1
|
Chen Z, Wang L, Zhang Y, Li G, Yin J, Fan J, Liu T, Wu H, Huang Y, Huang W, Liu D, Zheng X, Zang X, Huang X, Song L, Wen S, Li J, Ying D, Fang M, Wang Y, Wu T, Sridhar S, Zhang J, Xia N, Wang L, Lu Y, Zheng Z. Substantial spillover burden of rat hepatitis E virus in humans. Nat Commun 2025; 16:4038. [PMID: 40301345 PMCID: PMC12041280 DOI: 10.1038/s41467-025-59345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
The emergence of Rocahepevirus ratti genotype 1 (rat hepatitis E virus; rat HEV) in humans presents an unprecedented threat; however, the risk of rat HEV transmission to humans is not well understood. Here, we report the "Distinguishing Antibody Response Elicitation (DARE)" method, which distinguishes exposure to rat HEV. We use four study sets from China for large-scale population analysis: set 1 (hospital visit) and set 3 (ALT abnormality) from Yunnan province, a biodiversity hotspot, and set 2 (received physical examination) and set 4 (ALT abnormality) from Jiangsu province, a non-hotspot control region. rat HEV exposure risk is significantly higher in Yunnan, with 21.97% (190 of 865) in set 1 and 13.97% (70 of 501) in set 3, compared to 0.75% (9 of 1196) in Jiangsu's set 2. Six spillover infections for rat HEV are identified in set 1, with one case of abnormal ALT. The rat-1d strains carried by rats are closely related to those human infections. Our study reveals the substantial spillover burden posed by rat HEV in biodiversity hotspots and highlights the utility of DARE method for proactive surveillance of public health emergencies.
Collapse
Affiliation(s)
- Zihao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Lifeng Wang
- Menghai County People's Hospital, Menghai, Yunnan, PR China
| | - Yongde Zhang
- Menghai County Center for Disease Control and Prevention, Menghai, Yunnan, PR China
| | - Guanghui Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Jiaxiang Yin
- Department of Epidemiology, School of Public Health, Dali University, Dali, Yunnan, PR China
| | - Jingyan Fan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Tianxu Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, PR China
| | - Yue Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Wenhui Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Donglin Liu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, PR China
| | - Xiaoxiang Zheng
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, PR China
| | - Xia Zang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, PR China
| | - Xingcheng Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Liuwei Song
- Xiamen Innodx Biotechnology Co., Ltd, Xiamen, Fujian, PR China
| | - Shunhua Wen
- Xiamen Innodx Biotechnology Co., Ltd, Xiamen, Fujian, PR China
| | - Jiayu Li
- Xiamen Innodx Biotechnology Co., Ltd, Xiamen, Fujian, PR China
| | - Dong Ying
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Mujin Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Yingbin Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Ting Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, PR China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, Hong Kong, PR China
- State Key Laboratory of Emerging Infectious Diseases and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China.
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, PR China.
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China.
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, PR China.
| | - Zizheng Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China.
- Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, PR China.
| |
Collapse
|
2
|
Kotb AA, El-Mokhtar MA, Sayed IM. Effect of Hepatitis E Virus on the Male Reproductive System: A Review of Current Evidence. Viruses 2025; 17:66. [PMID: 39861855 PMCID: PMC11768735 DOI: 10.3390/v17010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatitis E Virus (HEV) is a globally widespread pathogen that causes acute hepatitis infection. Beyond hepatic pathogenesis, HEV has been proven to cause several extrahepatic manifestations, such as neurological, renal, and hematological manifestations. It was also associated with mortality in pregnant females. Several studies have investigated the impact of HEV on the male reproductive system; however, the available data are limited and conflicting. Assessment of the patients' ejaculates/semen samples revealed that HEV particles are excreted in these fluids in cases of chronic infection but not acute infection. The excreted HEV particles are infectious to in vivo animal models and in vitro cell culture. However, the effect of HEV infection on male infertility is not confirmed. One study including human samples showed male infertility associated with HEV genotype 4 infection. Studies of HEV infection in animal models such as pigs, gerbils, and mice showed that HEV infection caused distortion on the testes, damage of the blood-testis barrier, and induction of inflammatory responses leading to abnormalities in the sperm. The excretion of HEV in the semen fluids raises concerns about HEV transmission via sexual transmission. However, all available data do not confirm the transmission of HEV through sexual intercourse. This review aims to summarize and critically assess the available studies investigating the influence of different HEV genotypes on the male reproductive system, providing insights into whether HEV contributes to reproductive impairment in men.
