1
|
Li L, Feng T, Shen Q, Shi X, Wei Z, Chen W, Yang F, Zhu Y, Zhang C, Zhang S, Zhang Q, Fu S, Wang N, Tian WX, Liu J, Si L. Natural Infection of Omicron BA.5.2 in Patients Provides Broad Immune Responses Against SARS-CoV-2. Microorganisms 2025; 13:746. [PMID: 40284583 PMCID: PMC12029644 DOI: 10.3390/microorganisms13040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
The implementation of COVID-19 policy and the rapid development of SARS-CoV-2 vaccines in the early pandemic significantly contained numerous outbreaks and reduced the severity and mortality of COVID-19. However, the population immunity induced by existing vaccines was insufficient to prevent SARS-CoV-2 outbreaks. The host immunity induced by the wide spread of Omicron variants and its influence on emerging SARS-CoV-2 variants are attracting broad attention. In this study, a clinical data analysis of the patients indicated that pre-vaccination reduced inflammatory responses and mitigated the severity of COVID-19 cases caused by natural infection with Omicron BA.5.2. The analysis of adaptive immune responses indicated that natural infection with BA.5.2 induced robust and broad immune responses, including both humoral and T cell-mediated immune responses (IFN-γ) against highly conserved viral antigens, and provided cross-reactive neutralization against various viral variants. Collectively, we report that the natural infection with Omicron BA.5.2 induced broad cross-reactive immunity against SARS-CoV-2 variants, which suggests that the development of a live attenuated SARS-CoV-2 vaccine with desired safety, high efficacy, broad spectrum, and long-term immune persistence is feasible. Therefore, we suggest that herd immunity, achieved through vaccination with attenuated vaccines, combined with booster doses of existing vaccines and antiviral therapy for people with high viral loads, may contribute to the eradication of this virus.
Collapse
Affiliation(s)
- Le Li
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Tang Feng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Shen
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshan Shi
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigong Wei
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanze Chen
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yueting Zhu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengxin Zhang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qisi Zhang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shengwei Fu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ning Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wen-xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Longlong Si
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Kutumbetov L, Myrzakhmetova B, Tussipova A, Zhapparova G, Tlenchiyeva T, Bissenbayeva K, Zhapar K, Zhugunissov K, Nurabayev S, Kerimbayev A. Safety and Immunogenicity of the Live Attenuated Vaccine QazCOVID-Live Against Coronavirus Infection COVID-19: Pre-Clinical Study Results. Vaccines (Basel) 2024; 12:1401. [PMID: 39772061 PMCID: PMC11728456 DOI: 10.3390/vaccines12121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
The research conducted in this preclinical study assesses QazCovid-live, a live attenuated COVID-19 vaccine created in Kazakhstan, by conducting preclinical evaluations of safety, immunogenicity, and allergenicity in various animal models, including mice, rats, hamsters, and guinea pigs. The vaccine, developed by attenuating SARS-CoV-2 via numerous Vero cell passages, had no significant adverse effects in acute and subacute toxicity assessments, even at elevated dosages. Allergenicity testing indicated the absence of both immediate and delayed hypersensitivity reactions. Immunogenicity evaluations revealed strong virus-neutralizing antibody responses, especially following intranasal and intratracheal delivery. Studies on reversibility and transmission further validated the vaccine's stability and non-pathogenicity. The data indicate that QazCovid-live is safe, immunogenic, and prepared for clinical trials, presenting a potential strategy for COVID-19 prevention.
Collapse
Affiliation(s)
| | - Balzhan Myrzakhmetova
- Research Institute for Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (L.K.); (A.T.); (G.Z.); (T.T.); (K.B.); (K.Z.); (K.Z.); (S.N.); (A.K.)
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Muthukutty P, MacDonald J, Yoo SY. Combating Emerging Respiratory Viruses: Lessons and Future Antiviral Strategies. Vaccines (Basel) 2024; 12:1220. [PMID: 39591123 PMCID: PMC11598775 DOI: 10.3390/vaccines12111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging viral diseases, including seasonal illnesses and pandemics, pose significant global public health risks. Respiratory viruses, particularly coronaviruses and influenza viruses, are associated with high morbidity and mortality, imposing substantial socioeconomic burdens. This review focuses on the current landscape of respiratory viruses, particularly influenza and SARS-CoV-2, and their antiviral treatments. It also discusses the potential for pandemics and the development of new antiviral vaccines and therapies, drawing lessons from past outbreaks to inform future strategies for managing viral threats.
