1
|
Bhattacharya T, Alleman EM, Freeman TS, Noyola AC, Emerman M, Malik HS. A conserved opal termination codon optimizes a temperature-dependent trade-off between protein production and processing in alphaviruses. SCIENCE ADVANCES 2025; 11:eads7933. [PMID: 40249804 DOI: 10.1126/sciadv.ads7933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Most mosquito-transmitted alphaviruses encode a premature opal termination codon upstream of their viral polymerase. We show that the Sindbis virus (SINV) opal codon outperforms other stop codons in primate cells at 37°C due to optimal translational readthrough. However, increased readthrough of all stop codons reduces opal preference at 28°C in primate and mosquito cells. Opal also outperforms all sense codons because opal-to-sense substitutions lead to excess polyprotein production at 37°C, disrupting orderly polyprotein processing and production of viral genomic RNAs (gRNAs) required for virus production. Increased readthrough at 28°C dampens the fitness advantages of opal codons. Unexpectedly, we find that a naturally occurring SINV mutation restores sense-codon fitness by further delaying polyprotein processing, allowing adequate time to produce gRNAs. Similar temperature-dependent mechanisms occur in the distantly related dual-host alphavirus, Ross River virus. Our work highlights sophisticated strategies dual-host alphaviruses use to optimize replication in divergent temperatures through a single codon.
Collapse
Affiliation(s)
| | - Eva M Alleman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tiia S Freeman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Michael Emerman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Harmit S Malik
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
2
|
Stumpf MM, Brunetti T, Davenport BJ, McCarthy MK, Morrison TE. Deep mutationally scanned CHIKV E3/E2 virus library maps viral amino acid preferences and predicts viral escape mutants of neutralizing CHIKV antibodies. J Virol 2025; 99:e0008125. [PMID: 40145739 PMCID: PMC11998513 DOI: 10.1128/jvi.00081-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
As outbreaks of chikungunya virus (CHIKV), a mosquito-borne alphavirus, continue to present public health challenges, additional research is needed to generate protective and safe vaccines and effective therapeutics. Prior research established a role for antibodies in mediating protection against CHIKV infection, and the early appearance of CHIKV-specific IgG or IgG neutralizing antibodies protects against progression to chronic CHIKV disease in humans. However, the importance of epitope specificity for these protective antibodies and how skewed responses contribute to the development of acute and chronic CHIKV-associated joint disease remains poorly understood. Here, we describe the deep mutational scanning of one of the dominant targets of neutralizing antibodies during CHIKV infection, the E3/E2 (also known as p62) glycoprotein complex, to simultaneously test thousands of p62 mutants against selective pressures of interest in a high throughput manner. Characterization of the virus library revealed achievement of high diversity while also selecting out nonfunctional virus variants. Furthermore, this study provides evidence that this virus library system can comprehensively map sites critical for the neutralization function of antibodies of both known and unknown p62 domain specificities.IMPORTANCEChikungunya virus (CHIKV) is a mosquito-borne alphavirus of global health concern that causes debilitating acute and chronic joint disease. Prior studies established a critical role for antibodies in protection against CHIKV infection. Here, we describe the generation of a high-throughput, functional virus library capable of identifying critical functional sites for anti-viral antibodies. This new tool can be used to better understand antibody responses associated with distinct CHIKV infection outcomes and could contribute to the development of efficacious vaccines and antibody-based therapeutics.
