1
|
Saha P, Abokor A, Vijay-Kumar M. Dynamics of antimicrobial proteins' expression and their bactericidal activity in mouse milk. Immunohorizons 2025; 9:vlaf017. [PMID: 40345232 PMCID: PMC12064171 DOI: 10.1093/immhor/vlaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 05/11/2025] Open
Abstract
Mother's milk is considered as "complete edible immune system." It contains macro- and micronutrients required to maintain infant growth and provides an excellent source for innate and adaptive immune proteins that not only protects infants from enteropathogens but also aid in the initial colonization of gut microbiota. In this study, we analyzed the milk of C57BL/6J dams and found significant changes in the composition of antimicrobial and immune proteins throughout the lactation period. Innate immune proteins, serum amyloid A, soluble CD14, and notably lipocalin-2 were detected in milk at high quantities. These proteins were substantially reduced in the milk from MyD88-deficient dams. Further, adaptive immune proteins, specifically IgA and IgG, exhibit a distinct shift during postpartum lactation stages. While IgG is the dominant immunoglobulin in milk at day 5 postpartum, by day 15 its levels were surpassed by IgA whose levels increased over time. The administration of TLR4 ligand LPS to WT dams significantly increased the aforementioned milk innate and adaptive proteins. Surprisingly, the milk from WT dams suppressed E. coli growth more effectively than milk collected from LPS-treated mice; such suppression, however, was completely lost upon boiling. Intriguingly, IgA, but not Lcn2, serves as a predominant factor in inhibiting E. coli proliferation, suggesting the critical role of IgA in regulating microbial colonization in the neonatal gut. Collectively, our findings provide insight into the dynamics of various immune proteins present in breast milk and highlight their pivotal roles in determining neonatal immune responses and microbial colonization at early stage.
Collapse
Affiliation(s)
- Piu Saha
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Ahmed Abokor
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
2
|
Randaisi VR, Bunch ML, Beavers WN, Rogers T, Mesler R, Ashurst TD, Donohoe DR, Monteith AJ, Johnson JG. Efficient gastrointestinal colonization by Campylobacter jejuni requires components of the ChuABCD heme transport system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643992. [PMID: 40166214 PMCID: PMC11957022 DOI: 10.1101/2025.03.18.643992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Previous research demonstrated that Campylobacter jejuni encodes a heme utilization system that facilitates heme-dependent growth under iron-limiting conditions and that transcription of this system is induced during human infection. Despite these observations, it remained unknown whether the heme transport system is required for colonization and disease in a susceptible host. To address this, we created individual non-polar deletion mutants of each component of the heme transport system, as well as a total deletion of the inner membrane transporter, ChuBCD, and examined their ability to promote heme-dependent growth and iron uptake. From this work, we found that only the heme receptor, ChuA, was required for heme-dependent growth and iron acquisition, which supports earlier work of another group. Further, we examined whether intestinal colonization, immune activation, and pathology were altered during infection with these mutants. After establishing that elevated heme and chuABCD expression occurs during C. jejuni infection of IL-10-/- mice, we found that heme transport mutants exhibited significantly reduced fecal shedding and colonization of the cecum and colon. In addition, we found that neutrophil and macrophage recruitment and intestinal pathology often remained intermediately elevated despite decreased bacterial loads. These results suggest that heme utilization promotes efficient colonization and full pathogenicity in C. jejuni, but that neither is completely abrogated in its absence.
Collapse
|
3
|
Xu J, Gao Y, Huang X, Li J, Sun T, Wang X, Zhao Y, Wang T. S100A9 in sepsis: A biomarker for inflammation and a mediator of organ damage. Biochem Biophys Res Commun 2025; 752:151484. [PMID: 39955951 DOI: 10.1016/j.bbrc.2025.151484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Sepsis is the body's response to infection, which can result in multiple organ failure. The immune imbalance in patients with sepsis leads to high mortality. Recent research has greatly advanced our understanding of sepsis pathophysiology, especially in the regulation of inflammatory pathways and immune suppression. S100A9, an alarmin, plays a critical role in modulating the immune response during sepsis and is associated with the potential for multiple organ dysfunction. In the early stage of sepsis, S100A9 can represent the occurrence of inflammation, while in the late stage of sepsis, S100A9 is related to immune suppression. This review summarizes the latest developments in S100A9 research, including its biological functions, role in immune responses, effects on organ damage across different systems during sepsis, and potential clinical applications. It provides insights into the interactions between S100A9 and the immune response and explores S100A9's involvement in sepsis-associated organ injuries. Additionally, this review outlines a framework for future applications of targeted S100A9 interventions and therapeutic strategies to reduce organ injury in sepsis.
