1
|
Guan H, Wu H, Gan M, Zhang J, Wang J, Liu S, Chen S, Jiao Y, Li F, Huang S, Lin S, Chen H, Feng Y, Cheng C, Song H, Wang C, Zheng L, Fu J, Ouyang S. Contact-dependent antagonism is mediated by a T7SSb toxin effector-immunity protein pair via ADP-ribosylation. Sci Bull (Beijing) 2025:S2095-9273(25)00255-5. [PMID: 40175176 DOI: 10.1016/j.scib.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Affiliation(s)
- Hongxin Guan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Huan Wu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Mengrou Gan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jing Zhang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajun Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Siyao Liu
- Center for Infectious Diseases and Pathogen Biology, the First Hospital of Jilin University, Changchun 130021, China
| | - Shuyue Chen
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yindi Jiao
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Fan Li
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shiqing Huang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Sihuang Lin
- First Hospital of Quanzhou Affiliated with Fujian Medical University, Quanzhou 362000, China
| | - Hongwei Chen
- First Hospital of Quanzhou Affiliated with Fujian Medical University, Quanzhou 362000, China
| | - Yue Feng
- Beijing University of Chemical Technology, Beijing 100029, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang Province, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang Province, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengyuan Wang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated with Fujian Medical University, Quanzhou 362000, China.
| | - Jiaqi Fu
- Center for Infectious Diseases and Pathogen Biology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
2
|
Spencer BL, Nguyen DT, Marroquin SM, Gapin L, O’Brien RL, Doran KS. Characterization of the Cellular Immune Response to Group B Streptococcal Vaginal Colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635275. [PMID: 39975125 PMCID: PMC11838357 DOI: 10.1101/2025.01.29.635275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Introduction Group B Streptococcus (GBS) asymptomatic colonizes the female genital tract (FGT) but can contribute to adverse pregnancy outcomes including pre-term birth, chorioamnionitis, and neonatal infection. We previously observed that GBS elicits FGT cytokine responses, including IL-17, during murine vaginal colonization; yet the anti-GBS cellular immune response during colonization remained unknown. We hypothesized that GBS may induce cellular immunity, resulting in FGT clearance. Methods Herein, we utilize depleting antibodies and knockout mice and performed flow cytometry to investigate cellular immunes responses during GBS colonization. Results We found that neutrophils (effectors of the IL-17 response) are important for GBS mucosal control as neutrophil depletion promoted increased GBS burdens in FGT tissues. Flow cytometric analysis of immune populations in the vagina, cervix, and uterus revealed, however, that GBS colonization did not induce a marked increase in FGT CD45+ immune cells. We also found that that Vγ6+ γδ T cells comprise a primary source of FGT IL-17. Finally, using knockout mice, we observed that IL-17-producing γδ T cells are important for the control of GBS in the FGT during murine colonization. Conclusions Taken together, this work characterizes FGT cellular immunity and suggests that GBS colonization does not elicit a significant immune response, which may be a bacterial directed adaptive outcome. However, certain FGT immune cells, such as neutrophils and ɣδ T cells, contribute to host defense and control of GBS colonization.