Collapse
Affiliation(s)
| | | | - So Young Yoo
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea; (P.M.); (J.M.)
| |
Collapse
|
4
|
Liu X, Ng WH, Zusinaite E, Freitas J, Taylor A, Yerragunta V, Aavula SM, Gorriparthi S, Ponsekaran S, Bonda RL, Mani P, Nimmagadda SV, Wang S, Lello LS, Zaid A, Dua U, Taft-Benz SA, Anderson E, Baxter VK, Sarkar S, Ling ZL, Ashhurst TM, Cheng SMS, Pattnaik P, Kanakasapapathy AK, Baric RS, Burt FJ, Peiris M, Heise MT, King NJC, Merits A, Lingala R, Mahalingam S. A single-dose intranasal live-attenuated codon deoptimized vaccine provides broad protection against SARS-CoV-2 and its variants. Nat Commun 2024; 15:7225. [PMID: 39187479 PMCID: PMC11347628 DOI: 10.1038/s41467-024-51535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) continues its significant health and economic impact globally. Despite the success of spike-protein vaccines in preventing severe disease, long-lasting protection against emerging variants and the prevention of breakthrough infections and transmission remain elusive. We generate an intranasal live-attenuated SARS-CoV-2 vaccine, CDO-7N-1, using codon deoptimization. CDO-7N-1 shows highly attenuated replication and minimal or no lung pathology in vivo over multiple passages. It induces robust mucosal and systemic neutralizing antibody and T-cell subset responses, in mice (female K18-hACE2 and male HFH4-hACE2 mice), hamsters, and macaques triggered by a single immunization. Mice and hamsters vaccinated with CDO-7N-1 are protected from challenge with wild-type (WT) SARS-CoV-2 and other variants of concern. Serum from vaccinated animals neutralizes WT SARS-CoV-2, variants of concern (beta and delta), variants of interest (omicron XBB.1.5) and SARS-CoV-1. Antibody responses are sustained and enhanced by repeated immunization or infection with WT SARS-CoV-2. Immunity against all SARS-CoV-2 proteins by CDO-7N-1 should improve efficacy against future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Wern Hann Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Joseph Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Adam Taylor
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Venugopal Yerragunta
- Indian Immunologicals Ltd (IIL), Rakshapuram, Gachibowli Post, Hyderabad, 500032, Telangana, India
| | - Shukra Madhaha Aavula
- Indian Immunologicals Ltd (IIL), Rakshapuram, Gachibowli Post, Hyderabad, 500032, Telangana, India
| | - Sambaiah Gorriparthi
- Indian Immunologicals Ltd (IIL), Rakshapuram, Gachibowli Post, Hyderabad, 500032, Telangana, India
| | - Santhakumar Ponsekaran
- Indian Immunologicals Ltd (IIL), Rakshapuram, Gachibowli Post, Hyderabad, 500032, Telangana, India
| | - Rama Lakshmi Bonda
- Indian Immunologicals Ltd (IIL), Rakshapuram, Gachibowli Post, Hyderabad, 500032, Telangana, India
| | - Priyanka Mani
- Indian Immunologicals Ltd (IIL), Rakshapuram, Gachibowli Post, Hyderabad, 500032, Telangana, India
| | - Sridevi V Nimmagadda
- Indian Immunologicals Ltd (IIL), Rakshapuram, Gachibowli Post, Hyderabad, 500032, Telangana, India
| | - Sainan Wang
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | | | - Ali Zaid
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Ujjwal Dua
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Griffith Enterprise, Griffith University, Brisbane, QLD, Australia
| | - Sharon A Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth Anderson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria K Baxter
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zheng L Ling
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Thomas M Ashhurst
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Cytometry Core Research Facility, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
| | - Samuel M S Cheng
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Priyabrata Pattnaik
- Indian Immunologicals Ltd (IIL), Rakshapuram, Gachibowli Post, Hyderabad, 500032, Telangana, India
| | | | - Ralph S Baric
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Felicity J Burt
- Division of Virology, National Health Laboratory Service and Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas J C King
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Viral Immunopathology Laboratory, The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Rajendra Lingala
- Indian Immunologicals Ltd (IIL), Rakshapuram, Gachibowli Post, Hyderabad, 500032, Telangana, India
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
5
|
van Huizen M, Bloeme - ter Horst JR, de Gruyter HLM, Geurink PP, van der Heden van Noort GJ, Knaap RCM, Nelemans T, Ogando NS, Leijs AA, Urakova N, Mark BL, Snijder EJ, Myeni SK, Kikkert M. Deubiquitinating activity of SARS-CoV-2 papain-like protease does not influence virus replication or innate immune responses in vivo. PLoS Pathog 2024; 20:e1012100. [PMID: 38527094 PMCID: PMC10994560 DOI: 10.1371/journal.ppat.1012100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
