1
|
Yan R, Jia D, Qi Y, Wang Q, Chen S. Intestinal tissue-resident memory T cells: Characteristics, functions under physiological and pathological conditions and spatial specificity. J Adv Res 2025:S2090-1232(25)00181-X. [PMID: 40096943 DOI: 10.1016/j.jare.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Tissue-resident memory T (TRM) cells are a distinct subset of memory T cells that persist in non-lymphoid tissues, providing localized and rapid immune responses to infection and malignancy. Unlike circulating memory T cells, TRM cells have unique homing and functional characteristics that are shaped by the tissue microenvironment. In the gut, TRM cells play a pivotal role in maintaining mucosal immunity, exhibiting phenotypic and functional heterogeneity in different intestinal compartments and in response to aging and pathological conditions. AIM OF REVIEW This review aims to systematically examine the definition, spatial heterogeneity and functional roles of intestinal TRM (iTRM) cells. It highlights their contributions to physiological immunity, their involvement in pathological processes such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), and their age-related dynamics. The review also explores emerging therapeutic implications of modulating iTRM cells for intestinal health and disease management. KEY SCIENTIFIC CONCEPTS OF REVIEW: iTRM cells are defined by surface markers like CD69 and CD103, transcriptional regulators such as Hobit, Runx3, Blimp-1, as well as cytokine signals including TGF-β, IFN-β, IL-12. They exhibit spatial and functional heterogeneity across intestinal layers (epithelium versus lamina propria) and regions (small intestine versus colon). In IBD, iTRM cells play a dual role, contributing to both inflammation and tissue repair, whereas in CRC, specific subsets of iTRM cells (e.g., CD8+ CD103+ CD39+) are associated with enhanced antitumor immunity. Aging impacts iTRM functionality, with shifts in the CD4+/CD8+ ratio and reduced cytokine production in elderly individuals. Insights into the metabolic, transcriptional, and environmental regulation of iTRM cells provide avenues for targeted therapies in intestinal diseases, cancer immunotherapy, and interventions to delay intestinal aging.
Collapse
Affiliation(s)
- Ruochen Yan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Dingjiacheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yadong Qi
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Qiwen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province 310001, China.
| |
Collapse
|
2
|
Reina-Campos M, Monell A, Ferry A, Luna V, Cheung KP, Galletti G, Scharping NE, Takehara KK, Quon S, Challita PP, Boland B, Lin YH, Wong WH, Indralingam CS, Neadeau H, Alarcón S, Yeo GW, Chang JT, Heeg M, Goldrath AW. Tissue-resident memory CD8 T cell diversity is spatiotemporally imprinted. Nature 2025; 639:483-492. [PMID: 39843748 PMCID: PMC11903307 DOI: 10.1038/s41586-024-08466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/27/2024] [Indexed: 01/24/2025]
Abstract
Tissue-resident memory CD8 T (TRM) cells provide protection from infection at barrier sites. In the small intestine, TRM cells are found in at least two distinct subpopulations: one with higher expression of effector molecules and another with greater memory potential1. However, the origins of this diversity remain unknown. Here we proposed that distinct tissue niches drive the phenotypic heterogeneity of TRM cells. To test this, we leveraged spatial transcriptomics of human samples, a mouse model of acute systemic viral infection and a newly established strategy for pooled optically encoded gene perturbations to profile the locations, interactions and transcriptomes of pathogen-specific TRM cell differentiation at single-transcript resolution. We developed computational approaches to capture cellular locations along three anatomical axes of the small intestine and to visualize the spatiotemporal distribution of cell types and gene expression. Our study reveals that the regionalized signalling of the intestinal architecture supports two distinct TRM cell states: differentiated TRM cells and progenitor-like TRM cells, located in the upper villus and lower villus, respectively. This diversity is mediated by distinct ligand-receptor activities, cytokine gradients and specialized cellular contacts. Blocking TGFβ or CXCL9 and CXCL10 sensing by antigen-specific CD8 T cells revealed a model consistent with anatomically delineated, early fate specification. Ultimately, our framework for the study of tissue immune networks reveals that T cell location and functional state are fundamentally intertwined.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alexander Monell
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Amir Ferry
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Vida Luna
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Kitty P Cheung
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Giovanni Galletti
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E Scharping
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Kennidy K Takehara
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Sara Quon
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Peter P Challita
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Brigid Boland
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yun Hsuan Lin
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - William H Wong
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Suzie Alarcón
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, Veteran Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
- Allen Institute for Immunology, Seattle, WA, USA.
