1
|
Cheng Y, Zheng W, Dong X, Sun T, Xu M, Xiang L, Li J, Wang H, Jian X, Yu J, Li P, Hu T, Tian G, Jiang X, Zhang L, Aisa HA, Xie Y, Xiao G, Shen J. Design and Development of a Novel Oral 4'-Fluorouridine Double Prodrug VV261 against SFTSV. J Med Chem 2025; 68:9811-9826. [PMID: 40294286 DOI: 10.1021/acs.jmedchem.5c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
4'-Fluorouridine (4'-FU), despite demonstrating potent anti-SFTSV efficacy in vitro and in vivo, faces hindrances in its further development as a promising drug due to its weak chemical stability. Here, we report the discovery and development of VV261, a novel 4'-FU double prodrug with three isobutyryl groups on the ribose moiety and a nicotinoyloxymethyl group linked to the imide-nitrogen on the base moiety, exhibiting notable chemical stability and favorable pharmacokinetic properties. In SFTSV-infected mice, VV261 at 5 mg/kg/d for 7 days demonstrated complete protection against lethal SFTSV infection, prevented weight loss, and even a 2 day treatment significantly reduced both viral RNA copies and infectious virus titers in multiple organs, and notably alleviated splenic tissue lesions. After further preclinical evaluations, VV261, identified as a promising candidate drug for the treatment of SFTS, has entered Phase I clinical trials in China, the first such candidate to reach this stage for SFTS.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences; Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Zheng
- Vigonvita Shanghai Co., Ltd., Shanghai 201210, P. R. China
| | - Xinru Dong
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tengxiao Sun
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences; Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengwei Xu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Li Xiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences; Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences; Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huilong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences; Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoqin Jian
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingjin Yu
- Vigonvita Shanghai Co., Ltd., Shanghai 201210, P. R. China
| | - Pengcheng Li
- Vigonvita Shanghai Co., Ltd., Shanghai 201210, P. R. China
| | - Tianwen Hu
- Vigonvita Shanghai Co., Ltd., Shanghai 201210, P. R. China
| | - Guanghui Tian
- Vigonvita Shanghai Co., Ltd., Shanghai 201210, P. R. China
| | - Xiangrui Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences; Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Leike Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, P. R. China
| | - Haji A Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Pharmacy, Xinjiang Medical University, Urumqi 830054, P. R. China
| | - Yuanchao Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences; Shanghai 201203, P. R. China
| | - Gengfu Xiao
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences; Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Westover JB, Jung KH, Mao S, Kolykhalov AA, Bluemling GR, Natchus MG, Painter GR, Gowen BB. Oral 4'-fluorouridine rescues mice from advanced lymphocytic choriomeningitis virus infection. Antiviral Res 2025; 237:106122. [PMID: 39993450 PMCID: PMC12009201 DOI: 10.1016/j.antiviral.2025.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Lymphocytic choriomeningitis virus (LCMV) can cause severe, life-threatening infection and disease in organ transplant recipients and other immunocompromised individuals. Additionally, significant developmental and neurological disabilities, vision impairments, and miscarriages can occur as a direct result of LCMV infection during pregnancy. Currently, there are no approved antiviral drugs to protect at-risk populations. Here, we report on the potent in vitro activity of the 4'-fluorouridine (4'-FlU) ribonucleoside analog against several strains of LCMV, with EC90 values in the low micromolar range. In vivo, oral once-daily 4'-FlU treatments provided robust efficacy in mice challenged with LCMV when administered as late as 5 days post-infection. Our findings extend the broad-spectrum antiviral capacity of 4'-FlU and support the compound's further development for treating LCMV and other severe arenavirus infections.
Collapse
Affiliation(s)
- Jonna B Westover
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Kie Hoon Jung
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Shuli Mao
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | | | | | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA; Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA, USA; Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Brian B Gowen
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.
