1
|
Lotz CN, Schneeberger PHH, Concu M, Ali SM, Mrimi EC, Keiser J. Implementation of real-time PCR assays for diagnosing intestinal protozoa infections. Parasitol Res 2025; 124:40. [PMID: 40198454 PMCID: PMC11978536 DOI: 10.1007/s00436-025-08483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
Intestinal protozoa infections present a major public health challenge, particularly in areas with poor sanitation and limited access to clean water. Effective diagnostic methods are critical, yet traditional microscopy, though widely used for its simplicity, lacks the sensitivity and specificity of modern techniques like real-time Polymerase Chain Reaction (qPCR), making the latter a more effective tool for monitoring and assessing the burden of intestinal protozoa diseases. In this study, we implemented two duplex qPCR assays to detect Entamoeba dispar + Entamoeba histolytica and Cryptosporidium spp. + Chilomastix mesnili, along with singleplex assays for Giardia duodenalis and Blastocystis spp., using a 10 µL reaction volume. This marks the first molecular detection of Chilomastix mesnili by qPCR, enhancing diagnostic precision. Using these, we analyzed stool samples from 70 patients on Pemba Island, Tanzania, before and 54 samples after treatment with 20, 25, or 30 mg of emodepside or placebo, aiming to assess protozoa prevalence for this region and emodepside's potential antiprotozoal effects. Our qPCR reliably detected protozoa in 74.4% of samples, with Entamoeba histolytica and Entamoeba dispar in 31.4% of cases. Notably, one-third of these infections were caused by Entamoeba histolytica. No significant reduction in protozoa was observed after emodepside treatment compared to placebo. The study highlights the utility of qPCR in providing species-level differentiation and improving the speed and cost-effectiveness of testing. The high prevalence of protozoa in this region underscores the need for continued monitoring and control efforts, though emodepside was not effective against protozoa infections.
Collapse
Affiliation(s)
- Christian N Lotz
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Pierre H H Schneeberger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Maura Concu
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Said M Ali
- Public Health Laboratory-Ivo de Carneri, Chake, Pemba, Tanzania
| | - Emmanuel C Mrimi
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Ifakara, Tanzania
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Monjot A, Rousseau J, Bittner L, Lepère C. Metatranscriptomes-based sequence similarity networks uncover genetic signatures within parasitic freshwater microbial eukaryotes. MICROBIOME 2025; 13:43. [PMID: 39915863 PMCID: PMC11800578 DOI: 10.1186/s40168-024-02027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Microbial eukaryotes play a crucial role in biochemical cycles and aquatic trophic food webs. Their taxonomic and functional diversity are increasingly well described due to recent advances in sequencing technologies. However, the vast amount of data produced by -omics approaches require data-driven methodologies to make predictions about these microorganisms' role within ecosystems. Using metatranscriptomics data, we employed a sequence similarity network-based approach to explore the metabolic specificities of microbial eukaryotes with different trophic modes in a freshwater ecosystem (Lake Pavin, France). RESULTS A total of 2,165,106 proteins were clustered in connected components enabling analysis of a great number of sequences without any references in public databases. This approach coupled with the use of an in-house trophic modes database improved the number of proteins considered by 42%. Our study confirmed the versatility of mixotrophic metabolisms with a large number of shared protein families among mixotrophic and phototrophic microorganisms as well as mixotrophic and heterotrophic microorganisms. Genetic similarities in proteins of saprotrophs and parasites also suggest that fungi-like organisms from Lake Pavin, such as Chytridiomycota and Oomycetes, exhibit a wide range of lifestyles, influenced by their degree of dependence on a host. This plasticity may occur at a fine taxonomic level (e.g., species level) and likely within a single organism in response to environmental parameters. While we observed a relative functional redundancy of primary metabolisms (e.g., amino acid and carbohydrate metabolism) nearly 130,000 protein families appeared to be trophic mode-specific. We found a particular specificity in obligate parasite-related Specific Protein Clusters, underscoring a high degree of specialization in these organisms. CONCLUSIONS Although no universal marker for parasitism was identified, candidate genes can be proposed at a fine taxonomic scale. We notably provide several protein families that could serve as keys to understanding host-parasite interactions representing pathogenicity factors (e.g., involved in hijacking host resources, or associated with immune evasion mechanisms). All these protein families could offer valuable insights for developing antiparasitic treatments in health and economic contexts. Video Abstract.