Collapse
Affiliation(s)
- Ahmed A. Kotb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Mohamed A. El-Mokhtar
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Ibrahim M. Sayed
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
3
|
Xu LD, Zhang F, Xu P, Huang YW. Cross-species transmission and animal infection model of hepatitis E virus. Microbes Infect 2025; 27:105338. [PMID: 38636821 DOI: 10.1016/j.micinf.2024.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Zoonotic hepatitis E virus (HEV) infection is an emerging global public health concern, and understanding the dynamics of HEV transmission between animals and humans is crucial for public health. Animal models are critical to advancing the understanding of HEV pathogenesis, drug screening, vaccine development, and other related areas. Here, we provide an overview of recent studies investigating the cross-species transmission of HEV, and also delve into the current research and application of animal HEV infection models including non-human primates, rodents, pigs, and chickens, offering a comprehensive assessment of the advantages and disadvantages of each model. This review highlights the findings related to viral replication, shedding patterns, and immune response in these animal models, and discusses the implications for our understanding of HEV transmission to humans. These advancements in the field enhance our understanding of the biological traits and pathogenic mechanisms of HEV, offering robust support for the development of highly effective and targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Ling-Dong Xu
- Laboratory Animal Center, Zhejiang University, Hangzhou, 310058, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Fei Zhang
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Yao-Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Li M, Wang Y, Wan W, Song Z, Wang P, Zhou H. Hepatitis E virus infection during pregnancy: Advances in animal models. Res Vet Sci 2024; 180:105429. [PMID: 39378754 DOI: 10.1016/j.rvsc.2024.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Hepatitis E virus (HEV) is one of the major pathogens causing acute viral hepatitis worldwide, which usually causes acute self-limited diseases in general individuals. However, it can lead to high mortality and adverse pregnancy outcomes in pregnant women. Due to the lack of effective and stable cell culture models for HEV, the establishment of suitable animal models for HEV infection during pregnancy is necessary. An electronic search of the relevant database was conducted to identify eligible articles. Main animal models for the study of HEV infection during pregnancy include rabbits, swine, nonhuman primates and Mongolian gerbils. These animal models have been used to study the prevention, treatment and possible mechanisms of HEV infection during pregnancy. Studies using these animal models have investigated the potential pathogenesis of HEV infection during pregnancy. It has been found that immune mechanism (changes in the CD4/CD8 ratio and cytokines), hormonal changes (increase in pregnancy-related hormones) and viral factors (different genotypes and genome structures) can lead to HEV-related adverse pregnancy outcomes in animal models. In this review, we aimed to comprehensively present the characteristics of different animal models and the pathogenesis of HEV-related adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Manyu Li
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing 100050, China; NMPA Key Laboratory for Quality Research and Evaluation of Medical Devices, Beijing, China; NMPA Key Laboratory for Quality Research and Evaluation of In Vitro Diagnostics, Beijing, China.
| | - Yan Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital/First Clinical College of Shanxi Medical University, No. 85, Jiefangnan Road, Yingze District, Taiyuan 030001, Shanxi, China
| | - Wenjun Wan
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing 100050, China; NMPA Key Laboratory for Quality Research and Evaluation of Medical Devices, Beijing, China; NMPA Key Laboratory for Quality Research and Evaluation of In Vitro Diagnostics, Beijing, China
| | - Zeyu Song
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing 100050, China; NMPA Key Laboratory for Quality Research and Evaluation of Medical Devices, Beijing, China; NMPA Key Laboratory for Quality Research and Evaluation of In Vitro Diagnostics, Beijing, China
| | - Peilong Wang
- Heji Hospital Affiliated to Changzhi Medical College, Gastroenterology Center Endoscopy Department, Changzhi 046000, Shanxi, China.