| |
Collapse
|
3
|
Wang R, Wang X, Zhu J, Li H, Liu W. Effectiveness of nucleoside analogs against Wetland virus infection. Antiviral Res 2025; 236:106114. [PMID: 39954869 DOI: 10.1016/j.antiviral.2025.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Wetland virus (WELV), a newly identified Orthonairovirus phylogenetically related to the Crimean-Congo hemorrhagic fever virus (CCHFV), has recently been shown to cause human infections. A portion of patients infected with WELV usually present with febrile diseases, accompanied by hemorrhagic and neurological symptoms. Currently, there are no reports demonstrating effective therapeutic drugs for the treatment of WELV. In this study, we evaluated the anti-WELV efficacy of five nucleoside analogs: four clinically approved drugs-ribavirin, remdesivir, molnupiravir, and sofosbuvir; and a clinical candidate 4'-fluorouridine. Ribavirin and 4'-fluorouridine strongly inhibited WELV replication in vitro. Remdesivir and molnupiravir showed limited antiviral activity against WELV in Huh7 cells but not in Vero cells, while sofosbuvir did not exhibit inhibitory effects. Utilizing a lethal immunocompetent mouse model of WELV infection, we found that oral administration of relatively low doses of ribavirin (25 mg/kg/day) or 4'-fluorouridine (2.5 mg/kg/day) significantly reduced the mortality of WELV-infected mice by decreasing viral titers in tissues and alleviating pathological damage. This treatment strategy retained significant efficacy even when initiated 2-4 days after infection. Additionally, we identified mutations G3033R and A3756V in the C-terminal region of the WELV L protein, which may be associated with viral resistance to ribavirin and 4'-fluorouridine. This study revealed varying degrees of anti-WELV efficacy among different nucleoside analogs and identified 4'-fluorouridine as a promising therapeutic candidate and ribavirin as a priority treatment option for WELV infection.
Collapse
Affiliation(s)
- Rui Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, PR China
| | - Xi Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China.
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, PR China.
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, PR China.
| |
Collapse
|
4
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2025; 38:e0012823. [PMID: 39714175 PMCID: PMC11905374 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Gibeaud A, Pizzorno A, Terrier O. In vitro modeling of influenza infection in the respiratory epithelium: advanced cellular models to better understand complex host-virus interactions. Curr Opin Virol 2025; 70:101452. [PMID: 39952230 DOI: 10.1016/j.coviro.2025.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Influenza viruses pose significant global health threats, causing widespread morbidity and mortality due to their genetic variability and rapid evolution. Traditional experimental models, such as immortalized cell lines and animal models, often fall short of accurately replicating the complex interactions between influenza viruses and the human immune system. Recent advancements, including reconstituted human airway epithelia, lung-on-a-chip models, and human airway organoids, provide more accurate representations of human respiratory physiology and immune responses. These alternatives enable in-depth investigations into viral propagation, host immune responses, and tissue damage. While each model has its unique advantages and limitations, integrating them could offer a more comprehensive understanding of influenza pathogenesis. This knowledge can drive the development and evaluation of more effective vaccines and therapeutic interventions, enhancing preparedness for future influenza outbreaks.
Collapse
Affiliation(s)
- Aurélien Gibeaud
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.
| |
Collapse
|
6
|
Yin P, Sobolik EB, May NA, Wang S, Fayed A, Vyshenska D, Drobish AM, Parks MG, Lello LS, Merits A, Morrison TE, Greninger AL, Kielian M. Mutations in chikungunya virus nsP4 decrease viral fitness and sensitivity to the broad-spectrum antiviral 4'-Fluorouridine. PLoS Pathog 2025; 21:e1012859. [PMID: 39804924 PMCID: PMC11759387 DOI: 10.1371/journal.ppat.1012859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/24/2025] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Chikungunya virus (CHIKV) is an arthritogenic alphavirus that has re-emerged to cause large outbreaks of human infections worldwide. There are currently no approved antivirals for treatment of CHIKV infection. Recently, we reported that the ribonucleoside analog 4'-fluorouridine (4'-FlU) is a highly potent inhibitor of CHIKV replication, and targets the viral nsP4 RNA dependent RNA polymerase. In mouse models, oral therapy with 4'-FlU diminished viral tissue burdens and virus-induced disease signs. To provide critical evidence for the potential of 4'-FlU as a CHIKV antiviral, here we selected for CHIKV variants with decreased 4'-FlU sensitivity, identifying two pairs of mutations in nsP2 and nsP4. The nsP4 mutations Q192L and C483Y were predominantly responsible for reduced sensitivity. These variants were still inhibited by higher concentrations of 4'-FlU, and the mutations did not change nsP4 fidelity or provide a virus fitness advantage in vitro or in vivo. Pathogenesis studies in mice showed that the nsP4-C483Y variant caused similar disease and viral tissue burden as WT CHIKV, while the nsP4-Q192L variant was strongly attenuated. Together these results support the potential of 4'-FlU to be an important antiviral against CHIKV.