Collapse
Affiliation(s)
- Brady L. Spencer
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Dustin T. Nguyen
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Stephanie M. Marroquin
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Laurent Gapin
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Rebecca L. O’Brien
- National Jewish Health, Department of Biomedical Research, Denver, CO, USA
| | - Kelly S. Doran
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| |
Collapse
|
3
|
Job AM, Doran KS, Spencer BL. A group B streptococcal type VII-secreted LXG toxin mediates interbacterial competition and colonization of the murine female genital tract. mBio 2024; 15:e0208824. [PMID: 39189749 PMCID: PMC11481500 DOI: 10.1128/mbio.02088-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Group B Streptococcus (GBS) asymptomatically colonizes the vagina but can opportunistically ascend to the uterus and be transmitted vertically during pregnancy, resulting in neonatal pneumonia, bacteremia, and meningitis. GBS is a leading etiologic agent of neonatal infection and understanding the mechanisms by which GBS persists within the polymicrobial female genital mucosa has the potential to mitigate subsequent transmission and disease. Type VIIb secretion systems (T7SSb) are encoded by Bacillota and often mediate interbacterial competition using LXG toxins that contain conserved N-termini important for secretion and variable C-terminal toxin domains that confer diverse biochemical activities. Our recent work characterized a role for the GBS T7SSb in vaginal colonization and ascending infection but the mechanisms by which the T7SSb promotes GBS persistence in this polymicrobial niche remain unknown. Herein, we investigate the GBS T7SS in interbacterial competition and GBS niche establishment in the female genital tract. We demonstrate GBS T7SS-dependent inhibition of mucosal pathobiont Enterococcus faecalis both in vitro using predator-prey assays and in vivo in the murine genital tract and found that a GBS LXG protein encoded within the T7SS locus (herein named group B streptococcal LXG Toxin A) contributes to these phenotypes. We identify BltA as a T7SS substrate that is toxic to E. coli and S. aureus upon induction of intracellular expression along with associated chaperones. Finally, we show that BltA and its chaperones contribute to GBS vaginal colonization. Altogether, these data reveal a role for a novel T7b-secreted toxin in GBS mucosal persistence and competition.IMPORTANCECompetition between neighboring, non-kin bacteria is essential for microbial niche establishment in mucosal environments. Gram-positive bacteria encoding T7SSb have been shown to engage in competition through the export of LXG-motif-containing toxins, but these have not been characterized in group B Streptococcus (GBS), an opportunistic colonizer of the polymicrobial female genital tract. Here, we show a role for GBS T7SS in competition with mucosal pathobiont Enterococcus faecalis, both in vitro and in vivo. We further find that a GBS LXG protein contributing to this antagonism is exported by the T7SS and is intracellularly toxic to other bacteria; therefore, we have named this protein group B streptococcal LXG Toxin A (BltA). Finally, we show that BltA and its associated chaperones promote persistence within female genital tract tissues, in vivo. These data reveal previously unrecognized mechanisms by which GBS may compete with other mucosal opportunistic pathogens to persist within the female genital tract.
Collapse
Affiliation(s)
- Alyx M. Job
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, Colorado, USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, Colorado, USA
| |
Collapse
|
4
|
Kamboyi HK, Paudel A, Shawa M, Sugawara M, Zorigt T, Chizimu JY, Kitao T, Furuta Y, Hang'ombe BM, Munyeme M, Higashi H. EsxA, a type VII secretion system-dependent effector, reveals a novel function in the sporulation of Bacillus cereus ATCC14579. BMC Microbiol 2024; 24:351. [PMID: 39289639 PMCID: PMC11406982 DOI: 10.1186/s12866-024-03492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Bacillus cereus is a Gram-positive, spore-forming bacterium that produces a spectrum of effectors integral to bacterial niche adaptation and the development of various infections. Among those is EsxA, whose secretion depends on the EssC component of the type VII secretion system (T7SS). EsxA's roles within the bacterial cell are poorly understood, although postulations indicate that it may be involved in sporulation. However, the T7SS repertoire in B. cereus has not been reported, and its functions are unestablished. METHODS We used the type strain, B. cereus ATCC14579, to generate ΔessC mutant through homologous recombination using the homing endonuclease I-SceI mediated markerless gene replacement. Comparatively, we analyzed the culture supernatant of type strain and the ΔessC mutant through Liquid chromatography-tandem mass spectrometry (LC-MS/MS). We further generated T7SSb-specific gene mutations to explore the housekeeping roles of the T7SSb-dependent effectors. The sporulation process of B. cereus ATCC14579 and its mutants was observed microscopically through the classic Schaeffer-Fulton staining method. The spore viability of each strain in this study was established by enumerating the colony-forming units on LB agar. RESULTS Through LC-MS/MS, we identified a pair of nearly identical (94%) effector proteins named EsxA belonging to the sagEsxA-like subfamily of the WXG100 protein superfamily in the culture supernatant of the wild type and none in the ΔessC mutant. Homology analysis of the T7SSb gene cluster among B. cereus strains revealed diversity from the 3' end of essC, encoding additional substrates. Deletions in esxA1 and esxA2 neither altered cellular morphology nor growth rate, but the ΔesxA1ΔesxA2 deletion resulted in significantly fewer viable spores and an overall slower sporulation process. Within 24 h culture, more than 80% of wild-type cells formed endospores compared to less than 5% in the ΔesxA1ΔesxA2 mutant. The maximum spore ratios for the wild type and ΔesxA1ΔesxA2 were 0.96 and 0.72, respectively. Altogether, these results indicated that EsxA1 and EsxA2 work cooperatively and are required for sporulation in B. cereus ATCC14567. CONCLUSION B. cereus ATCC14579 possesses two nearly identical T7SSb-dependent effectors belonging to the sagEsxA-like proteins. Simultaneous deletion of genes encoding these effectors significantly delayed and reduced sporulation, a novel finding for EsxA.