| | - Haiwei Zhou
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing 100050, China; NMPA Key Laboratory for Quality Research and Evaluation of Medical Devices, Beijing, China; NMPA Key Laboratory for Quality Research and Evaluation of In Vitro Diagnostics, Beijing, China.
| |
Collapse
|
5
|
Li T, Sakai Y, Ami Y, Suzaki Y, Isogawa M. Strain- and Subtype-Specific Replication of Genotype 3 Hepatitis E Viruses in Mongolian Gerbils. Viruses 2024; 16:1605. [PMID: 39459937 PMCID: PMC11512239 DOI: 10.3390/v16101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Since Mongolian gerbils are broadly susceptible to hepatitis E virus (HEV), including genotypes 1, 4, 5, and 8 (HEV-1, HEV-5, HEV-5, and HEV-8) and rat HEV, they are a useful small animal model for HEV. However, we have observed that the subtypes HEV-3k and HEV-3ra in genotype 3 HEV (HEV-3) were not infected efficiently in the gerbils. A small-animal model for HEV-3 is also needed since HEV-3 is responsible for major zoonotic HEV infections. To investigate whether gerbils can be used as animal models for other subtypes of HEV-3, we injected gerbils with five HEV-3 subtypes (HEV-3b, -3e, -3f, -3k, and -3ra) and compared the infectivity of the subtypes. We detected viral RNA in the gerbils' feces. High titers of anti-HEV IgG antibodies in serum were induced in all HEV-3b/ch-, HEV-3f-, and HEV-3e-injected gerbils. Especially, the HEV-3e-injected animals released high levels of viruses into their feces for an extended period. The virus replication was limited in the HEV-3b/wb-injected and HEV-3k-injected groups. Although viral RNA was detected in HEV-3ra-injected gerbils, the copy numbers in fecal specimens were low; no antibodies were detected in the sera. These results indicate that although HEV-3's infectivity in gerbils depends on the subtype and strain, Mongolian gerbils have potential as a small-animal model for HEV-3. A further comparison of HEV-3e with different genotype strains (HEV-4i and HEV-5) and different genera (rat HEV) revealed different ALT elevations among the strains, and liver damage occurred in HEV-4i- and HEV-5-infected but not HEV-3e- or rat HEV-infected gerbils, demonstrating variable pathogenicity across HEVs from different genera and genotypes in Mongolian gerbils. HEV-4i- and HEV-5-infected Mongolian gerbils might be candidate animal models to examine HEV's pathogenicity.
Collapse
Affiliation(s)
- Tiancheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| | - Yasushi Ami
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.A.); (Y.S.)
| | - Yuriko Suzaki
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.A.); (Y.S.)
| | - Masanori Isogawa
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| |
Collapse
|
6
|
Yadav KK, Kenney SP. Hepatitis E virus immunosuppressed animal models. BMC Infect Dis 2024; 24:965. [PMID: 39266958 PMCID: PMC11395946 DOI: 10.1186/s12879-024-09870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
Hepatitis E virus (HEV) is an important emerging pathogen producing significant morbidity in immunosuppressed patients. HEV has been detrimental to solid organ transplant (SOT) patients, cancer patients, and HIV-positive patients, where chronic HEV infections occur. Blood-borne transfusions and multiple cases of chronic HEV infection in transplant patients have been reported in the past few decades, necessitating research on HEV pathogenesis using immunosuppressed animal models. Numerous animal species with unique naturally occurring HEV strains have been found, several of which have the potential to spread to humans and to serve as pathogenesis models. Host immunosuppression leads to viral persistence and chronic HEV infection allows for genetic adaptation to the human host creating new strains with worse disease outcomes. Procedures necessary for SOT often entail blood transfusions placing immunosuppressive patients into a "high risk group" for HEV infection. This scenario requires an appropriate immunosuppressive animal model to understand disease patterns in these patients. Hence, this article reviews the recent advances in the immunosuppressed animal models for chronic HEV infection with emphasis on pathogenesis, immune correlates, and the liver pathology associated with the chronic HEV infections.