Collapse
Affiliation(s)
- Jinlian Xu
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yuru Gao
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xiao Huang
- Department of Medical Technology, Binzhou Polytechnic, Binzhou, Shandong, 256603, China
| | - Jie Li
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Ting Sun
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xiaozhi Wang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yi Zhao
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Tao Wang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| |
Collapse
|
4
|
Critchlow JM, Barraza JP, Munneke MJ, Krystofiak E, Green ER, Skaar EP. The interplay between Acinetobacter baumannii ZigA and SltB promotes zinc homeostasis and cell envelope integrity. Infect Immun 2025; 93:e0042224. [PMID: 39846731 PMCID: PMC11834433 DOI: 10.1128/iai.00422-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Acinetobacter baumannii is an opportunistic human pathogen that acquires nutrient metals from the vertebrate host amid infection. During zinc (Zn) scarcity, A. baumannii upregulates the expression of the predicted Zn metallochaperone, zigA. Loss of zigA compromises fitness during Zn deficiency, highlighting its role in this condition. To assess the contribution of ZigA to Zn-deficient A. baumannii, a multiparallel transposon sequencing and genetic interaction mapping approach was used. Transposon insertions in A1S_3027, encoding a predicted soluble lytic transglycosylase that tailors the bacterial cell wall, were enriched in the Zn-starved ΔzigA transposon library. Based on previous studies as well as structural and sequence homology, we designated A1S_3027 as soluble lytic transglycosylase B (SltB). Further analyses revealed that inactivating sltB rescued ΔzigA fitness defects during Zn starvation. An A. baumannii ΔzigAΔsltB mutant demonstrated altered cell envelope structures and increased cellular permeability, highlighting the roles of ZigA and SltB in maintaining cell envelope integrity. Furthermore, these mutants exhibited heightened resistance to β-lactam antibiotics and other cell wall-targeting agents. Alterations in cell envelope integrity in the ΔzigAΔsltB mutant improved fitness in a murine pneumonia infection model, emphasizing the contribution of ZigA and SltB to A. baumannii pathogenesis. This study elucidates how functional interactions between ZigA and SltB modulate cell envelope integrity and pathogenesis of A. baumannii during Zn depletion. These findings reveal an interplay between metal homeostasis and cell envelope integrity, offering insights into how A. baumannii ZigA contributes to these critical cellular processes.
Collapse
Affiliation(s)
- Jeanette M. Critchlow
- Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Juan P. Barraza
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew J. Munneke
- Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Evan Krystofiak
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee, USA
| | - Erin R. Green
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Eric P. Skaar
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Zhang Y, Gao Y, Li C, Zhang YA, Lu Y, Ye J, Liu X. Parabacteroides distasonis regulates the infectivity and pathogenicity of SVCV at different water temperatures. MICROBIOME 2024; 12:128. [PMID: 39020382 PMCID: PMC11253412 DOI: 10.1186/s40168-024-01799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/24/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Spring viremia of carp virus (SVCV) infects a wide range of fish species and causes high mortality rates in aquaculture. This viral infection is characterized by seasonal outbreaks that are temperature-dependent. However, the specific mechanism behind temperature-dependent SVCV infectivity and pathogenicity remains unclear. Given the high sensitivity of the composition of intestinal microbiota to temperature changes, it would be interesting to investigate if the intestinal microbiota of fish could play a role in modulating the infectivity of SVCV at different temperatures. RESULTS Our study found that significantly higher infectivity and pathogenicity of SVCV infection in zebrafish occurred at relatively lower temperature. Comparative analysis of the intestinal microbiota in zebrafish exposed to high- and low-temperature conditions revealed that temperature influenced the abundance and diversity of the intestinal microbiota in zebrafish. A significantly higher abundance of Parabacteroides distasonis and its metabolite secondary bile acid (deoxycholic acid, DCA) was detected in the intestine of zebrafish exposed to high temperature. Both colonization of Parabacteroides distasonis and feeding of DCA to zebrafish at low temperature significantly reduced the mortality caused by SVCV. An in vitro assay demonstrated that DCA could inhibit the assembly and release of SVCV. Notably, DCA also showed an inhibitory effect on the infectious hematopoietic necrosis virus, another Rhabdoviridae member known to be more infectious at low temperature. CONCLUSIONS This study provides evidence that temperature can be an important factor to influence the composition of intestinal microbiota in zebrafish, consequently impacting the infectivity and pathogenicity of SVCV. The findings highlight the enrichment of Parabacteroides distasonis and its derivative, DCA, in the intestines of zebrafish raised at high temperature, and they possess an important role in preventing the infection of SVCV and other Rhabdoviridae members in host fish. Video Abstract.