Collapse
Affiliation(s)
- Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Elizabeth B. Sobolik
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Nicholas A. May
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Sainan Wang
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Atef Fayed
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dariia Vyshenska
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Adam M. Drobish
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - M. Guston Parks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | | | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
7
|
Schrell L, Fuchs HL, Dickmanns A, Scheibner D, Olejnik J, Hume AJ, Reineking W, Störk T, Müller M, Graaf-Rau A, Diederich S, Finke S, Baumgärtner W, Mühlberger E, Balkema-Buschmann A, Dobbelstein M. Inhibitors of dihydroorotate dehydrogenase synergize with the broad antiviral activity of 4'-fluorouridine. Antiviral Res 2025; 233:106046. [PMID: 39638153 DOI: 10.1016/j.antiviral.2024.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
RNA viruses present a constant threat to human health, often with limited options for vaccination or therapy. Notable examples include influenza viruses and coronaviruses, which have pandemic potential. Filo- and henipaviruses cause more limited outbreaks, but with high case fatality rates. All RNA viruses rely on the activity of a virus-encoded RNA-dependent RNA polymerase (RdRp). An antiviral nucleoside analogue, 4'-Fluorouridine (4'-FlU), targets RdRp and diminishes the replication of several RNA viruses, including influenza A virus and SARS-CoV-2, through incorporation into nascent viral RNA and delayed chain termination. However, the effective concentration of 4'-FlU varied among different viruses, raising the need to fortify its efficacy. Here we show that inhibitors of dihydroorotate dehydrogenase (DHODH), an enzyme essential for pyrimidine biosynthesis, can synergistically enhance the antiviral effect of 4'-FlU against influenza A viruses, SARS-CoV-2, henipaviruses, and Ebola virus. Even 4'-FlU-resistant mutant influenza A virus was re-sensitized towards 4'-FlU by DHODH inhibition. The addition of uridine rescued influenza A virus replication, strongly suggesting uridine depletion as a mechanism of this synergy. 4'-FlU was also highly effective against SARS-CoV-2 in a hamster model of COVID. We propose that the impairment of endogenous uridine synthesis by DHODH inhibition enhances the incorporation of 4'-FlU into viral RNAs. This strategy may be broadly applicable to enhance the efficacy of pyrimidine nucleoside analogues for antiviral therapy.
Collapse
Affiliation(s)
- Leon Schrell
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Hannah L Fuchs
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Antje Dickmanns
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - David Scheibner
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Judith Olejnik
- Department of Virology, Immunology & Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02218, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02218, USA
| | - Adam J Hume
- Department of Virology, Immunology & Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02218, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02218, USA
| | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Theresa Störk
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Martin Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Annika Graaf-Rau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Elke Mühlberger
- Department of Virology, Immunology & Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02218, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02218, USA
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
8
|
Welch SR, Spengler JR, Westover JB, Bailey KW, Davies KA, Aida-Ficken V, Bluemling GR, Boardman KM, Wasson SR, Mao S, Kuiper DL, Hager MW, Saindane MT, Andrews MK, Krueger RE, Sticher ZM, Jung KH, Chatterjee P, Shrivastava-Ranjan P, Lo MK, Coleman-McCray JD, Sorvillo TE, Genzer SC, Scholte FEM, Kelly JA, Jenks MH, McMullan LK, Albariño CG, Montgomery JM, Painter GR, Natchus MG, Kolykhalov AA, Gowen BB, Spiropoulou CF, Flint M. Delayed low-dose oral administration of 4'-fluorouridine inhibits pathogenic arenaviruses in animal models of lethal disease. Sci Transl Med 2024; 16:eado7034. [PMID: 39565871 PMCID: PMC11875022 DOI: 10.1126/scitranslmed.ado7034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Development of broad-spectrum antiviral therapies is critical for outbreak and pandemic preparedness against emerging and reemerging viruses. Viruses inducing hemorrhagic fevers cause high morbidity and mortality in humans and are associated with several recent international outbreaks, but approved therapies for treating most of these pathogens are lacking. Here, we show that 4'-fluorouridine (4'-FlU; EIDD-2749), an orally available ribonucleoside analog, has antiviral activity against multiple hemorrhagic fever viruses in cell culture, including Nipah virus, Crimean-Congo hemorrhagic fever virus, orthohantaviruses, and arenaviruses. We performed preclinical in vivo evaluation of oral 4'-FlU against two arenaviruses, Old World Lassa virus (LASV) and New World Junín virus (JUNV), in guinea pig models of lethal disease. 4'-FlU demonstrated both advantageous pharmacokinetic characteristics and high efficacy in both of these lethal disease guinea pig models. Additional experiments supported protection of the infected animals even when 4'-FlU delivery was reduced to a low dose of 0.5 milligram per kilogram. To demonstrate clinical utility, 4'-FlU treatment was evaluated when initiated late in the course of infection (12 or 9 days after infection for LASV and JUNV, respectively). Delayed treatment resulted in rapid resolution of clinical signs, demonstrating an extended window for therapeutic intervention. These data support the use of 4'-FlU as a potent and efficacious treatment against highly pathogenic arenaviruses of public health concern with a virus inhibition profile suggesting broad-spectrum utility as an orally available antiviral drug against a wide variety of viral pathogens.