Collapse
Affiliation(s)
- Megan M. Stumpf
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bennett J. Davenport
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary K. McCarthy
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Spector SN, Noval MG, Stapleford KA. Differential restriction of chikungunya virus in primary human cardiac endothelial cells occurs at multiple steps in the viral life cycle. PLoS Negl Trop Dis 2025; 19:e0012534. [PMID: 40063631 PMCID: PMC11918386 DOI: 10.1371/journal.pntd.0012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/18/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Arthropod-borne viruses (arboviruses) constitute a significant ongoing public health threat, as the mechanisms of pathogenesis remain incompletely understood. Cardiovascular symptomatology is emerging as an important manifestation of arboviral infection. We have recently studied the cardiac tropism implicated in cardiac infection in mice for the alphavirus chikungunya virus (CHIKV), and we therefore sought to evaluate the cardiac tropism of other emerging alphaviruses and arboviruses. Using human primary cardiac cells, we found that arboviruses from diverse viral families were able to replicate within these cells. Interestingly, we noted that while the closely related alphavirus Mayaro virus (MAYV) could replicate to high titers in primary human cardiac microvascular endothelial cells, pulmonary, and brain endothelial cells, the Indian Ocean Lineage of CHIKV (CHIKV-IOL) was restricted in all endothelial cells tested. Upon further investigation, we discovered that this restriction occurs at both entry and egress stages. Additionally, we observed that compared to CHIKV, MAYV may antagonize or evade the innate immune response more efficiently in human cardiac endothelial cells to increase infection. Overall, this study explores the tropism of arboviruses in human primary cardiac cells and characterizes the strain-specific restriction of CHIKV-IOL in human endothelial cells. Further work is needed to understand how the differential restriction of alphaviruses in human endothelial cells impacts pathogenesis in a living model, as well as the specific host factors responsible.
Collapse
Affiliation(s)
- Sophie N. Spector
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Stumpf MM, Brunetti T, Davenport BJ, McCarthy MK, Morrison TE. Deep mutationally scanned (DMS) CHIKV E3/E2 virus library maps viral amino acid preferences and predicts viral escape mutants of neutralizing CHIKV antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626854. [PMID: 39677653 PMCID: PMC11643203 DOI: 10.1101/2024.12.04.626854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
As outbreaks of chikungunya virus (CHIKV), a mosquito-borne alphavirus, continue to present public health challenges, additional research is needed to generate protective and safe vaccines and effective therapeutics. Prior research has established a role for antibodies in mediating protection against CHIKV infection, and the early appearance of CHIKV-specific IgG or IgG neutralizing antibodies protects against progression to chronic CHIKV disease in humans. However, the importance of epitope specificity for these protective antibodies and how skewed responses contribute to development of acute and chronic CHIKV-associated joint disease remains poorly understood. Here, we describe the deep mutational scanning of one of the dominant targets of neutralizing antibodies during CHIKV infection, the E3/E2 (also known as p62) glycoprotein complex, to simultaneously test thousands of p62 mutants against selective pressures of interest in a high throughput manner. Characterization of the virus library revealed achievement of high diversity while also selecting out non-functional virus variants. Furthermore, this study provides evidence that this virus library system can comprehensively map sites critical for the neutralization function of antibodies of both known and unknown p62 domain specificities.
Collapse
Affiliation(s)
- Megan M. Stumpf
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | - Bennett J. Davenport
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | - Mary K. McCarthy
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| |
Collapse
|
5
|
Spector SN, Noval MG, Stapleford KA. Differential restriction of chikungunya virus in primary human cardiac endothelial cells occurs at multiple steps in the viral life cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612809. [PMID: 39314478 PMCID: PMC11419142 DOI: 10.1101/2024.09.13.612809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Arthropod-borne viruses (arboviruses) constitute a significant ongoing public health threat, as the mechanisms of pathogenesis remain incompletely understood. Cardiovascular symptomatology is emerging as an important manifestation of arboviral infection. We have recently studied the cardiac tropism and mechanisms implicated in cardiac damage in mice for the alphavirus chikungunya virus (CHIKV), and we therefore sought to evaluate the cardiac tropism of other emerging alphaviruses and arboviruses. Using human primary cardiac cells, we found that arboviruses from diverse viral families were able to replicate within these cells. Interestingly, we noted that while the closely related alphavirus Mayaro virus (MAYV) could replicate to high titers in primary human cardiac microvascular endothelial cells, pulmonary, and brain endothelial cells, the Indian Ocean Lineage of CHIKV (CHIKV-IOL) was completely restricted in all endothelial cells tested. Upon further investigation, we discovered that this restriction occurs at both entry and egress stages. Additionally, we observed that compared to CHIKV, MAYV may antagonize or evade the innate immune response more efficiently in human cardiac endothelial cells to increase infection. Overall, this study explores the tropism of arboviruses in human primary cardiac cells and characterizes the strain-specific restriction of CHIKV-IOL in human endothelial cells. Further work is needed to understand how the differential restriction of alphaviruses in human endothelial cells impacts pathogenesis in a living model, as well as the specific host factors responsible.