The coronavirus papain-like protease (PLpro) is crucial for viral replicase polyprotein processing. Additionally, PLpro can subvert host defense mechanisms by its deubiquitinating (DUB) and deISGylating activities. To elucidate the role of these activities during SARS-CoV-2 infection, we introduced mutations that disrupt binding of PLpro to ubiquitin or ISG15. We identified several mutations that strongly reduced DUB activity of PLpro, without affecting viral polyprotein processing. In contrast, mutations that abrogated deISGylating activity also hampered viral polyprotein processing and when introduced into the virus these mutants were not viable. SARS-CoV-2 mutants exhibiting reduced DUB activity elicited a stronger interferon response in human lung cells. In a mouse model of severe disease, disruption of PLpro DUB activity did not affect lethality, virus replication, or innate immune responses in the lungs. This suggests that the DUB activity of SARS-CoV-2 PLpro is dispensable for virus replication and does not affect innate immune responses in vivo. Interestingly, the DUB mutant of SARS-CoV replicated to slightly lower titers in mice and elicited a diminished immune response early in infection, although lethality was unaffected. We previously showed that a MERS-CoV mutant deficient in DUB and deISGylating activity was strongly attenuated in mice. Here, we demonstrate that the role of PLpro DUB activity during infection can vary considerably between highly pathogenic coronaviruses. Therefore, careful considerations should be taken when developing pan-coronavirus antiviral strategies targeting PLpro.
Collapse
Affiliation(s)
- Mariska van Huizen
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Jonna R. Bloeme - ter Horst
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Heidi L. M. de Gruyter
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Paul P. Geurink
- Department of Cell and Chemical Biology, Division of Chemical Biology and Drug Discovery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gerbrand J. van der Heden van Noort
- Department of Cell and Chemical Biology, Division of Chemical Biology and Drug Discovery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert C. M. Knaap
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Tessa Nelemans
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Natacha S. Ogando
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Anouk A. Leijs
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Nadya Urakova
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Brian L. Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Eric J. Snijder
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Sebenzile K. Myeni
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
Chattopadhyay A, Jailani AAK, Mandal B. Exigency of Plant-Based Vaccine against COVID-19 Emergence as Pandemic Preparedness. Vaccines (Basel) 2023; 11:1347. [PMID: 37631915 PMCID: PMC10458178 DOI: 10.3390/vaccines11081347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
After two years since the declaration of COVID-19 as a pandemic by the World Health Organization (WHO), more than six million deaths have occurred due to SARS-CoV-2, leading to an unprecedented disruption of the global economy. Fortunately, within a year, a wide range of vaccines, including pathogen-based inactivated and live-attenuated vaccines, replicating and non-replicating vector-based vaccines, nucleic acid (DNA and mRNA)-based vaccines, and protein-based subunit and virus-like particle (VLP)-based vaccines, have been developed to mitigate the severe impacts of the COVID-19 pandemic. These vaccines have proven highly effective in reducing the severity of illness and preventing deaths. However, the availability and supply of COVID-19 vaccines have become an issue due to the prioritization of vaccine distribution in most countries. Additionally, as the virus continues to mutate and spread, questions have arisen regarding the effectiveness of vaccines against new strains of SARS-CoV-2 that can evade host immunity. The urgent need for booster doses to enhance immunity has been recognized. The scarcity of "safe and effective" vaccines has exacerbated global inequalities in terms of vaccine coverage. The development of COVID-19 vaccines has fallen short of the expectations set forth in 2020 and 2021. Furthermore, the equitable distribution of vaccines at the global and national levels remains a challenge, particularly in developing countries. In such circumstances, the exigency of plant virus-based vaccines has become apparent as a means to overcome supply shortages through fast manufacturing processes and to enable quick and convenient distribution to millions of people without the reliance on a cold chain system. Moreover, plant virus-based vaccines have demonstrated both safety and efficacy in eliciting robust cellular immunogenicity against COVID-19 pathogens. This review aims to shed light on the advantages and disadvantages of different types of vaccines developed against SARS-CoV-2 and provide an update on the current status of plant-based vaccines in the fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anirudha Chattopadhyay
- Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385506, India;
| | - A. Abdul Kader Jailani
- Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
7
|