Collapse
Affiliation(s)
- Arthur Monjot
- CNRS, Laboratoire Microorganismes: Génome Et Environnement, Université Clermont Auvergne, Clermont-Ferrand, 63000, France.
| | - Jérémy Rousseau
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université Des Antilles, Paris, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université Des Antilles, Paris, France
- Institut Universitaire de France, Paris, France
| | - Cécile Lepère
- CNRS, Laboratoire Microorganismes: Génome Et Environnement, Université Clermont Auvergne, Clermont-Ferrand, 63000, France.
| |
Collapse
|
3
|
Albuquerque-Wendt A, McCoy C, Neish R, Dobramysl U, Alagöz Ç, Beneke T, Cowley SA, Crouch K, Wheeler RJ, Mottram JC, Gluenz E. TransLeish: Identification of membrane transporters essential for survival of intracellular Leishmania parasites in a systematic gene deletion screen. Nat Commun 2025; 16:299. [PMID: 39747086 PMCID: PMC11696137 DOI: 10.1038/s41467-024-55538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
For the protozoan parasite Leishmania, completion of its life cycle requires sequential adaptation of cellular physiology and nutrient scavenging mechanisms to the different environments of a sand fly alimentary tract and the acidic mammalian host cell phagolysosome. Transmembrane transporters are the gatekeepers of intracellular environments, controlling the flux of solutes and ions across membranes. To discover which transporters are vital for survival as intracellular amastigote forms, we carried out a systematic loss-of-function screen of the L. mexicana transportome. A total of 312 protein components of small molecule carriers, ion channels and pumps were identified and targeted in a CRISPR-Cas9 gene deletion screen in the promastigote form, yielding 188 viable null mutants. Forty transporter deletions caused significant loss of fitness in macrophage and mouse infections. A striking example is the Vacuolar H+ ATPase (V-ATPase), which, unexpectedly, was dispensable for promastigote growth in vitro but essential for survival of the disease-causing amastigotes.
Collapse
Affiliation(s)
- Andreia Albuquerque-Wendt
- School of Infection and Immunity, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Ciaran McCoy
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
- Animal Physiology and Neurobiology, KU Leuven, 3000, Leuven, Belgium
| | - Rachel Neish
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Ulrich Dobramysl
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Çağla Alagöz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tom Beneke
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Kathryn Crouch
- School of Infection and Immunity, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard J Wheeler
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Eva Gluenz
- School of Infection and Immunity, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK.
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
4
|
Yang X, Li M, Jia ZC, Liu Y, Wu SF, Chen MX, Hao GF, Yang Q. Unraveling the secrets: Evolution of resistance mediated by membrane proteins. Drug Resist Updat 2024; 77:101140. [PMID: 39244906 DOI: 10.1016/j.drup.2024.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms. On the other hand, influenced by diverse environmental pressures and structural differences among organisms, they also demonstrate divergent resistance characteristics. Membrane protein-mediated resistance mechanisms are prevalent across animals, bacteria, fungi, plants, and insects, reflecting their shared survival strategies evolved through convergent evolution to address similar survival challenges. However, variations in ecological environments and biological characteristics result in differing responses to resistance. Therefore, examining these differences not only enhances our understanding of adaptive resistance mechanisms but also provides crucial theoretical support and insights for addressing drug resistance and advancing pharmaceutical development.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Min Li
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Yan Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, Jiangsu 210095, China.