Collapse
Affiliation(s)
- Sophie N. Spector
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
6
|
Griffon AF, Rault L, Simon-Lorière E, Dupont-Rouzeyrol M, Inizan C. Development of a competition assay to assess the in vitro fitness of dengue virus serotypes using an optimized serotype-specific qRT-PCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.611934. [PMID: 39314409 PMCID: PMC11419098 DOI: 10.1101/2024.09.10.611934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Comparing the in vitro fitness of dengue virus (DENV) isolates is a pivotal approach to assess the contribution of DENV strains' replicative fitness to epidemiological contexts, including serotype replacements. Competition assays are the gold standard to compare the in vitro replicative fitness of viral strains. Implementing competition assays between DENV serotypes requires an experimental setup and an appropriate read-out to quantify the viral progeny of strains belonging to different serotypes. Results In the current study, we optimized an existing serotyping qRT-PCR by adapting primer/probe design and multiplexing the serotype-specific qRT-PCR reactions, allowing to accurately detect and quantify all four DENV serotypes. The qRT-PCR was specific, had a limit of detection of at least 5.08×101, 5.16×101, 7.14×101 and 1.36 ×101 genome copies/μL, an efficiency of 1.993, 1.975, 1.902, 1.898 and a linearity (R2) of 0.99975, 0.99975, 0.9985, 0.99965 for DENV-1, -2, -3 and -4 respectively. Challenge of this multiplex serotype-specific qRT-PCR on mixes of viral supernatants containing known concentrations of strains from two serotypes evidenced an accurate quantification of the amount of genome copies of each serotype. We next developed an in vitro assay to compare the replicative fitness of two DENV serotypes in the human hepatic cell line HuH7: quantification of the viral progeny of each serotype in the inoculum and the supernatant using the serotype-specific multiplex qRT-PCR unveiled an enrichment of the supernatant in DENV-1 genome copies, uncovering the enhanced replicative fitness of this DENV-1 isolate. Conclusions This optimized qRT-PCR combined to a relevant cellular model allowed to accurately quantify the viral progeny of two DENV strains belonging to two different serotypes in a competition assay, allowing to determine which strain had a replicative advantage. This reliable experimental setup is adaptable to the comparative study of the replicative fitness of any DENV serotypes.
Collapse
Affiliation(s)
- Anne-Fleur Griffon
- Dengue and Arboviroses - Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| | - Loeïza Rault
- Dengue and Arboviroses - Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| | - Etienne Simon-Lorière
- Evolutionary genomics of RNA viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Myrielle Dupont-Rouzeyrol
- Dengue and Arboviroses - Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| | - Catherine Inizan
- Dengue and Arboviroses - Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| |
Collapse
|
7
|
Bhattacharya T, Alleman EM, Noyola AC, Emerman M, Malik HS. A conserved opal termination codon optimizes a temperature-dependent tradeoff between protein production and processing in alphaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609082. [PMID: 39229031 PMCID: PMC11370586 DOI: 10.1101/2024.08.21.609082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Alphaviruses are enveloped, single-stranded, positive-sense RNA viruses that often require transmission between arthropod and vertebrate hosts for their sustained propagation. Most alphaviruses encode an opal (UGA) termination codon in nonstructural protein 3 (nsP3) upstream of the viral polymerase, nsP4. The selective constraints underlying the conservation of the opal codon are poorly understood. Using primate and mosquito cells, we explored the role and selective pressure on the nsP3 opal codon through extensive mutational analysis in the prototype alphavirus, Sindbis virus (SINV). We found that the opal codon is highly favored over all other codons in primate cells under native 37°C growth conditions. However, this preference is diminished in mosquito and primate cells grown at a lower temperature. Thus, the primary determinant driving the selection of the opal stop codon is not host genetics but the passaging temperature. We show that the opal codon is preferred over amber and ochre termination codons because it results in the highest translational readthrough and polymerase production. However, substituting the opal codon with sense codons leads to excessive full-length polyprotein (P1234) production, which disrupts optimal nsP polyprotein processing, delays the switch from minus-strand to positive-strand RNA production, and significantly reduces SINV fitness at 37°C; this fitness defect is relieved at lower temperatures. A naturally occurring suppressor mutation unexpectedly compensates for a delayed transition from minus to genomic RNA production by also delaying the subsequent transition between genomic and sub-genomic RNA production. Our study reveals that the opal stop codon is the best solution for alphavirus replication at 37°C, producing enough nsP4 protein to maximize replication without disrupting nsP processing and RNA replication transitions needed for optimal fitness. Our study uncovers the intricate strategy dual-host alphaviruses use at a single codon to optimize fitness.