Collapse
Affiliation(s)
- Stephen R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jonna B. Westover
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Kevin W. Bailey
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Katherine A. Davies
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Zoonotic and Emerging Disease Research Unit, National Bio and Agro-Defense Facility, US Department of Agriculture, Manhattan, KS 66506, USA
| | - Virginia Aida-Ficken
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Gregory R. Bluemling
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Kirsten M. Boardman
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Samantha R. Wasson
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Shuli Mao
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Damien L. Kuiper
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Michael W. Hager
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Manohar T. Saindane
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Meghan K. Andrews
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Rebecca E. Krueger
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Zachary M. Sticher
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Kie Hoon Jung
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - JoAnn D. Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Teresa E. Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sarah C. Genzer
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Florine E. M. Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jamie A. Kelly
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - M. Harley Jenks
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Laura K. McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - César G. Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - George R. Painter
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Michael G. Natchus
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | | | - Brian B. Gowen
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
9
|
Lieber CM, Kang HJ, Sobolik EB, Sticher ZM, Ngo VL, Gewirtz AT, Kolykhalov AA, Natchus MG, Greninger AL, Suthar MS, Plemper RK. Efficacy of late-onset antiviral treatment in immunocompromised hosts with persistent SARS-CoV-2 infection. J Virol 2024; 98:e0090524. [PMID: 39207133 PMCID: PMC11406939 DOI: 10.1128/jvi.00905-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Immunocompromised people are at high risk of prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and progression to severe coronavirus disease 2019 (COVID-19). However, the efficacy of late-onset direct-acting antiviral (DAA) therapy with therapeutics in clinical use and experimental drugs to mitigate persistent viral replication is unclear. In this study, we employed an immunocompromised mouse model, which supports prolonged replication of SARS-CoV-2 to explore late-onset treatment options. Tandem immuno-depletion of CD4+ and CD8+ T cells in C57BL/6 mice followed by infection with SARS-CoV-2 variant of concern (VOC) beta B.1.351 resulted in prolonged infection with virus replication for 5 weeks after inoculation. Early-onset treatment with nirmatrelvir/ritonavir (paxlovid) or molnupiravir was only moderately efficacious, whereas the experimental therapeutic 4'-fluorouridine (4'-FlU, EIDD-2749) significantly reduced virus load in the upper and lower respiratory compartments 4 days postinfection (dpi). All antivirals significantly lowered virus burden in a 7-day treatment regimen initiated 14 dpi, but paxlovid-treated animals experienced rebound virus replication in the upper respiratory tract 7 days after treatment end. Viral RNA was detectable 28 dpi in paxlovid-treated animals, albeit not in the molnupiravir or 4'-FlU groups, when treatment was initiated 14 dpi and continued for 14 days. Low-level virus replication continued 35 dpi in animals receiving vehicle but had ceased in all treatment groups. These data indicate that late-onset DAA therapy significantly shortens the duration of persistent virus replication in an immunocompromised host, which may have implications for clinical use of antiviral therapeutics to alleviate the risk of progression to severe disease in highly vulnerable patients. IMPORTANCE Four years after the onset of the global coronavirus disease 2019 (COVID-19) pandemic, the immunocompromised are at greatest risk of developing life-threatening severe disease. However, specific treatment plans for this most vulnerable patient group have not yet been developed. Employing a CD4+ and CD8+ T cell-depleted immunocompromised mouse model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we explored therapeutic options of persistent infections with standard-of-care paxlovid, molnupiravir, and the experimental therapeutic 4'-fluorouridine (4'-FlU). Late-onset treatment initiated 14 days after infection was efficacious, but only 4'-FlU was rapidly sterilizing. No treatment-experienced viral variants with reduced susceptibility to the drugs emerged, albeit virus replication rebounded in animals of the paxlovid group after treatment end. This study supports the use of direct-acting antivirals (DAAs) for late-onset management of persistent SARS-CoV-2 infection in immunocompromised hosts. However, treatment courses likely require to be extended for maximal therapeutic benefit, calling for appropriately powered clinical trials to meet the specific needs of this patient group.