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
- Allen Institute for Immunology, Seattle, WA, USA.
| |
Collapse
|
3
|
Moreira Gabriel E, Dias J, Caballero RE, Salinas TW, Nayrac M, Filali-Mouhim A, Chartrand-Lefebvre C, Routy JP, Durand M, El-Far M, Tremblay C, Ancuta P. Novel Immunological Markers of Intestinal Impairment Indicative of HIV-1 Status and/or Subclinical Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624885. [PMID: 39651272 PMCID: PMC11623515 DOI: 10.1101/2024.11.22.624885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Antiretroviral therapy (ART) controls HIV-1 replication in people with HIV-1 (PWH), but immunological restauration at mucosal barrier surfaces is not achieved. This fuels microbial translocation, chronic immune activation, and increased comorbidities, including cardiovascular disease (CVD). Here, we sought to identify novel markers of mucosal barrier impairment in the blood to predict the HIV and/or CVD status. Flow cytometry was used to characterize CD326/EpCAM + intestinal epithelial cells (IEC); CD4 + T-cells; CD8 + and CD4 + intraepithelial lymphocytes (IELs); and subsets of CD4 + T-cells expressing Th17 (CCR6) and gut-homing (Itgβ7) markers. To this aim, we collected peripheral blood mononuclear cells (PBMCs) from 42 ART-treated PWH (HIV + ) and 40 uninfected participants (HIV - ) from the Canadian HIV and Aging Cohort Study (CHACS). Both groups were categorized based on the presence of coronary atherosclerotic plaques measured by CT scan angiography as total plaque volume (TPV, mm 3 ). Our findings associate the HIV-1 status with increased frequencies of circulating CD326 + IEC; CD326 + CD4 + T-cells with activated (CD69 + HLA-DR + ) and gut-homing (ItgαE + CCR6 + CCR9 + ) phenotypes, CCR6 + Itgβ7 - CD4 + T-cells; and decreased frequencies of CD8 + IELs. Logistic regression analyses confirmed the predictive capacity of the above cellular markers regarding HIV status. Spearman correlation revealed a positive correlation between TPV and CCR6 + Itgβ7 - and CCR6 + Itgβ7 + CD4 + T-cell frequencies.Together, these results highlighted significant immune dysregulation and persistent mucosal barrier alterations despite effective viral suppression by ART and linked the abundance of CCR6 + Itgβ7 + and CCR6 + Itgβ7 - CD4 + T-cells to increased atherosclerotic plaque burden. Thus, strategies targeting the gut-immune axis restoration may reduce CVD onset and improve long-term health outcomes in PWH.