Collapse
Affiliation(s)
- Harvey K Kamboyi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Atmika Paudel
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- GenEndeavor LLC, 26219 Eden Landing Rd, Hayward, CA, 94545, USA
| | - Misheck Shawa
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Hokudai Center for Zoonosis Control in Zambia, University of Zambia, Lusaka, Zambia
| | - Misa Sugawara
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tuvshinzaya Zorigt
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Joseph Y Chizimu
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia
| | - Tomoe Kitao
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Bernard M Hang'ombe
- Microbiology Unit, Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Musso Munyeme
- Public Health Unit, Disease Control Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
5
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
6
|
Awad MM, Suraweera CD, Vidor CJ, Ye-Lin AY, Williams GC, Mileto SJ, Barlow CK, McGowan S, Lyras D. A Clostridioides difficile endolysin modulates toxin secretion without cell lysis. Commun Biol 2024; 7:1044. [PMID: 39179651 PMCID: PMC11344133 DOI: 10.1038/s42003-024-06730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
The Clostridia produce and secrete Large Clostridial Glucosylating Toxins (LCGTs) responsible for disease symptoms, but the secretion mechanism is largely unknown. Recently, a holin-like protein was shown to be essential for toxin secretion. Holins, typically bacteriophage-specific proteins, are part of the holin-endo(lysin) system that releases phage progeny. To determine if the clostridia also use a lysin, we investigated two conserved putative lysins, M7404_01910 and M7404_02200, in the release of the LCGTs TcdA and TcdB from a Clostridioides difficile ribotype 027 strain, M7404. Sequence analysis and structural modelling indicates that both proteins are related to N-acetylmuramoyl-l-alanine amidases, similar to CD27L, a lysin from the C. difficile phage ΦCD27. Disruption of these genes reveal that only M7404_02200 contributes to toxin secretion and does so in a non-lytic fashion. Peptidoglycan hydrolysis assays show that recombinant M7404_02200 is an active peptidoglycan amidase, confirming its role in TcdA and TcdB secretion in C. difficile M7404.
Collapse
Affiliation(s)
- Milena M Awad
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Chathura D Suraweera
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Callum J Vidor
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Auberon Y Ye-Lin
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Galain C Williams
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Steven J Mileto
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Christopher K Barlow
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Monash Proteomics & Metabolomics Platform, Monash University, Clayton, 3800, Australia
| | - Sheena McGowan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Dena Lyras
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
7
|
Ledvina HE, Whiteley AT. Conservation and similarity of bacterial and eukaryotic innate immunity. Nat Rev Microbiol 2024; 22:420-434. [PMID: 38418927 PMCID: PMC11389603 DOI: 10.1038/s41579-024-01017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Pathogens are ubiquitous and a constant threat to their hosts, which has led to the evolution of sophisticated immune systems in bacteria, archaea and eukaryotes. Bacterial immune systems encode an astoundingly large array of antiviral (antiphage) systems, and recent investigations have identified unexpected similarities between the immune systems of bacteria and animals. In this Review, we discuss advances in our understanding of the bacterial innate immune system and highlight the components, strategies and pathogen restriction mechanisms conserved between bacteria and eukaryotes. We summarize evidence for the hypothesis that components of the human immune system originated in bacteria, where they first evolved to defend against phages. Further, we discuss shared mechanisms that pathogens use to overcome host immune pathways and unexpected similarities between bacterial immune systems and interbacterial antagonism. Understanding the shared evolutionary path of immune components across domains of life and the successful strategies that organisms have arrived at to restrict their pathogens will enable future development of therapeutics that activate the human immune system for the precise treatment of disease.