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Qing Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
5
|
Wu G, Chen J, Wang A, Yan F. Unveiling the viroporin arsenal in plant viruses: Implications for the future. PLoS Pathog 2024; 20:e1012473. [PMID: 39235994 PMCID: PMC11376509 DOI: 10.1371/journal.ppat.1012473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Viroporins are small, hydrophobic viral proteins that modify cellular membranes to form tiny pores for influx of ions and small molecules. Previously, viroporins were identified exclusively in vertebrate viruses. Recent studies have shown that both plant-infecting positive-sense single-stranded (+ss) and negative-sense single-stranded (-ss) RNA viruses also encode functional viroporins. These seminal discoveries not only advance our understanding of the distribution and evolution of viroporins, but also open up a new field of plant virus research.
Collapse
Affiliation(s)
- Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Provincial Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Provincial Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Provincial Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Pérez-Gordones MC, Ramírez-Iglesias JR, Benaim G, Mendoza M. Molecular, immunological, and physiological evidences of a sphingosine-activated plasma membrane Ca 2+-channel in Trypanosoma equiperdum. Parasitol Res 2024; 123:166. [PMID: 38506929 DOI: 10.1007/s00436-024-08188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
The hemoparasite Trypanosoma equiperdum belongs to the Trypanozoon subgenus and includes several species that are pathogenic to animals and humans in tropical and subtropical areas across the world. As with all eukaryotic organisms, Ca2+ is essential for these parasites to perform cellular processes thus ensuring their survival across their life cycle. Despite the established paradigm to study proteins related to Ca2+ homeostasis as potential drug targets, so far little is known about Ca2+ entry into trypanosomes. Therefore, in the present study, the presence of a plasma membrane Ca2+-channel in T. equiperdum (TeCC), activated by sphingosine and inhibited by verapamil, is described. The TeCC was cloned and analyzed using bioinformatic resources, which confirmed the presence of several domains, motifs, and a topology similar to the Ca2+ channels found in higher eukaryotes. Biochemical and confocal microscopy assays using antibodies raised against an internal region of human L-type Ca2+ channels indicate the presence of a protein with similar predicted molar mass to the sequence analyzed, located at the plasma membrane of T. equiperdum. Physiological assays based on Fura-2 signals and Mn2+ quenching performed on whole parasites showed a unidirectional Ca2+ entry, which is activated by sphingosine and blocked by verapamil, with the distinctive feature of insensitivity to nifedipine and Bay K 8644. This suggests a second Ca2+ entry for T. equiperdum, different from the store-operated Ca2+ entry (SOCE) previously described. Moreover, the evidence presented here for the TeCC indicates molecular and pharmacological differences with their mammal counterparts, which deserve further studies to evaluate the potential of this channel as a drug target.
Collapse
Affiliation(s)
- M C Pérez-Gordones
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela.
| | - J R Ramírez-Iglesias
- Group of Emerging Diseases, Epidemiology & Biodiversity, Master School of Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - G Benaim
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - M Mendoza
- Centro de Estudios Biomédicos y Veterinarios, Instituto de Estudios Científicos y Tecnológicos (IDECYT), Universidad Nacional Experimental Simón Rodríguez, Caracas, Venezuela
| |
Collapse
|
7
|
Chiurillo MA, Carlson J, Bertolini MS, Raja A, Lander N. Dual localization of receptor-type adenylate cyclases and cAMP response protein 3 unveils the presence of two putative signaling microdomains in Trypanosoma cruzi. mBio 2023; 14:e0106423. [PMID: 37477489 PMCID: PMC10470820 DOI: 10.1128/mbio.01064-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/02/2023] [Indexed: 07/22/2023] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, a leading cause of disability and premature death in the Americas. This parasite spends its life between a triatomine insect and a mammalian host, transitioning between developmental stages in response to microenvironmental changes. Among the second messengers driving differentiation in T. cruzi, cAMP has been shown to mediate metacyclogenesis and response to osmotic stress, but this signaling pathway remains largely unexplored