Collapse
Affiliation(s)
| | - Eva M. Alleman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexander C. Noyola
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Michael Emerman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Harmit S. Malik
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
8
|
Beranek MD, Giayetto O, Fischer S, Diaz A. Assessment of Mayaro virus vector competence of the mosquito Aedes aegypti (Linnaeus, 1762) populations in Argentine using dose-response assays. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:234-243. [PMID: 38489505 DOI: 10.1111/mve.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
Mayaro virus (MAYV; Alphavirus: Togaviridae) is an emerging pathogen in Latin America, causing fever and polyarthritis. Sporadic outbreaks of MAYV have occurred in the region, with reported human cases being imported to Europe and North America. Although primarily a risk for those residing in the Amazon basin's tropical forests, recent reports highlight that urbanization would increase the risk of MAYV transmission in Latin America. Urban emergence depends on human susceptibility and the ability of mosquitos like Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) to transmit MAYV. Despite the absence of active MAYV transmission in Argentine, the risk of introduction is substantial due to human movement and the presence of Ae. aegypti in the region. This study aimed to evaluate the susceptibility of different Argentine Ae. aegypti populations to MAYV genotype L (MAYV-L) using dose-response assays and determine barriers to virus infection, dissemination and transmission. Immature mosquito stages were collected in Buenos Aires, Córdoba and Rosario cities. Female Ae. aegypti (F2) were orally infected by feeding on five concentrations of MAYV-L, ranging from 1.0 to 6.0 log10 PFU/mL. Abdomens, legs and saliva were analysed using viral plaque assays. Results revealed that MAYV-L between infection and dissemination were associated with viral doses rather than the population origin. Infection rates varied between 3% and 65%, with a 50% infectious dose >5.5 log10 PFU/mL. Dissemination occurred at 39%, with a 50% dissemination dose of ~6.0 log10 PFU/mL. Dissemination among infected mosquitoes ranged from 60% to 86%, and transmission from disseminated mosquitoes ranged from 11% to 20%. Argentine Ae. aegypti populations exhibited a need for higher viral doses of MAYV-L than those typically found in humans to become infected. In addition, only a small proportion of infected mosquitoes were capable of transmitting the virus. Understanding MAYV transmission in urban areas is crucial for public health interventions.
Collapse
Affiliation(s)
- Mauricio Daniel Beranek
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Octavio Giayetto
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sylvia Fischer
- Departamento de Ecología, Genética y Evolución Instituto de Ecología, Genética y Evolución de Buenos Aires, Facultad de Ciencias Exactas Físicas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adrián Diaz
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
9
|
Marques RE, Shimizu JF, Nogueira ML, Vasilakis N. Current challenges in the discovery of treatments against Mayaro fever. Expert Opin Ther Targets 2024; 28:345-356. [PMID: 38714500 PMCID: PMC11189740 DOI: 10.1080/14728222.2024.2351504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/01/2024] [Indexed: 05/10/2024]
Abstract
INTRODUCTION Mayaro fever is an emerging viral disease that manifests as an acute febrile illness. The disease is self-limiting, however joint pain can persist for months leading to chronic arthralgia. There is no specific treatment available, which ultimately leads to socioeconomic losses in populations at risk as well as strains to the public health systems. AREAS COVERED We reviewed the candidate treatments proposed for Mayaro virus (MAYV) infection and disease, including antiviral compounds targeting viral or host mechanisms, and pathways involved in disease development and pathogenicity. We assessed compound screening technologies and experimental infection models used in these studies and indicated the advantages and limitations of available technologies and intended therapeutic strategies. EXPERT OPINION Although several compounds have been suggested as candidate treatments against MAYV infection, notably those with antiviral activity, most compounds were assessed only in vitro. Compounds rarely progress toin vivo or preclinical studies, and such difficulty may be associated with limited experimental models. MAYV biology is largely inferred from related alphaviruses and reflected by few studies focusing on target proteins or mechanisms of action for MAYV. Therapeutic strategies targeting pathogenic inflammatory responses have shown potential against MAYV-induced disease in vivo, which might reduce long-term sequelae.