Collapse
Affiliation(s)
- Hannah E Ledvina
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
8
|
Job AM, Doran KS, Spencer BL. A group B streptococcal type VII secreted LXG toxin mediates interbacterial competition and colonization of the female genital tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598350. [PMID: 38915665 PMCID: PMC11195062 DOI: 10.1101/2024.06.10.598350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Group B Streptococcus (GBS) asymptomatically colonizes the vagina but can opportunistically ascend to the uterus and be transmitted vertically during pregnancy, resulting in neonatal pneumonia, bacteremia and meningitis. GBS is a leading etiologic agent of neonatal infection and understanding the mechanisms by which GBS persists within the polymicrobial female genital mucosa has potential to mitigate subsequent transmission and disease. Type VIIb secretion systems (T7SSb) are encoded by Firmicutes and often mediate interbacterial competition using LXG toxins that contain conserved N-termini important for secretion and variable C-terminal toxin domains that confer diverse biochemical activities. Our recent work characterized a role for the GBS T7SSb in vaginal colonization and ascending infection but the mechanisms by which the T7SSb promotes GBS persistence in this polymicrobial niche remain unknown. Herein, we investigate the GBS T7SS in interbacterial competition and GBS niche establishment in the female genital tract. We demonstrate GBS T7SS-dependent inhibition of mucosal pathobiont Enterococcus faecalis both in vitro using predator-prey assays and in vivo in the murine genital tract and found that a GBS LXG protein encoded within the T7SS locus (herein named group B streptococcal LXG Toxin A) that contributes to these phenotypes. We identify BltA as a T7SS substrate that is toxic to E. coli and S. aureus upon induction of expression along with associated chaperones. Finally, we show that BltA and its chaperones contribute to GBS vaginal colonization. Altogether, these data reveal a role for a novel T7b-secreted toxin in GBS mucosal persistence and competition.
Collapse
Affiliation(s)
- Alyx M. Job
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| |
Collapse
|
9
|
Manqele A, Adesiyun A, Mafuna T, Pierneef R, Moerane R, Gcebe N. Virulence Potential and Antimicrobial Resistance of Listeria monocytogenes Isolates Obtained from Beef and Beef-Based Products Deciphered Using Whole-Genome Sequencing. Microorganisms 2024; 12:1166. [PMID: 38930548 PMCID: PMC11205329 DOI: 10.3390/microorganisms12061166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterial pathogen that threatens the food chain and human health. In this study, whole-genome sequencing (WGS) was used for the genomic characterization of L. monocytogenes (n = 24) from beef and beef-based products. Multilocus Sequence Type (MLST) analysis revealed that ST204 of CC204 was the most common sequence type (ST). Other sequence types detected included ST1 and ST876 of CC1, ST5 of CC5, ST9 of CC9, ST88 of CC88, ST2 and ST1430 of CC2, and ST321 of CC321. Genes encoding for virulence factors included complete LIPI-1 (pfrA-hly-plcA-plcB-mpl-actA) from 54% (13/24) of the isolates of ST204, ST321, ST1430, and ST9 and internalin genes inlABC that were present in all the STs. All the L. monocytogenes STs carried four intrinsic/natural resistance genes, fosX, lin, norB, and mprF, conferring resistance to fosfomycin, lincosamide, quinolones, and cationic peptides, respectively. Plasmids pLGUG1 and J1776 were the most detected (54% each), followed by pLI100 (13%) and pLM5578 (7%). The prophage profile, vB_LmoS_188, was overrepresented amongst the isolates, followed by LP_101, LmoS_293_028989, LP_030_2_021539, A006, and LP_HM00113468. Listeria genomic island 2 (LGI-2) was found to be present in all the isolates, while Listeria genomic island 3 (LGI-3) was present in a subset of isolates (25%). The type VII secretion system was found in 42% of the isolates, and sortase A was present in all L. monocytogenes genomes. Mobile genetic elements and genomic islands did not harbor any virulence, resistance, or environmental adaptation genes that may benefit L. monocytogenes. All the STs did not carry genes that confer resistance to first-line antibiotics used for the treatment of listeriosis. The characterization of L. monocytogenes in our study highlighted the environmental resistance and virulence potential of L. monocytogenes and the risk posed to the public, as this bacterium is frequently found in food and food processing environments.