Meredith RT, Bermingham MD, Bentley K, Agah S, Aboagye-Odei A, Yarham RAR, Mills H, Shaikh M, Hoye N, Stanton RJ, Chadwick DR, Oliver MA. Differential cellular and humoral immune responses in immunocompromised individuals following multiple SARS-CoV-2 vaccinations. Front Cell Infect Microbiol 2023; 13:1207313. [PMID: 37424787 PMCID: PMC10327606 DOI: 10.3389/fcimb.2023.1207313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The heterogeneity of the immunocompromised population means some individuals may exhibit variable, weak or reduced vaccine-induced immune responses, leaving them poorly protected from COVID-19 disease despite receiving multiple SARS-CoV-2 vaccinations. There is conflicting data on the immunogenicity elicited by multiple vaccinations in immunocompromised groups. The aim of this study was to measure both humoral and cellular vaccine-induced immunity in several immunocompromised cohorts and to compare them to immunocompetent controls. Methods Cytokine release in peptide-stimulated whole blood, and neutralising antibody and baseline SARS-CoV-2 spike-specific IgG levels in plasma were measured in rheumatology patients (n=29), renal transplant recipients (n=46), people living with HIV (PLWH) (n=27) and immunocompetent participants (n=64) post third or fourth vaccination from just one blood sample. Cytokines were measured by ELISA and multiplex array. Neutralising antibody levels in plasma were determined by a 50% neutralising antibody titre assay and SARS-CoV-2 spike specific IgG levels were quantified by ELISA. Results In infection negative donors, IFN-γ, IL-2 and neutralising antibody levels were significantly reduced in rheumatology patients (p=0.0014, p=0.0415, p=0.0319, respectively) and renal transplant recipients (p<0.0001, p=0.0005, p<0.0001, respectively) compared to immunocompetent controls, with IgG antibody responses similarly affected. Conversely, cellular and humoral immune responses were not impaired in PLWH, or between individuals from all groups with previous SARS-CoV-2 infections. Discussion These results suggest that specific subgroups within immunocompromised cohorts could benefit from distinct, personalised immunisation or treatment strategies. Identification of vaccine non-responders could be critical to protect those most at risk.
Collapse
Affiliation(s)
| | | | - Kirsten Bentley
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sayeh Agah
- InBio, Charlottesville, VA, United States
| | - Abigail Aboagye-Odei
- Department of Infectious Diseases, South Tees Hospitals National Health Service (NHS) Foundation Trust, Middlesbrough, England, United Kingdom
| | | | | | - Muddassir Shaikh
- Department of Kidney Services, South Tees Hospitals National Health Service (NHS) Foundation Trust, Middlesbrough, England, United Kingdom
| | - Neil Hoye
- Department of Rheumatology, South Tees Hospitals National Health Service (NHS) Foundation Trust, Middlesbrough, England, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David R. Chadwick
- Department of Infectious Diseases, South Tees Hospitals National Health Service (NHS) Foundation Trust, Middlesbrough, England, United Kingdom
| | | |
Collapse
|
8
|
Tang Z, Yu P, Guo Q, Chen M, Lei Y, Zhou L, Mai W, Chen L, Deng M, Kong W, Niu C, Xiong X, Li W, Chen C, Lai C, Wang Q, Li B, Ji T. Clinical characteristics and host immunity responses of SARS-CoV-2 Omicron variant BA.2 with deletion of ORF7a, ORF7b and ORF8. Virol J 2023; 20:106. [PMID: 37248496 DOI: 10.1186/s12985-023-02066-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The pathogenicity and virulence of the Omicron strain have weakened significantly pathogenesis of Omicron variants. Accumulating data indicated accessory proteins play crucial roles in host immune evasion and virus pathogenesis of SARS-CoV-2. Therefore, the impact of simultaneous deletion of accessory protein ORF7a, ORF7b and ORF8 on the clinical characteristics and specific immunity in Omicron breakthrough infected patients (BIPs) need to be verified. METHODS Herein, plasma cytokines were identified using a commercial Multi-cytokine detection kit. Enzyme-linked immunosorbent assay and pseudovirus neutralization assays were utilized to determine the titers of SARS-CoV-2 specific binding antibodies and neutralizing antibodies, respectively. In addition, an enzyme-linked immunospot assay was used to quantify SARS-CoV-2 specific T cells and memory B cells. RESULTS A local COVID-19 outbreak was caused by the Omicron BA.2 variant, which featured a deletion of 871 base pairs (∆871 BA.2), resulting in the removal of ORF7a, ORF7b, and ORF8. We found that hospitalized patients with ∆871 BA.2 had significantly shorter hospital stays than those with wild-type (WT) BA.2. Plasma cytokine levels in both ∆871 BA.2 and WT BA.2 patients were within the normal range of reference, and there was no notable difference in the titers of SARS-CoV-2 ancestor or Omicron-specific binding IgG antibodies, neutralizing antibody titers, effector T cells, and memory B cells frequencies between ∆871 BA.2 and WT BA.2 infected adult patients. However, antibody titers in ∆871 BA.2 infected adolescents were higher than in adults. CONCLUSIONS The simultaneous deletion of ORF7a, ORF7b, and ORF8 facilitates the rapid clearance of the BA.2 variant, without impacting cytokine levels or affecting SARS-CoV-2 specific humoral and cellular immunity in Omicron-infected individuals.