Collapse
Affiliation(s)
- Carolin M. Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Elizabeth B. Sobolik
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Zachary M. Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Vu L. Ngo
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Andrew T. Gewirtz
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | | | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Mehul S. Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Yin P, May NA, Lello LS, Fayed A, Parks MG, Drobish AM, Wang S, Andrews M, Sticher Z, Kolykhalov AA, Natchus MG, Painter GR, Merits A, Kielian M, Morrison TE. 4'-Fluorouridine inhibits alphavirus replication and infection in vitro and in vivo. mBio 2024; 15:e0042024. [PMID: 38700353 PMCID: PMC11237586 DOI: 10.1128/mbio.00420-24] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Chikungunya virus (CHIKV) is an enveloped, positive-sense RNA virus that has re-emerged to cause millions of human infections worldwide. In humans, acute CHIKV infection causes fever and severe muscle and joint pain. Chronic and debilitating arthritis and joint pain can persist for months to years. To date, there are no approved antivirals against CHIKV. Recently, the ribonucleoside analog 4'-fluorouridine (4'-FlU) was reported as a highly potent orally available inhibitor of SARS-CoV-2, respiratory syncytial virus, and influenza virus replication. In this study, we assessed 4'-FlU's potency and breadth of inhibition against a panel of alphaviruses including CHIKV, and found that it broadly suppressed alphavirus production in cell culture. 4'-FlU acted on the viral RNA replication step, and the first 4 hours post-infection were the critical time for its antiviral effect. In vitro replication assays identified nsP4 as the target of inhibition. In vivo, treatment with 4'-FlU reduced disease signs, inflammatory responses, and viral tissue burden in mouse models of CHIKV and Mayaro virus infection. Treatment initiated at 2 hours post-infection was most effective; however, treatment initiated as late as 24-48 hours post-infection produced measurable antiviral effects in the CHIKV mouse model. 4'-FlU showed effective oral delivery in our mouse model and resulted in the accumulation of both 4'-FlU and its bioactive triphosphate form in tissues relevant to arthritogenic alphavirus pathogenesis. Together, our data indicate that 4'-FlU inhibits CHIKV infection in vitro and in vivo and is a promising oral therapeutic candidate against CHIKV infection.IMPORTANCEAlphaviruses including chikungunya virus (CHIKV) are mosquito-borne positive-strand RNA viruses that can cause various diseases in humans. Although compounds that inhibit CHIKV and other alphaviruses have been identified in vitro, there are no licensed antivirals against CHIKV. Here, we investigated a ribonucleoside analog, 4'-fluorouridine (4'-FlU), and demonstrated that it inhibited infectious virus production by several alphaviruses in vitro and reduced virus burden in mouse models of CHIKV and Mayaro virus infection. Our studies also indicated that 4'-FlU treatment reduced CHIKV-induced footpad swelling and reduced the production of pro-inflammatory cytokines. Inhibition in the mouse model correlated with effective oral delivery of 4'-FlU and accumulation of both 4'-FlU and its bioactive form in relevant tissues. In summary, 4'-FlU exhibits potential as a novel anti-alphavirus agent targeting the replication of viral RNA.