Collapse
Affiliation(s)
- Ayanda Manqele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| | - Abiodun Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Department of Basic Veterinary Sciences, University of the West Indies, St. Augustine 999183, Trinidad and Tobago
| | - Thendo Mafuna
- Department of Biochemistry, University of Johannesburg, Johannesburg 20062028, South Africa
| | - Rian Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa
- SARChI Chair: Marine Microbiomics, microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Nomakorinte Gcebe
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| |
Collapse
|
10
|
Garrett SR, Palmer T. The role of proteinaceous toxins secreted by Staphylococcus aureus in interbacterial competition. FEMS MICROBES 2024; 5:xtae006. [PMID: 38495077 PMCID: PMC10941976 DOI: 10.1093/femsmc/xtae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Staphylococcus aureus is highly adapted to colonization of the mammalian host. In humans the primary site of colonization is the epithelium of the nasal cavity. A major barrier to colonization is the resident microbiota, which have mechanisms to exclude S. aureus. As such, S. aureus has evolved mechanisms to compete with other bacteria, one of which is through secretion of proteinaceous toxins. S. aureus strains collectively produce a number of well-characterized Class I, II, and IV bacteriocins as well as several bacteriocin-like substances, about which less is known. These bacteriocins have potent antibacterial activity against several Gram-positive organisms, with some also active against Gram-negative species. S. aureus bacteriocins characterized to date are sporadically produced, and often encoded on plasmids. More recently the type VII secretion system (T7SS) of S. aureus has also been shown to play a role in interbacterial competition. The T7SS is encoded by all S. aureus isolates and so may represent a more widespread mechanism of competition used by this species. T7SS antagonism is mediated by the secretion of large protein toxins, three of which have been characterized to date: a nuclease toxin, EsaD; a membrane depolarizing toxin, TspA; and a phospholipase toxin, TslA. Further study is required to decipher the role that these different types of secreted toxins play in interbacterial competition and colonization of the host.
Collapse
Affiliation(s)
- Stephen R Garrett
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
11
|
Rong D, Liu Z, Huang J, Zhang F, Wu Q, Dai J, Li Y, Zhao M, Li Q, Zhang J, Wu S. Prevalence and characterization of Staphylococcus aureus and Staphylococcus argenteus isolated from rice and flour products in Guangdong, China. Int J Food Microbiol 2023; 406:110348. [PMID: 37573713 DOI: 10.1016/j.ijfoodmicro.2023.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
Staphylococcus aureus and Staphylococcus argenteus have been implicated in food poisoning outbreaks, and have been found in various types of food products according to our previous study. Rice and flour products are popular and widely consumed around the world. However, limited data are available on the microbial safety of S. aureus in rice and flour products, and S. argenteus has never been reported. Thus, this study aimed to investigate the contamination of S. aureus and S. argenteus in 250 fresh rice and flour product samples from five cities in Guangdong, China. According to qualitative and quantitative analyses, 68 (27.2 %) and 11 (4.4 %) samples were positive for S. aureus and S. argenteus, including 9 samples that exceeded 100 MPN/g. For antibiotics susceptibility tests in 16 antibiotics, the S. aureus isolates exhibited higher rates of resistance and multidrug resistance than S. argenteus. The S. aureus and S. argenteus isolates were mainly resistant to penicillin (70.21 %; 79.17 %), tetracycline (20.21 %; 58.33 %) and azithromycin (19.68 %, 8.33 %). However, the other antibiotic resistance rates were <10 %. Furthermore, the genetic background of the isolates was analyzed by whole-genome sequencing (WGS). As a result, the S. aureus isolates were divided into 18 known sequence types (STs) and 4 novel STs (ST7675, ST7679, ST7680 and ST7682), which mainly belonged to ST188 (20.6 %) and ST6 (14.7 %). The S. argenteus isolates mainly belonged to ST2250 (90.9 %), with a novel type (ST7683). In total, 36 and 16 antibiotic resistance genes (ARGs) were found in S. aureus and S. argenteus isolates, respectively. In addition, 91 virulence genes (VFs) were detected in S. aureus isolates as well as 90 % of core VFs were similar to S. argenteus. More than 20 % of the S. aureus isolates carried the classic enterotoxin gene (sea-sec), but chp, cna and map were free in all S. argenteus isolates. Importantly, 33.8 % of S. aureus isolates belonged to the immune evasion cluster (IEC) type B, whereas most of S. argenteus isolates (90.9 %) belong to IEC type E. According to the phylogenetic analysis, the S. aureus and S. argenteus isolates in fresh rice and flour products may indicate loss or acquisition of ARGs and VFs to survive and adapt to the environment. Our study confirmed the presence of S. argenteus in rice and flour products at first and focused on the multi-dimensional systematic comparative analysis of S. aureus and S. argenteus to reveal their ubiquity and similarities or differences, and provide more accurate and effective basic information for follow-up monitoring and tracking.