Collapse
Affiliation(s)
- Zhizhong Tang
- Urology Surgery Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Pei Yu
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Qianfang Guo
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong, 511430, People's Republic of China
| | - Mingxiao Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yu Lei
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Lei Zhou
- Department Of Pathology Laboratory, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Weikang Mai
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Lu Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Min Deng
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Weiya Kong
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Chuanying Niu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, People's Republic of China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, People's Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, 510005, People's Republic of China
| | - Wenrui Li
- Clinical Laboratory Medicine Department, Dongguan Ninth People's Hospital, Dongguan, 523016, People's Republic of China
| | - Chunbo Chen
- Intensive Care Unit Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Changchun Lai
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China.
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
| | - Baisheng Li
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong, 511430, People's Republic of China.
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511495, People's Republic of China.
| |
Collapse
|
9
|
Pacheco-García U, Serafín-López J. Indirect Dispersion of SARS-CoV-2 Live-Attenuated Vaccine and Its Contribution to Herd Immunity. Vaccines (Basel) 2023; 11:655. [PMID: 36992239 PMCID: PMC10055900 DOI: 10.3390/vaccines11030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
It has been 34 months since the beginning of the SARS-CoV-2 coronavirus pandemic, which causes the COVID-19 disease. In several countries, immunization has reached a proportion near what is required to reach herd immunity. Nevertheless, infections and re-infections have been observed even in vaccinated persons. That is because protection conferred by vaccines is not entirely effective against new virus variants. It is unknown how often booster vaccines will be necessary to maintain a good level of protective immunity. Furthermore, many individuals refuse vaccination, and in developing countries, a large proportion of the population has not yet been vaccinated. Some live-attenuated vaccines against SARS-CoV-2 are being developed. Here, we analyze the indirect dispersion of a live-attenuated virus from vaccinated individuals to their contacts and the contribution that this phenomenon could have to reaching Herd Immunity.
Collapse
Affiliation(s)
- Ursino Pacheco-García
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Jeanet Serafín-López
- Department of Immunology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico
| |
Collapse
|
10
|
A Live Attenuated COVID-19 Candidate Vaccine for Children: Protection against SARS-CoV-2 Challenge in Hamsters. Vaccines (Basel) 2023; 11:vaccines11020255. [PMID: 36851133 PMCID: PMC9965573 DOI: 10.3390/vaccines11020255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Children are at risk of infection from severe acute respiratory syndrome coronavirus-2 virus (SARS-CoV-2) resulting in coronavirus disease (COVID-19) and its more severe forms. New-born infants are expected to receive short-term protection from passively transferred maternal antibodies from their mothers who are immunized with first-generation COVID-19 vaccines. Passively transferred antibodies are expected to wane within first 6 months of infant's life, leaving them vulnerable to COVID-19. Live attenuated vaccines, unlike inactivated or viral-protein-based vaccines, offer broader immune engagement. Given effectiveness of live attenuated vaccines in controlling infectious diseases such as mumps, measles and rubella, we undertook development of a live attenuated COVID-19 vaccine with an aim to vaccinate children beyond 6 months of age. An attenuated vaccine candidate (dCoV), engineered to express sub-optimal codons and deleted polybasic furin cleavage sites in the spike protein of the SARS-CoV-2 WA/1 strain, was developed and tested in hamsters. Hamsters immunized with dCoV via intranasal or intramuscular routes induced high levels of neutralizing antibodies and exhibited complete protection against the SARS-CoV-2 wild-type isolates, i.e., the Wuhan-like (USA-WA1/2020) and Delta variants (B.1.617.2) in a challenge study. In addition, the dCoV formulated with the marketed measles-rubella (MR) vaccine, designated as MR-dCoV, administered to hamsters via intramuscular route, also protected against both SARS-CoV-2 challenges, and dCoV did not interfere with the MR vaccine-mediated immune response. The safety and efficacy of the dCoV and the MR-dCoV against both variants of SARS-CoV-2 opens the possibility of early immunization in children without an additional injection.
Collapse
|