Collapse
Affiliation(s)
- Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicholas A. May
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Atef Fayed
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - M. Guston Parks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Adam M. Drobish
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sainan Wang
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Meghan Andrews
- Emory Institute for Drug Development (EIDD), Atlanta, Georgia, USA
| | - Zachary Sticher
- Emory Institute for Drug Development (EIDD), Atlanta, Georgia, USA
| | | | | | - George R. Painter
- Emory Institute for Drug Development (EIDD), Atlanta, Georgia, USA
- Drug Innovations Ventures at Emory (DRIVE), Atlanta, Georgia, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
11
|
Lieber CM, Kang HJ, Sobolik EB, Sticher ZM, Ngo VL, Gewirtz AT, Kolykhalov AA, Natchus MG, Greninger AL, Suthar MS, Plemper RK. Efficacy of late-onset antiviral treatment in immune-compromised hosts with persistent SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595478. [PMID: 38826222 PMCID: PMC11142196 DOI: 10.1101/2024.05.23.595478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The immunocompromised are at high risk of prolonged SARS-CoV-2 infection and progression to severe COVID-19. However, efficacy of late-onset direct-acting antiviral (DAA) therapy with therapeutics in clinical use and experimental drugs to mitigate persistent viral replication is unclear. In this study, we employed an immunocompromised mouse model, which supports prolonged replication of SARS-CoV-2 to explore late-onset treatment options. Tandem immuno-depletion of CD4 + and CD8 + T cells in C57BL/6 mice followed by infection with SARS-CoV-2 variant of concern (VOC) beta B.1.351 resulted in prolonged infection with virus replication for five weeks after inoculation. Early-onset treatment with nirmatrelvir/ritonavir (paxlovid) or molnupiravir was only moderately efficacious, whereas the experimental therapeutic 4'-fluorourdine (4'-FlU, EIDD-2749) significantly reduced virus load in upper and lower respiratory compartments four days post infection (dpi). All antivirals significantly lowered virus burden in a 7-day treatment regimen initiated 14 dpi, but paxlovid-treated animals experienced rebound virus replication in the upper respiratory tract seven days after treatment end. Viral RNA was detectable 28 dpi in paxlovid-treated animals, albeit not in the molnupiravir or 4'-FlU groups, when treatment was initiated 14 dpi and continued for 14 days. Low-level virus replication continued 35 dpi in animals receiving vehicle but had ceased in all treatment groups. These data indicate that late-onset DAA therapy significantly shortens the duration of persistent virus replication in an immunocompromised host, which may have implications for clinical use of antiviral therapeutics to alleviate the risk of progression to severe disease in highly vulnerable patients. Importance Four years after the onset of the global COVID-19 pandemic, the immunocompromised are at greatest risk of developing life-threatening severe disease. However, specific treatment plans for this most vulnerable patient group have not yet been developed. Employing a CD4 + and CD8 + T cell-depleted immunocompromised mouse model of SARS-CoV-2 infection, we explored therapeutic options of persistent infections with standard-of-care paxlovid, molnupiravir, and the experimental therapeutic 4'-FlU. Late-onset treatment initiated 14 days after infection was efficacious, but only 4'-FlU was rapidly sterilizing. No treatment-experienced viral variants with reduced susceptibility to the drugs emerged, albeit virus replication rebounded in animals of the paxlovid group after treatment end. This study supports the use of direct-acting antivirals for late-onset management of persistent SARS-CoV-2 infection in immunocompromised hosts. However, treatment courses likely require to be extended for maximal therapeutic benefit, calling for appropriately powered clinical trials to meet the specific needs of this patient group.
Collapse
|
12
|
Westover JB, Jung KH, Alkan C, Boardman KM, Van Wettere AJ, Martens C, Rojas I, Hicks P, Thomas AJ, Saindane MT, Bluemling GR, Mao S, Kolykhalov AA, Natchus MG, Bates P, Painter GR, Ikegami T, Gowen BB. Modeling Heartland virus disease in mice and therapeutic intervention with 4'-fluorouridine. J Virol 2024; 98:e0013224. [PMID: 38511932 PMCID: PMC11019845 DOI: 10.1128/jvi.00132-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Heartland virus (HRTV) is an emerging tick-borne bandavirus that causes a febrile illness of varying severity in humans, with cases reported in eastern and midwestern regions of the United States. No vaccines or approved therapies are available to prevent or treat HRTV disease. Here, we describe the genetic changes, natural history of disease, and pathogenesis of a mouse-adapted HRTV (MA-HRTV) that is uniformly lethal in 7- to 8-week-old AG129 mice at low challenge doses. We used this model to assess the efficacy of the ribonucleoside analog, 4'-fluorouridine (EIDD-2749), and showed that once-daily oral treatment with 3 mg/kg of drug, initiated after the onset of disease, protects mice against lethal MA-HRTV challenge and reduces viral loads in blood and tissues. Our findings provide insights into HRTV virulence and pathogenesis and support further development of EIDD-2749 as a therapeutic intervention for HRTV disease. IMPORTANCE More than 60 cases of HRTV disease spanning 14 states have been reported to the United States Centers for Disease Control and Prevention. The expanding range of the Lone Star tick that transmits HRTV, the growing population of at-risk persons living in geographic areas where the tick is abundant, and the lack of antiviral treatments or vaccines raise significant public health concerns. Here, we report the development of a new small-animal model of lethal HRTV disease to gain insight into HRTV pathogenesis and the application of this model for the preclinical development of a promising new antiviral drug candidate, EIDD-2749. Our findings shed light on how the virus causes disease and support the continued development of EIDD-2749 as a therapeutic for severe cases of HRTV infection.
