the sampling fraction resulted in multiple, separate clusters being identified where intermediate cases in transmission chains are missed. Outbreaks simulated with a high transmission rate were more robust to changes in the sampling fraction and largely resulted in a single cluster that included all sampled outbreak cases. When considering multiple outbreaks in a sampled jurisdiction seeded by different introductions, low genomic diversity between introduced cases caused outbreaks to be merged into large clusters. If the transmission and sampling fraction, and diversity between introductions was low, a combination of the spurious break-up of outbreaks and the linking of closely related cases in different outbreaks resulted in clusters that may appear informative, but these did not reflect the true underlying population structure. Conversely, genomic clusters matched the true population structure when there was relatively high diversity between introductions and a high transmission rate. CONCLUSION Differences in epidemiology and sampling can impact our ability to identify genomic clusters that describe the underlying population structure. These findings can help to guide recommendations for the use of pathogen clustering in public health investigations.
Collapse
Affiliation(s)
| | - Pouya Haghmaram
- Department of Mathematics, Simon Fraser University, Burnaby, Canada
| | - Natalie Prystajecky
- BC Centre for Disease Control Public Health Laboratory, BC Centre for Disease Control, Vancouver, Canada; Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Canada
| | - James E A Zlosnik
- BC Centre for Disease Control Public Health Laboratory, BC Centre for Disease Control, Vancouver, Canada
| | - John Tyson
- BC Centre for Disease Control Public Health Laboratory, BC Centre for Disease Control, Vancouver, Canada
| | - Linda M N Hoang
- BC Centre for Disease Control Public Health Laboratory, BC Centre for Disease Control, Vancouver, Canada; Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Canada
| | - Caroline Colijn
- Department of Mathematics, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
7
|
López-Muñoz AD, Rastrojo A, Martín R, Alcami A. High-throughput engineering of cytoplasmic- and nuclear-replicating large dsDNA viruses by CRISPR/Cas9. J Gen Virol 2022; 103:001797. [PMID: 36260063 PMCID: PMC10019086 DOI: 10.1099/jgv.0.001797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The application of CRISPR/Cas9 to improve genome engineering efficiency for large dsDNA viruses has been extensively described, but a robust and versatile method for high-throughput generation of marker-free recombinants for a desired locus has not yet been reported. Cytoplasmic-replicating viruses use their own repair enzymes for homologous recombination, while nuclear-replicating viruses use the host repair machinery. This is translated into a wide range of Cas9-induced homologous recombination efficiencies, depending on the virus replication compartment and viral/host repair machinery characteristics and accessibility. However, the use of Cas9 as a selection agent to target parental virus genomes robustly improves the selection of desired recombinants across large dsDNA viruses. We used ectromelia virus (ECTV) and herpes simplex virus (HSV) type 1 and 2 to optimize a CRISPR/Cas9 method that can be used versatilely for efficient genome editing and selection of both cytoplasmic- and nuclear-replicating viruses. We performed a genome-wide genetic variant analysis of mutations located at predicted off-target sequences for 20 different recombinants, showing off-target-free accuracy by deep sequencing. Our results support this optimized method as an efficient, accurate and versatile approach to enhance the two critical factors of high-throughput viral genome engineering: generation and colour-based selection of recombinants. This application of CRISPR/Cas9 reduces the time and labour for screening of desired recombinants, allowing for high-throughput generation of large collections of mutant dsDNA viruses for a desired locus, optimally in less than 2 weeks.
Collapse
Affiliation(s)
- Alberto Domingo López-Muñoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Present address: Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Present address: Genetic Unit, Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|