Collapse
Affiliation(s)
- Rafael Elias Marques
- Brazilian Biosciences National Laboratory – LNBio, Brazilian Center for Research in Energy and Materials – CNPEM, Campinas, São Paulo, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory – LNBio, Brazilian Center for Research in Energy and Materials – CNPEM, Campinas, São Paulo, Brazil
| | - Maurício Lacerda Nogueira
- Faculdade de Medicina de São Jose do Rio Preto - FAMERP, São Jose do Rio Preto, São Paulo, Brazil
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Nikos Vasilakis
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
10
|
Weber WC, Labriola CS, Kreklywich CN, Ray K, Haese NN, Andoh TF, Denton M, Medica S, Streblow MM, Smith PP, Mizuno N, Frias N, Fisher MB, Barber-Axthelm AM, Chun K, Uttke S, Whitcomb D, DeFilippis V, Rakshe S, Fei SS, Axthelm MK, Smedley JV, Streblow DN. Mayaro virus pathogenesis and immunity in rhesus macaques. PLoS Negl Trop Dis 2023; 17:e0011742. [PMID: 37983245 PMCID: PMC10695392 DOI: 10.1371/journal.pntd.0011742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/04/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that causes debilitating and persistent arthritogenic disease. While MAYV was previously reported to infect non-human primates (NHP), characterization of MAYV pathogenesis is currently lacking. Therefore, in this study we characterized MAYV infection and immunity in rhesus macaques. To inform the selection of a viral strain for NHP experiments, we evaluated five MAYV strains in C57BL/6 mice and showed that MAYV strain BeAr505411 induced robust tissue dissemination and disease. Three male rhesus macaques were subcutaneously challenged with 105 plaque-forming units of this strain into the arms. Peak plasma viremia occurred at 2 days post-infection (dpi). NHPs were taken to necropsy at 10 dpi to assess viral dissemination, which included the muscles and joints, lymphoid tissues, major organs, male reproductive tissues, as well as peripheral and central nervous system tissues. Histological examination demonstrated that MAYV infection was associated with appendicular joint and muscle inflammation as well as presence of perivascular inflammation in a wide variety of tissues. One animal developed a maculopapular rash and two NHP had viral RNA detected in upper torso skin samples, which was associated with the presence of perivascular and perifollicular lymphocytic aggregation. Analysis of longitudinal peripheral blood samples indicated a robust innate and adaptive immune activation, including the presence of anti-MAYV neutralizing antibodies with activity against related Una virus and chikungunya virus. Inflammatory cytokines and monocyte activation also peaked coincident with viremia, which was well supported by our transcriptomic analysis highlighting enrichment of interferon signaling and other antiviral processes at 2 days post MAYV infection. The rhesus macaque model of MAYV infection recapitulates many of the aspects of human infection and is poised to facilitate the evaluation of novel therapies and vaccines targeting this re-emerging virus.
Collapse
Affiliation(s)
- Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Karina Ray
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Takeshi F. Andoh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Magdalene M. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Patricia P. Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nobuyo Mizuno
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nina Frias
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Miranda B. Fisher
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Aaron M. Barber-Axthelm
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Kimberly Chun
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Samantha Uttke
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Danika Whitcomb
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Shauna Rakshe
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Suzanne S. Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|