Collapse
Affiliation(s)
- Yujun Zhang
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yan Gao
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
- Ocean College, Hebei Agricultural University, Qinhuangdao, Hebei, China
| | - Chen Li
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, Thompson School of Social Work & Public Health, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jing Ye
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xueqin Liu
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Chen F, Wu SS, Chen C, Zhou C. Dynamic changes and clinical value of lipocalin 2 in liver diseases caused by microbial infections. World J Hepatol 2024; 16:177-185. [PMID: 38495277 PMCID: PMC10941746 DOI: 10.4254/wjh.v16.i2.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 02/27/2024] Open
Abstract
Lipocalin 2 (LCN2) plays a pivotal role in iron metabolism, particularly in the context of microbial infection resistance (e.g., viruses, bacteria, parasites, etc.). LCN2 combats microbial infection by directly assisting the body in competing with microorganisms for iron, inducing immune cells to secrete various cytokines to enhance systemic immune responses, or recruiting neutrophils to infectious sites. The liver serves as the primary organ for LCN2 secretion during microbial infections. This review encapsulates recent advances in dynamic changes, clinical values, and the effects of LCN2 in infectious liver diseases caused by various microbial microorganisms.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Shan-Shan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Cheng Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
7
|
Dhaliwal M, Muthu V, Sharma A, Raj K, Rudramurthy SM, Agarwal R, Kaur H, Rawat A, Singh S, Chakrabarti A. Immune and metabolic perturbations in COVID-19-associated pulmonary mucormycosis: A transcriptome analysis of innate immune cells. Mycoses 2024; 67:e13679. [PMID: 38214399 DOI: 10.1111/myc.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND AND OBJECTIVES The mechanisms underlying COVID-19-associated pulmonary mucormycosis (CAPM) remain unclear. We use a transcriptomic analysis of the innate immune cells to investigate the host immune and metabolic response pathways in patients with CAPM. PATIENTS AND METHODS We enrolled subjects with CAPM (n = 5), pulmonary mucormycosis (PM) without COVID-19 (n = 5), COVID-19 (without mucormycosis, n = 5), healthy controls (n = 5) without comorbid illness and negative for SARS-CoV-2. Peripheral blood samples from cases were collected before initiating antifungal therapy, and neutrophils and monocytes were isolated. RNA sequencing was performed using Illumina HiSeqX from monocytes and neutrophils. Raw reads were aligned with HISAT-2 pipeline and DESeq2 was used for differential gene expression. Gene ontology (GO) and metabolic pathway analysis were performed using Shiny GO application and R packages (ggplot2, Pathview). RESULTS The derangement of core immune and metabolic responses in CAPM patients was noted. Pattern recognition receptors, dectin-2, MCL, FcRγ receptors and CLEC-2, were upregulated, but signalling pathways such as JAK-STAT, IL-17 and CARD-9 were downregulated; mTOR and MAP-kinase signalling were elevated in monocytes from CAPM patients. The complement receptors, NETosis, and pro-inflammatory responses, such as S100A8/A9, lipocalin and MMP9, were elevated. The major metabolic pathways of glucose metabolism-glycolysis/gluconeogenesis, pentose phosphate pathway, HIF signalling and iron metabolism-ferroptosis were also upregulated in CAPM. CONCLUSIONS We identified significant alterations in the metabolic pathways possibly leading to cellular iron overload and a hyperglycaemic state. Immune responses revealed altered recognition, signalling, effector functions and a pro-inflammatory state in monocytes and neutrophils from CAPM patients.
Collapse
Affiliation(s)
- Manpreet Dhaliwal
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunima Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khem Raj
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Ullah I, Lang M. Key players in the regulation of iron homeostasis at the host-pathogen interface. Front Immunol 2023; 14:1279826. [PMID: 37942316 PMCID: PMC10627961 DOI: 10.3389/fimmu.2023.1279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Iron plays a crucial role in the biochemistry and development of nearly all living organisms. Iron starvation of pathogens during infection is a striking feature utilized by a host to quell infection. In mammals and some other animals, iron is essentially obtained from diet and recycled from erythrocytes. Free iron is cytotoxic and is readily available to invading pathogens. During infection, most pathogens utilize host iron for their survival. Therefore, to ensure limited free iron, the host's natural system denies this metal in a process termed nutritional immunity. In this fierce battle for iron, hosts win over some pathogens, but others have evolved mechanisms to overdrive the host barriers. Production of siderophores, heme iron thievery, and direct binding of transferrin and lactoferrin to bacterial receptors are some of the pathogens' successful strategies which are highlighted in this review. The intricate interplay between hosts and pathogens in iron alteration systems is crucial for understanding host defense mechanisms and pathogen virulence. This review aims to elucidate the current understanding of host and pathogen iron alteration systems and propose future research directions to enhance our knowledge in this field.