Collapse
Affiliation(s)
- Dongli Rong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Zhenjie Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Feng Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Jingsha Dai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Yuanyu Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Miao Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Qi Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.
| |
Collapse
|
12
|
Spencer BL, Job AM, Robertson CM, Hameed ZA, Serchejian C, Wiafe-Kwakye CS, Mendonça JC, Apolonio MA, Nagao PE, Neely MN, Korotkova N, Korotkov KV, Patras KA, Doran KS. Heterogeneity of the group B streptococcal type VII secretion system and influence on colonization of the female genital tract. Mol Microbiol 2023; 120:258-275. [PMID: 37357823 PMCID: PMC10527989 DOI: 10.1111/mmi.15115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Type VIIb secretion systems (T7SSb) in Gram-positive bacteria facilitate physiology, interbacterial competition, and/or virulence via EssC ATPase-driven secretion of small ɑ-helical proteins and toxins. Recently, we characterized T7SSb in group B Streptococcus (GBS), a leading cause of infection in newborns and immunocompromised adults. GBS T7SS comprises four subtypes based on variation in the C-terminus of EssC and the repertoire of downstream effectors; however, the intraspecies diversity of GBS T7SS and impact on GBS-host interactions remains unknown. Bioinformatic analysis indicates that GBS T7SS loci encode subtype-specific putative effectors, which have low interspecies and inter-subtype homology but contain similar domains/motifs and therefore may serve similar functions. We further identify orphaned GBS WXG100 proteins. Functionally, we show that GBS T7SS subtype I and III strains secrete EsxA in vitro and that in subtype I strain CJB111, esxA1 appears to be differentially transcribed from the T7SS operon. Furthermore, we observe subtype-specific effects of GBS T7SS on host colonization, as CJB111 subtype I but not CNCTC 10/84 subtype III T7SS promotes GBS vaginal colonization. Finally, we observe that T7SS subtypes I and II are the predominant subtypes in clinical GBS isolates. This study highlights the potential impact of T7SS heterogeneity on host-GBS interactions.
Collapse
Affiliation(s)
- Brady L. Spencer
- University of Colorado-Anschutz, Department of Immunology and Microbiology, Aurora, CO, USA
| | - Alyx M. Job
- University of Colorado-Anschutz, Department of Immunology and Microbiology, Aurora, CO, USA
| | - Clare M. Robertson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zainab A. Hameed
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Camille Serchejian
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Jéssica C. Mendonça
- University of Colorado-Anschutz, Department of Immunology and Microbiology, Aurora, CO, USA
- Rio de Janeiro State University, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro, RJ, Brazil
| | - Morgan A. Apolonio
- University of Colorado-Anschutz, Department of Immunology and Microbiology, Aurora, CO, USA
- National Summer Undergraduate Research Program, University of Arizona, Tucson, AZ, USA
| | - Prescilla E. Nagao
- Rio de Janeiro State University, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro, RJ, Brazil
| | - Melody N. Neely
- University of Maine, Molecular & Biomedical Sciences, Orono, ME, USA
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Kelly S. Doran
- University of Colorado-Anschutz, Department of Immunology and Microbiology, Aurora, CO, USA
| |
Collapse
|
13
|
Bremer E, Calteau A, Danchin A, Harwood C, Helmann JD, Médigue C, Palsson BO, Sekowska A, Vallenet D, Zuniga A, Zuniga C. A model industrial workhorse:
Bacillus subtilis
strain 168 and its genome after a quarter of a century. Microb Biotechnol 2023; 16:1203-1231. [PMID: 37002859 DOI: 10.1111/1751-7915.14257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).