in this parasite. Adenylate cyclases (ACs) catalyze the conversion of ATP to cAMP. They comprise a multigene family encoding putative receptor-type ACs in T. cruzi. Using protein sequence alignment, we classified them into five groups and chose a representative member from each group to study their localization (TcAC1-TcAC5). We expressed an HA-tagged version of each protein in T. cruzi and performed immunofluorescence analysis. A peculiar dual localization of TcAC1 and TcAC2 was observed in the flagellar distal domain and in the contractile vacuole complex (CVC), and their enzymatic activity was confirmed by gene complementation in yeast. Furthermore, TcAC1 overexpressing parasites showed an increased metacyclogenesis, a defect in host cell invasion, and a reduced intracellular replication, highlighting the importance of this protein throughout T. cruzi life cycle. These mutants were more tolerant to hypoosmotic stress and showed a higher adhesion capacity during in vitro metacyclogenesis, whereas the wild-type phenotype was restored after disrupting TcAC1 localization. Finally, TcAC1 was found to interact with cAMP response protein 3 (TcCARP3), co-localizing with this protein in the flagellar tip and CVC. IMPORTANCE We identified three components of the cAMP signaling pathway (TcAC1, TcAC2, and TcCARP3) with dual localization in Trypanosoma cruzi: the flagellar distal domain and the CVC, structures involved in cell adhesion and osmoregulation, respectively. We found evidence on the role of TcAC1 in both cellular processes, as well as in metacyclogenesis. Our data suggest that TcACs act as signal sensors and transducers through cAMP synthesis in membrane microdomains. We propose a model in which TcACs sense the harsh conditions in the triatomine hindgut (nutrient deprivation, acidic pH, osmotic stress, ionic composition, hydrophobic interactions) and become active. Synthesis of cAMP then triggers cell adhesion prior completion of metacyclogenesis, while mediating a response to osmotic stress in the parasite. These results shed light into the mechanisms driving cAMP-mediated cell differentiation in T. cruzi, while raising new questions on the activation of TcACs and the role of downstream components of this pathway.
Collapse
Affiliation(s)
- Miguel A. Chiurillo
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joshua Carlson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mayara S. Bertolini
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Aqsa Raja
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Noelia Lander
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Osipov AV, Cheremnykh EG, Ziganshin RH, Starkov VG, Nguyen TTT, Nguyen KC, Le DT, Hoang AN, Tsetlin VI, Utkin YN. The Potassium Channel Blocker β-Bungarotoxin from the Krait Bungarus multicinctus Venom Manifests Antiprotozoal Activity. Biomedicines 2023; 11:biomedicines11041115. [PMID: 37189733 DOI: 10.3390/biomedicines11041115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Protozoal infections are a world-wide problem. The toxicity and somewhat low effectiveness of the existing drugs require the search for new ways of protozoa suppression. Snake venom contains structurally diverse components manifesting antiprotozoal activity; for example, those in cobra venom are cytotoxins. In this work, we aimed to characterize a novel antiprotozoal component(s) in the Bungarus multicinctus krait venom using the ciliate Tetrahymena pyriformis as a model organism. To determine the toxicity of the substances under study, surviving ciliates were registered automatically by an original BioLaT-3.2 instrument. The krait venom was separated by three-step liquid chromatography and the toxicity of the obtained fractions against T. pyriformis was analyzed. As a result, 21 kDa protein toxic to Tetrahymena was isolated and its amino acid sequence was determined by MALDI TOF MS and high-resolution mass spectrometry. It was found that antiprotozoal activity was manifested by β-bungarotoxin (β-Bgt) differing from the known toxins by two amino acid residues. Inactivation of β-Bgt phospholipolytic activity with p-bromophenacyl bromide did not change its antiprotozoal activity. Thus, this is the first demonstration of the antiprotozoal activity of β-Bgt, which is shown to be independent of its phospholipolytic activity.
Collapse
Affiliation(s)
- Alexey V Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Vladislav G Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | - Khoa Cuu Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Dung Tien Le
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Anh Ngoc Hoang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|