Collapse
Affiliation(s)
- Inam Ullah
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
9
|
Gal Y, Marcus H, Mamroud E, Aloni-Grinstein R. Mind the Gap-A Perspective on Strategies for Protecting against Bacterial Infections during the Period from Infection to Eradication. Microorganisms 2023; 11:1701. [PMID: 37512874 PMCID: PMC10386665 DOI: 10.3390/microorganisms11071701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria is a pressing public health concern, highlighting the need for alternative approaches to control bacterial infections. Promising approaches include the development of therapeutic vaccines and the utilization of innate immune activation techniques, which may prove useful in conjunction with antibiotics, as well as other antibacterial modalities. However, innate activation should be fast and self- or actively- contained to prevent detrimental consequences. TLR ligand adjuvants are effective at rapidly activating, within minutes to hours, the innate immune system by inducing cytokine production and other signaling molecules that bolster the host's immune response. Neutrophils serve as the first line of defense against invading pathogens by capturing and destroying them through various mechanisms, such as phagocytosis, intracellular degradation, and the formation of NETs. Nutritional immunity is another host defense mechanism that limits the availability of essential metals, such as iron, from invading bacterial pathogens. Thus, iron starvation has been proposed as a potential antibacterial strategy. In this review, we focus on approaches that have the potential to enhance rapid and precise antibacterial responses, bridging the gap between the onset of infection and the elimination of bacteria, hence limiting the infection by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hadar Marcus
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| |
Collapse
|
10
|
Abstract
Acinetobacter infections have high rates of mortality due to an increasing incidence of infections by multidrug-resistant (MDR) and extensively-drug-resistant (XDR) strains. Therefore, new therapeutic strategies for the treatment of Acinetobacter infections are urgently needed. Acinetobacter spp. are Gram-negative coccobacilli that are obligate aerobes and can utilize a wide variety of carbon sources. Acinetobacter baumannii is the main cause of Acinetobacter infections, and recent work has identified multiple strategies A. baumannii uses to acquire nutrients and replicate in the face of host nutrient restriction. Some host nutrient sources also serve antimicrobial and immunomodulatory functions. Hence, understanding Acinetobacter metabolism during infection may provide new insights into novel infection control measures. In this review, we focus on the role of metabolism during infection and in resistance to antibiotics and other antimicrobial agents and discuss the possibility that metabolism may be exploited to identify novel targets to treat Acinetobacter infections.
Collapse
Affiliation(s)
- Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Tang J, Suo L, Li F, Yang C, Bian K, Wang Y. ITRAQ-based quantitative proteomics analysis of forest musk deer with pneumonia. Front Vet Sci 2022; 9:1012276. [DOI: 10.3389/fvets.2022.1012276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pneumonia can seriously threaten the life of forest musk deer (FMD, an endangered species). To gain a comprehensive understanding of pneumonia pathogenesis in FMD, iTRAQ-based proteomics analysis was performed in diseased (Pne group) lung tissues of FMD that died of pneumonia and normal lung tissues (Ctrl group) of FMD that died from fighting against each other. Results showed that 355 proteins were differentially expressed (fold change ≥ 1.2 and adjusted P-value < 0.05) in Pne vs. Ctrl. GO/KEGG annotation and enrichment analyses showed that dysregulated proteins might play vital roles in bacterial infection and immunity. Given the close association between bacterial infection and pneumonia, 32 dysregulated proteins related to Staphylococcus aureus infection, bacterial invasion of epithelial cells, and pathogenic Escherichia coli infection were screened out. Among these 32 proteins, 13 proteins were mapped to the bovine genome. Given the close phylogenetic relationships of FMD and bovine, the protein-protein interaction networks of the above-mentioned 13 proteins were constructed by the String database. Based on the node degree analysis, 5 potential key proteins related to pneumonia-related bacterial infection in FMD were filtered out. Moreover, 85 dysregulated proteins related to the immune system process were identified given the tight connection between immune dysregulation and pneumonia pathogenesis. Additionally, 12 proteins that might function as crucial players in pneumonia-related immune response in FMD were screened out using the same experimental strategies described above. In conclusion, some vital proteins, biological processes, and pathways in pneumonia development were identified in FMD.
Collapse
|