Collapse
Affiliation(s)
- Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine Hong Kong University Pokfulam SAR Hong Kong China
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute Newcastle University Baddiley Clark Building Newcastle upon Tyne UK
| | - John D. Helmann
- Department of Microbiology Cornell University Ithaca New York USA
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Bernhard O. Palsson
- Department of Bioengineering University of California San Diego La Jolla USA
| | | | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Abril Zuniga
- Department of Biology San Diego State University San Diego California USA
| | - Cristal Zuniga
- Bioinformatics and Medical Informatics Graduate Program San Diego State University San Diego California USA
| |
Collapse
|
14
|
Spencer BL, Job AM, Robertson CM, Hameed ZA, Serchejian C, Wiafe-Kwakye CS, Mendonça JC, Apolonio MA, Nagao PE, Neely MN, Korotkova N, Korotkov KV, Patras KA, Doran KS. Heterogeneity of the group B streptococcal type VII secretion system and influence on colonization of the female genital tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525443. [PMID: 36747681 PMCID: PMC9900821 DOI: 10.1101/2023.01.25.525443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Type VIIb secretion systems (T7SSb) in Gram-positive bacteria facilitate physiology, interbacterial competition, and/or virulence via EssC ATPase-driven secretion of small ɑ-helical proteins and toxins. Recently, we characterized T7SSb in group B Streptococcus (GBS), a leading cause of infection in newborns and immunocompromised adults. GBS T7SS comprises four subtypes based on variation in the C-terminus of EssC and the repertoire of downstream effectors; however, the intra-species diversity of GBS T7SS and impact on GBS-host interactions remains unknown. Bioinformatic analysis indicates that GBS T7SS loci encode subtype-specific putative effectors, which have low inter-species and inter-subtype homology but contain similar domains/motifs and therefore may serve similar functions. We further identify orphaned GBS WXG100 proteins. Functionally, we show that GBS T7SS subtype I and III strains secrete EsxA in vitro and that in subtype I strain CJB111, esxA1 appears to be differentially transcribed from the T7SS operon. Further, we observe subtype-specific effects of GBS T7SS on host colonization, as subtype I but not subtype III T7SS promotes GBS vaginal persistence. Finally, we observe that T7SS subtypes I and II are the predominant subtypes in clinical GBS isolates. This study highlights the potential impact of T7SS heterogeneity on host-GBS interactions.
Collapse
Affiliation(s)
- Brady L. Spencer
- University of Colorado-Anschutz, Department of Immunology and Microbiology, Aurora, CO, USA
| | - Alyx M. Job
- University of Colorado-Anschutz, Department of Immunology and Microbiology, Aurora, CO, USA
| | - Clare M. Robertson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zainab A. Hameed
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Camille Serchejian
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Jéssica C. Mendonça
- University of Colorado-Anschutz, Department of Immunology and Microbiology, Aurora, CO, USA
- Rio de Janeiro State University, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro, RJ, Brazil
| | - Morgan A. Apolonio
- University of Colorado-Anschutz, Department of Immunology and Microbiology, Aurora, CO, USA
- National Summer Undergraduate Research Program, University of Arizona, Tucson, AZ, USA
| | - Prescilla E. Nagao
- Rio de Janeiro State University, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro, RJ, Brazil
| | - Melody N. Neely
- University of Maine, Molecular & Biomedical Sciences, Orono, ME, USA
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Kelly S. Doran
- University of Colorado-Anschutz, Department of Immunology and Microbiology, Aurora, CO, USA
| |
Collapse
|