Collapse
|
4
|
Girard A, Vimonpatranon S, Chan A, Jiang A, Huang DW, Virtaneva K, Kanakabandi K, Martens C, Goes LR, Soares MA, Licavoli I, McMurry J, Doan P, Wertz S, Wei D, Ryk DV, Ganesan S, Hwang IY, Kehrl JH, Martinelli E, Arthos J, Cicala C. MAdCAM-1 co-stimulation combined with retinoic acid and TGF-β induces blood CD8 + T cells to adopt a gut CD101 + T RM phenotype. Mucosal Immunol 2024; 17:700-712. [PMID: 38729611 PMCID: PMC11323166 DOI: 10.1016/j.mucimm.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Resident memory T cells (TRMs) help control local immune homeostasis and contribute to tissue-protective immune responses. The local cues that guide their differentiation and localization are poorly defined. We demonstrate that mucosal vascular addressin cell adhesion molecule 1, a ligand for the gut-homing receptor α4β7 integrin, in the presence of retinoic acid and transforming growth factor-β (TGF-β) provides a co-stimulatory signal that induces blood cluster of differentiation (CD8+ T cells to adopt a TRM-like phenotype. These cells express CD103 (integrin αE) and CD69, the two major TRM cell-surface markers, along with CD101. They also express C-C motif chemokine receptors 5 (CCR5) , C-C motif chemokine receptors 9 (CCR9), and α4β7, three receptors associated with gut homing. A subset also expresses E-cadherin, a ligand for αEβ7. Fluorescent lifetime imaging indicated an αEβ7 and E-cadherin cis interaction on the plasma membrane. This report advances our understanding of the signals that drive the differentiation of CD8+ T cells into resident memory T cells and provides a means to expand these cells in vitro, thereby affording an avenue to generate more effective tissue-specific immunotherapies.
Collapse
Affiliation(s)
- Alexandre Girard
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Sinmanus Vimonpatranon
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA; Department of Retrovirology, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Amanda Chan
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Andrew Jiang
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Da Wei Huang
- NCI, Lymphoid Malignancy Branch, Bethesda, Maryland, USA
| | - Kimmo Virtaneva
- National Institute of Allergy and Infectious Diseases, Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, Hamilton, Montana, USA
| | - Kishore Kanakabandi
- National Institute of Allergy and Infectious Diseases, Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, Hamilton, Montana, USA
| | - Craig Martens
- National Institute of Allergy and Infectious Diseases, Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, Hamilton, Montana, USA
| | - Livia R Goes
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA; INCA, Rio de Janeiro, Brazil
| | | | - Isabella Licavoli
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Jordan McMurry
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Pearl Doan
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Samuel Wertz
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Danlan Wei
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Donald Van Ryk
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Sundar Ganesan
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Il Young Hwang
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - John H Kehrl
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Elena Martinelli
- Northwestern Feinberg School of Medicine, Division of Infectious Diseases, Chicago, Illinois, USA
| | - James Arthos
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA
| | - Claudia Cicala
- National Institute of Allergy and Infectious Diseases, Laboratory of Immunoregulation, Bethesda, Maryland, USA.
| |
Collapse
|
5
|
Reina-Campos M, Monell A, Ferry A, Luna V, Cheung KP, Galletti G, Scharping NE, Takehara KK, Quon S, Boland B, Lin YH, Wong WH, Indralingam CS, Yeo GW, Chang JT, Heeg M, Goldrath AW. Functional Diversity of Memory CD8 T Cells is Spatiotemporally Imprinted. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585130. [PMID: 38585842 PMCID: PMC10996520 DOI: 10.1101/2024.03.20.585130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tissue-resident memory CD8 T cells (TRM) kill infected cells and recruit additional immune cells to limit pathogen invasion at barrier sites. Small intestinal (SI) TRM cells consist of distinct subpopulations with higher expression of effector molecules or greater memory potential. We hypothesized that occupancy of diverse anatomical niches imprints these distinct TRM transcriptional programs. We leveraged human samples and a murine model of acute systemic viral infection to profile the location and transcriptome of pathogen-specific TRM cell differentiation at single-transcript resolution. We developed computational approaches to capture cellular locations along three anatomical axes of the small intestine and to visualize the spatiotemporal distribution of cell types and gene expression. TRM populations were spatially segregated: with more effector- and memory-like TRM preferentially localized at the villus tip or crypt, respectively. Modeling ligand-receptor activity revealed patterns of key cellular interactions and cytokine signaling pathways that initiate and maintain TRM differentiation and functional diversity, including different TGFβ sources. Alterations in the cellular networks induced by loss of TGFβRII expression revealed a model consistent with TGFβ promoting progressive TRM maturation towards the villus tip. Ultimately, we have developed a framework for the study of immune cell interactions with the spectrum of tissue cell types, revealing that T cell location and functional state are fundamentally intertwined.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Alexander Monell