Collapse
Affiliation(s)
- Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, 43210, USA
| | - Scott P Kenney
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, 43210, USA.
| |
Collapse
|
7
|
Liu T, He Q, Yang X, Li Y, Yuan D, Lu Q, Tang T, Guan G, Zheng L, Zhang H, Xia C, Yin X, Wei G, Chen X, Lu F, Wang L. An Immunocompetent Mongolian Gerbil Model for Hepatitis E Virus Genotype 1 Infection. Gastroenterology 2024; 167:750-763.e10. [PMID: 38582270 DOI: 10.1053/j.gastro.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND & AIMS Hepatitis E virus (HEV), primarily genotype 1 (HEV-1), causes approximately 20.1 million infections, 44,000 deaths, and 3000 stillbirths annually. Current evidence indicates that HEV-1 is only transmitted in humans. Here, we evaluated whether Mongolian gerbils can serve as animal models for HEV-1 infection. METHODS Mongolian gerbils were used for HEV-1 and hepatitis E virus genotype 3 infection experiments. HEV infection parameters, including detection of HEV RNA and HEV antigen, liver function assessment, and histopathology, were evaluated. RESULTS We adapted a clinical isolate of HEV-1 for Mongolian gerbils by serial passaging in feces of aged male gerbils. The gerbil-adapted strain obtained at passage 3 induced a robust, acute HEV infection, characterized by stable fecal virus shedding, elevated liver enzymes, histopathologic changes in the liver, and seroconversion to anti-HEV. An infectious complementary DNA clone of the adapted virus was generated. HEV-1-infected pregnant gerbils showed a high rate of maternal mortality and vertical transmission. HEV RNA or antigens were detected in the liver, kidney, intestine, placenta, testis, and fetus liver. Liver and placental transcriptomic analyses indicated activation of host immunity. Tacrolimus prolonged HEV-1 infection, whereas ribavirin cleared infection. The protective efficacy of a licensed HEV vaccine was validated using this model. CONCLUSIONS HEV-1 efficiently infected Mongolian gerbils. This HEV-1 infection model will be valuable for investigating hepatitis E immunopathogenesis and evaluating vaccines and antivirals against HEV.
Collapse
Affiliation(s)
- Tianxu Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinyue Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuebao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Disen Yuan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qinghui Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianyu Tang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guiwen Guan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liwei Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guochao Wei
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
8
|
Gouttenoire J, Neyts J. A Hepatitis E Virus Infection Model in the Mongolian Gerbil: Ready for Antiviral and Vaccine Studies. Gastroenterology 2024; 167:652-653. [PMID: 38795734 DOI: 10.1053/j.gastro.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/16/2024] [Accepted: 03/27/2024] [Indexed: 05/28/2024]
Affiliation(s)
- Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and, University of Lausanne, Lausanne, Switzerland.