Collapse
Affiliation(s)
- Jonna B. Westover
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Kie Hoon Jung
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Kirsten M. Boardman
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Arnaud J. Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Utah Veterinary Diagnostic Laboratory, Logan, Utah, USA
| | - Craig Martens
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Inioska Rojas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Philip Hicks
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aaron J. Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Manohar T. Saindane
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | | | - Shuli Mao
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Alexander A. Kolykhalov
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
- Drug Innovation Ventures at Emory (DRIVE), Atlanta, Georgia, USA
| | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George R. Painter
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
- Drug Innovation Ventures at Emory (DRIVE), Atlanta, Georgia, USA
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, USA
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Brian B. Gowen
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| |
Collapse
|
13
|
Ngo VL, Lieber CM, Kang HJ, Sakamoto K, Kuczma M, Plemper RK, Gewirtz AT. Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. Cell Host Microbe 2024; 32:335-348.e8. [PMID: 38295788 PMCID: PMC10942762 DOI: 10.1016/j.chom.2024.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AMs). In SFB-negative mice, AMs were quickly depleted as RVI progressed. In contrast, AMs from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AMs from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AMs into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity.
Collapse
Affiliation(s)
- Vu L Ngo
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia College of Veterinary Science, Athens, GA 30602, USA
| | - Michal Kuczma
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| | - Andrew T Gewirtz
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| |
Collapse
|
14
|
Cox RM, Wolf JD, Lieberman NA, Lieber CM, Kang HJ, Sticher ZM, Yoon JJ, Andrews MK, Govindarajan M, Krueger RE, Sobolik EB, Natchus MG, Gewirtz AT, deSwart RL, Kolykhalov AA, Hekmatyar K, Sakamoto K, Greninger AL, Plemper RK. Therapeutic mitigation of measles-like immune amnesia and exacerbated disease after prior respiratory virus infections in ferrets. Nat Commun 2024; 15:1189. [PMID: 38331906 PMCID: PMC10853234 DOI: 10.1038/s41467-024-45418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Measles cases have surged pre-COVID-19 and the pandemic has aggravated the problem. Most measles-associated morbidity and mortality arises from destruction of pre-existing immune memory by measles virus (MeV), a paramyxovirus of the morbillivirus genus. Therapeutic measles vaccination lacks efficacy, but little is known about preserving immune memory through antivirals and the effect of respiratory disease history on measles severity. We use a canine distemper virus (CDV)-ferret model as surrogate for measles and employ an orally efficacious paramyxovirus polymerase inhibitor to address these questions. A receptor tropism-intact recombinant CDV with low lethality reveals an 8-day advantage of antiviral treatment versus therapeutic vaccination in maintaining immune memory. Infection of female ferrets with influenza A virus (IAV) A/CA/07/2009 (H1N1) or respiratory syncytial virus (RSV) four weeks pre-CDV causes fatal hemorrhagic pneumonia with lung onslaught by commensal bacteria. RNAseq identifies CDV-induced overexpression of trefoil factor (TFF) peptides in the respiratory tract, which is absent in animals pre-infected with IAV. Severe outcomes of consecutive IAV/CDV infections are mitigated by oral antivirals even when initiated late. These findings validate the morbillivirus immune amnesia hypothesis, define measles treatment paradigms, and identify priming of the TFF axis through prior respiratory infections as risk factor for exacerbated morbillivirus disease.
Collapse
Affiliation(s)
- Robert M Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Josef D Wolf
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Nicole A Lieberman
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Zachary M Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Meghan K Andrews
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | | | - Rebecca E Krueger
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth B Sobolik
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | - Andrew T Gewirtz
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Rik L deSwart
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Khan Hekmatyar
- Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA.
| |
Collapse
|
15
|
Lieber CM, Kang HJ, Aggarwal M, Lieberman NA, Sobolik EB, Yoon JJ, Natchus MG, Cox RM, Greninger AL, Plemper RK. Influenza A virus resistance to 4'-fluorouridine coincides with viral attenuation in vitro and in vivo. PLoS Pathog 2024; 20:e1011993. [PMID: 38300953 PMCID: PMC10863857 DOI: 10.1371/journal.ppat.1011993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/13/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). In vitro viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD50 units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU.