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Amir Ferry
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Vida Luna
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Kitty P. Cheung
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Giovanni Galletti
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Nicole E. Scharping
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Kennidy K. Takehara
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Sara Quon
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Brigid Boland
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yun Hsuan Lin
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - William H. Wong
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - John T. Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Maximilian Heeg
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Allen Institute for Immunology, 615 Westlake Avenue N, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Vellas C, Nayrac M, Collercandy N, Requena M, Jeanne N, Latour J, Dimeglio C, Cazabat M, Barange K, Alric L, Carrere N, Martin-Blondel G, Izopet J, Delobel P. Intact proviruses are enriched in the colon and associated with PD-1 +TIGIT - mucosal CD4 + T cells of people with HIV-1 on antiretroviral therapy. EBioMedicine 2024; 100:104954. [PMID: 38160480 PMCID: PMC10792747 DOI: 10.1016/j.ebiom.2023.104954] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND The persistence of intact replication-competent HIV-1 proviruses is responsible for the virological rebound off treatment. The gut could be a major reservoir of HIV-1 due to the high number of infected target cells. METHODS We collected blood samples and intestinal biopsies (duodenum, ileum, colon) from 42 people with HIV-1 receiving effective antiretroviral therapy. We used the Intact Proviral DNA Assay to estimate the frequency of intact HIV-1 proviruses in the blood and in the intestinal mucosa of these individuals. We analyzed the genetic complexity of the HIV-1 reservoir by performing single-molecule next-generation sequencing of HIV-1 env DNA. The activation/exhaustion profile of mucosal T lymphocytes was assessed by flow cytometry. FINDINGS Intact proviruses are particularly enriched in the colon. Residual HIV-1 transcription in the gut is associated with persistent mucosal and systemic immune activation. The HIV-1 intestinal reservoir appears to be shaped by the proliferation of provirus-hosting cells. The genetic complexity of the viral reservoir in the colon is positively associated with TIGIT expression but negatively with PD-1, and inversely related to its intact content. The size of the intact reservoir in the colon is associated with PD-1+TIGIT- mucosal CD4+ T cells, particularly in CD27+ memory cells, whose proliferation and survival could contribute to the enrichment of the viral reservoir by intact proviruses. INTERPRETATION Enrichment in intact proviruses makes the gut a key compartment for HIV-1 persistence on antiretroviral therapy. FUNDING This project was supported by grants from the ANRS-MIE (ANRS EP61 GALT), Sidaction, and the Institut Universitaire de France.
Collapse
Affiliation(s)
- Camille Vellas
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France
| | - Manon Nayrac
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France
| | - Nived Collercandy
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France
| | - Mary Requena
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Nicolas Jeanne
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Justine Latour
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Chloé Dimeglio
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France
| | - Michelle Cazabat
- CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Karl Barange
- CHU de Toulouse, Service d'Hépato-Gastro-Entérologie, Toulouse F-31400, France
| | - Laurent Alric
- Université Toulouse III Paul Sabatier, Toulouse F-31400, France; CHU de Toulouse, Service de Médecine Interne et Immunologie clinique, Toulouse F-31400, France
| | - Nicolas Carrere
- Université Toulouse III Paul Sabatier, Toulouse F-31400, France; CHU de Toulouse, Service de Chirurgie Générale et Digestive, Toulouse F-31400, France
| | - Guillaume Martin-Blondel
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France; Université Toulouse III Paul Sabatier, Toulouse F-31400, France
| | - Jacques Izopet
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France; Université Toulouse III Paul Sabatier, Toulouse F-31400, France
| | - Pierre Delobel
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France; Université Toulouse III Paul Sabatier, Toulouse F-31400, France.
| |
Collapse
|
7
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|