1
|
Lee YZ, Han J, Zhang YN, Ward G, Braz Gomes K, Auclair S, Stanfield RL, He L, Wilson IA, Zhu J. Rational design of uncleaved prefusion-closed trimer vaccines for human respiratory syncytial virus and metapneumovirus. Nat Commun 2024; 15:9939. [PMID: 39550381 PMCID: PMC11569192 DOI: 10.1038/s41467-024-54287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we design uncleaved prefusion-closed (UFC) trimers for the fusion protein (F) of both viruses by examining mutations critical to F metastability. For RSV, we assess four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A. We then identify key mutations that can maintain prefusion F in a native-like, closed trimeric form (up to 76%) without introducing any interprotomer disulfide bond. For hMPV, we develop a stable UFC trimer with a truncated F2-F1 linkage and an interprotomer disulfide bond. Dozens of UFC constructs are characterized by negative-stain electron microscopy (nsEM), x-ray crystallography (11 RSV-F structures and one hMPV-F structure), and antigenic profiling. Using an optimized RSV-F UFC trimer as bait, we identify three potent RSV neutralizing antibodies (NAbs) from a phage-displayed human antibody library, with a public NAb lineage targeting sites Ø and V and two cross-pneumovirus NAbs recognizing site III. In mouse immunization, rationally designed RSV-F and hMPV-F UFC trimers induce robust antibody responses with high neutralizing titers. Our study provides a foundation for future prefusion F-based RSV and hMPV vaccine development.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jerome Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Uvax Bio, LLC, Newark, DE, 19702, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Bakkers MJG, Ritschel T, Tiemessen M, Dijkman J, Zuffianò AA, Yu X, van Overveld D, Le L, Voorzaat R, van Haaren MM, de Man M, Tamara S, van der Fits L, Zahn R, Juraszek J, Langedijk JPM. Efficacious human metapneumovirus vaccine based on AI-guided engineering of a closed prefusion trimer. Nat Commun 2024; 15:6270. [PMID: 39054318 PMCID: PMC11272930 DOI: 10.1038/s41467-024-50659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
The prefusion conformation of human metapneumovirus fusion protein (hMPV Pre-F) is critical for eliciting the most potent neutralizing antibodies and is the preferred immunogen for an efficacious vaccine against hMPV respiratory infections. Here we show that an additional cleavage event in the F protein allows closure and correct folding of the trimer. We therefore engineered the F protein to undergo double cleavage, which enabled screening for Pre-F stabilizing substitutions at the natively folded protomer interfaces. To identify these substitutions, we developed an AI convolutional classifier that successfully predicts complex polar interactions often overlooked by physics-based methods and visual inspection. The combination of additional processing, stabilization of interface regions and stabilization of the membrane-proximal stem, resulted in a Pre-F protein vaccine candidate without the need for a heterologous trimerization domain that exhibited high expression yields and thermostability. Cryo-EM analysis shows the complete ectodomain structure, including the stem, and a specific interaction of the newly identified cleaved C-terminus with the adjacent protomer. Importantly, the protein induces high and cross-neutralizing antibody responses resulting in near complete protection against hMPV challenge in cotton rats, making the highly stable, double-cleaved hMPV Pre-F trimer an attractive vaccine candidate.
Collapse
Affiliation(s)
- Mark J G Bakkers
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- ForgeBio B.V., Amsterdam, The Netherlands
| | - Tina Ritschel
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- J&J Innovative Medicine Technology, R&D, New Brunswick, NJ, USA
| | | | - Jacobus Dijkman
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Machine Learning Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelo A Zuffianò
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- Promaton BV, Amsterdam, The Netherlands
| | - Xiaodi Yu
- Structural & Protein Science, Janssen Research and Development, Spring House, PA, 19044, USA
| | | | - Lam Le
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | | | | | - Martijn de Man
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Sem Tamara
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | | | - Roland Zahn
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Jarek Juraszek
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Johannes P M Langedijk
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands.
- ForgeBio B.V., Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Gidwani SV, Brahmbhatt D, Zomback A, Bassie M, Martinez J, Zhuang J, Schulze J, McLellan JS, Mariani R, Alff P, Frasca D, Blomberg BB, Marshall CP, Yondola MA. Engineered dityrosine-bonding of the RSV prefusion F protein imparts stability and potency advantages. Nat Commun 2024; 15:2202. [PMID: 38485927 PMCID: PMC10940300 DOI: 10.1038/s41467-024-46295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Viral fusion proteins facilitate cellular infection by fusing viral and cellular membranes, which involves dramatic transitions from their pre- to postfusion conformations. These proteins are among the most protective viral immunogens, but they are metastable which often makes them intractable as subunit vaccine targets. Adapting a natural enzymatic reaction, we harness the structural rigidity that targeted dityrosine crosslinks impart to covalently stabilize fusion proteins in their native conformations. We show that the prefusion conformation of respiratory syncytial virus fusion protein can be stabilized with two engineered dityrosine crosslinks (DT-preF), markedly improving its stability and shelf-life. Furthermore, it has 11X greater potency as compared with the DS-Cav1 stabilized prefusion F protein in immunogenicity studies and overcomes immunosenescence in mice with simply a high-dose formulation on alum.