Collapse
Affiliation(s)
- Carolin M. Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Megha Aggarwal
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Nicole A. Lieberman
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Elizabeth B. Sobolik
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Robert M. Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| |
Collapse
|
16
|
Rox K, Medina E. Aerosolized delivery of ESKAPE pathogens for murine pneumonia models. Sci Rep 2024; 14:2558. [PMID: 38297183 PMCID: PMC10830452 DOI: 10.1038/s41598-024-52958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Murine pneumonia models for ESKAPE pathogens serve to evaluate novel antibacterials or to investigate immunological responses. The majority of published models uses intranasal or to a limited extent the intratracheal instillation to challenge animals. In this study, we propose the aerosol delivery of pathogens using a nebulizer. Aerosol delivery typically results in homogeneous distribution of the inoculum in the lungs because of lower particle size. This is of particular importance when compounds are assessed for their pharmacokinetic and pharmacodynamic (PK/PD) relationships as it allows to conduct several analysis with the same sample material. Moreover, aerosol delivery has the advantage that it mimics the 'natural route' of respiratory infection. In this short and concise study, we show that aerosol delivery of pathogens resulted in a sustained bacterial burden in the neutropenic lung infection model for five pathogens tested, whereas it gave a similar result in immunocompetent mice for three out of five pathogens. Moreover, a substantial bacterial burden in the lungs was already achieved 2 h post inhalation. Hence, this study constitutes a viable alternative for intranasal administration and a refinement of murine pneumonia models for PK/PD assessments of novel antibacterial compounds allowing to study multiple readouts with the same sample material.
Collapse
Affiliation(s)
- Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany.
| | - Eva Medina
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
- Infection Immunology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany
| |
Collapse
|
17
|
Ngo VL, Lieber CM, Kang HJ, Sakamoto K, Kuczma M, Plemper RK, Gewirtz AT. Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558814. [PMID: 37790571 PMCID: PMC10542499 DOI: 10.1101/2023.09.21.558814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and SARS-CoV-2, was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AM). In SFB-negative mice, AM were quickly depleted as RVI progressed. In contrast, AM from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AM from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AM into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity. One sentence summary Intestinal segmented filamentous bacteria reprogram alveolar macrophages promoting nonphlogistic defense against respiratory viruses.
Collapse
|
18
|
Lieber CM, Kang HJ, Aggarwal M, Lieberman NA, Sobolik EB, Yoon JJ, Natchus MG, Cox RM, Greninger AL, Plemper RK. Influenza A virus resistance to 4'-fluorouridine coincides with viral attenuation in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563370. [PMID: 37905070 PMCID: PMC10614940 DOI: 10.1101/2023.10.20.563370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). In vitro viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD 50 units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU. Author Summary Reduced sensitivity to FDA-approved influenza drugs is a major obstacle to effective antiviral therapy. We have previously demonstrated oral efficacy of a novel clinical candidate drug, 4'-FlU, against seasonal, pandemic, and highly pathogenic avian influenza viruses. In this study, we have determined possible routes of influenza virus escape from 4'-FlU and addressed whether resistance imposes a viral fitness penalty, affecting pathogenicity or ability to transmit. We identified three distinct clusters of mutations that lead to moderately reduced viral sensitivity to the drug. Testing of resistant variants against two chemically unrelated nucleoside analog inhibitors of influenza virus, conditionally approved favipiravir and the broad-spectrum SARS-CoV-2 drug molnupiravir, revealed cross-resistance of one cluster with favipiravir, whereas no viral escape from molnupiravir was noted. We found that the resistant variants are severely attenuated in mice, impaired in their ability to invade the lower respiratory tract and cause viral pneumonia in ferrets, and transmission-defective or compromised. We could fully mitigate lethal infection of mice with the resistant variants with standard or 5-fold elevated oral dose of 4'-FlU. These results demonstrate that partial viral escape from 4'-FlU is feasible in principle, but escape mutation clusters are unlikely to reach clinical significance or persist in circulating influenza virus strains.
Collapse
|