Collapse
Affiliation(s)
- Sonal V Gidwani
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
| | | | - Aaron Zomback
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
| | - Mamie Bassie
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
| | | | - Jian Zhuang
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - John Schulze
- Molecular Structure Facility, University of California, Davis, Davis, CA, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, College of Natural Sciences, Austin, TX, USA
| | - Roberto Mariani
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
- CUNY Kingsborough Community College, Brooklyn, NY, USA
| | - Peter Alff
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | | | - Mark A Yondola
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA.
| |
Collapse
|
4
|
Lee YZ, Han J, Zhang YN, Ward G, Gomes KB, Auclair S, Stanfield RL, He L, Wilson IA, Zhu J. A tale of two fusion proteins: understanding the metastability of human respiratory syncytial virus and metapneumovirus and implications for rational design of uncleaved prefusion-closed trimers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583986. [PMID: 38496645 PMCID: PMC10942449 DOI: 10.1101/2024.03.07.583986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we designed uncleaved prefusion-closed (UFC) trimers for the fusion (F) proteins of both viruses by examining mutations critical to F metastability. For RSV, we assessed four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A. We then identified key mutations that can maintain prefusion F in a native-like, closed trimeric form (up to 76%) without introducing any interprotomer disulfide bond. For hMPV, we developed a stable UFC trimer with a truncated F2-F1 linkage and an interprotomer disulfide bond. Tens of UFC constructs were characterized by negative-stain electron microscopy (nsEM), x-ray crystallography (11 RSV-F and one hMPV-F structures), and antigenic profiling. Using an optimized RSV-F UFC trimer as bait, we identified three potent RSV neutralizing antibodies (NAbs) from a phage-displayed human antibody library, with a public NAb lineage targeting sites Ø and V and two cross-pneumovirus NAbs recognizing site III. In mouse immunization, rationally designed RSV-F and hMPV-F UFC trimers induced robust antibody responses with high neutralizing titers. Our study provides a foundation for future prefusion F-based RSV and hMPV vaccine development.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jerome Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Keegan Braz Gomes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
5
|
Xiao X, Wen Z, Chen Q, Shipman JM, Kostas J, Reid JC, Warren C, Tang A, Luo B, O’Donnell G, Fridman A, Chen Z, Vora KA, Zhang L, Su HP, Eddins MJ. Structural characterization of M8C10, a neutralizing antibody targeting a highly conserved prefusion-specific epitope on the metapneumovirus fusion trimerization interface. J Virol 2023; 97:e0105223. [PMID: 38032197 PMCID: PMC10734504 DOI: 10.1128/jvi.01052-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Human metapneumovirus (hMPV) is a common pathogen causing lower respiratory tract infections worldwide and can develop severe symptoms in high-risk populations such as infants, the elderly, and immunocompromised patients. There are no approved hMPV vaccines or neutralizing antibodies available for therapeutic or prophylactic use. The trimeric hMPV fusion F protein is the major target of neutralizing antibodies in human sera. Understanding the immune recognition of antibodies to hMPV-F antigen will provide critical insights into developing efficacious hMPV monoclonal antibodies and vaccines.
Collapse
Affiliation(s)
- Xiao Xiao
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
- Discovery Biologics, Merck & Co., Inc., Boston, Massachusetts, USA
- MRL Postdoctoral Research Program, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Zhiyun Wen
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Qing Chen
- Protein and Structural Chemistry, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Jennifer M. Shipman
- Protein and Structural Chemistry, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - James Kostas
- Protein and Structural Chemistry, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - John C. Reid
- Protein and Structural Chemistry, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Christopher Warren
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Aimin Tang
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Bin Luo
- Quantitative Biosciences, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Gregory O’Donnell
- Quantitative Biosciences, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Arthur Fridman
- Data Science and Scientific Informatics, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Zhifeng Chen
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kalpit A. Vora
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Lan Zhang
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Hua-Poo Su
- Protein and Structural Chemistry, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Michael J. Eddins
- Protein and Structural Chemistry, Merck & Co., Inc., West Point, Pennsylvania, USA
| |
Collapse
|