| | - Johan Neyts
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
He Q, Liu T, Yang X, Yuan D, Lu Q, Li Y, Zhang H, Liu X, Xia C, Sridhar S, Tian L, Liu X, Meng L, Ning J, Lu F, Wang L, Yin X, Wang L. Optimization of immunosuppression strategies for the establishment of chronic hepatitis E virus infection in rabbits. J Virol 2024; 98:e0084624. [PMID: 38899900 PMCID: PMC11264948 DOI: 10.1128/jvi.00846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic hepatitis E mostly occurs in organ transplant recipients and can lead to rapid liver fibrosis and cirrhosis. Previous studies found that the development of chronic hepatitis E virus (HEV) infection is linked to the type of immunosuppressant used. Animal models are crucial for the study of pathogenesis of chronic hepatitis E. We previously established a stable chronic HEV infection rabbit model using cyclosporine A (CsA), a calcineurin inhibitor (CNI)-based immunosuppressant. However, the immunosuppression strategy and timing may be optimized, and how different types of immunosuppressants affect the establishment of chronic HEV infection in this model is still unknown. Here, we showed that chronic HEV infection can be established in 100% of rabbits when CsA treatment was started at HEV challenge or even 4 weeks after. Tacrolimus or prednisolone treatment alone also contributed to chronic HEV infection, resulting in 100% and 77.8% chronicity rates, respectively, while mycophenolate mofetil (MMF) only led to a 28.6% chronicity rate. Chronic HEV infection was accompanied with a persistent activation of innate immune response evidenced by transcriptome analysis. The suppressed adaptive immune response evidenced by low expression of genes related to cytotoxicity (like perforin and FasL) and low anti-HEV seroconversion rates may play important roles in causing chronic HEV infection. By analyzing HEV antigen concentrations with different infection outcomes, we also found that HEV antigen levels could indicate chronic HEV infection development. This study optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits and highlighted the potential association between the development of chronic HEV infection and immunosuppressants.IMPORTANCEOrgan transplant recipients are at high risk of chronic hepatitis E and generally receive a CNI-based immunosuppression regimen containing CNI (tacrolimus or CsA), MMF, and/or corticosteroids. Previously, we established stable chronic HEV infection in a rabbit model by using CsA before HEV challenge. In this study, we further optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits. Chronic HEV infection can also be established when CsA treatment was started at the same time or even 4 weeks after HEV challenge, clearly indicating the risk of progression to chronic infection under these circumstances and the necessity of HEV screening for both the recipient and the donor preoperatively. CsA, tacrolimus, or prednisolone instead of MMF significantly contributed to chronic HEV infection. HEV antigen in acute infection phase indicates the development of chronic infection. Our results have important implications for understanding the potential association between chronic HEV infection and immunosuppressants.
Collapse
Affiliation(s)
- Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianxu Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinyue Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Disen Yuan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qinghui Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuebao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lili Tian
- Miyun District Center for Disease Control and Prevention, Beijing, China
| | - Xiaofeng Liu
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lulu Meng
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
10
|
Subramaniam S, Fares-Gusmao R, McGivern DR. Quantification of Hepatitis E Virus ORF2 Protein by a Novel Sandwich ELISA. Viruses 2024; 16:393. [PMID: 38543759 PMCID: PMC10974087 DOI: 10.3390/v16030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Hepatitis E virus (HEV) causes acute hepatitis in humans, which can progress to chronicity in immunosuppressed individuals. Almost all reported HEV infections are caused by Paslahepevirus balayani genotypes 1-4. The structural ORF2 protein is the major antigen detected in the blood of HEV-infected individuals. ELISA assays to detect IgM antibodies to HEV are the first-line diagnostic tests; however, they showed variable performance with frequently discordant results. A qualitative HEV antigen (ORF2) ELISA is currently available for research use. Here, we report a novel quantitative sandwich ELISA to measure HEV ORF2 protein in 3 matrix types. An optimal pair of capture and detection antibodies was selected among 12 unique combinations tested. A sandwich ELISA protocol was developed using these mAbs and biotin-streptavidin technology. The protocol was further optimized to quantify ORF2 antigen in different matrices by interpolating from a standard curve with a linear range of 3.17 to 50.8 femtomoles/mL. Using this method, ORF2 protein was detected in the cell culture medium of Huh7 cells as early as 2-3 days after transfection with HEV genome RNA and in a medium of human hepatocytes infected with HEV. ORF2 antigen was readily detected in the first 2 weeks post-HEV infection in gerbil sera. In immunosuppressed gerbils, ORF2 was detected up to 6 weeks, and the levels were significantly higher between 3 and 6 weeks post-infection. HEV ORF2 antigen levels showed a strong positive correlation with HEV RNA levels in both cell culture medium and gerbil sera. Our novel sandwich ELISA detected at least 7.3 femtomoles/mL ORF2 protein in human plasma spiked with cell culture propagated HEV and detected ORF2 protein in human plasma samples that tested positive for HEV RNA but negative for anti-HEV antibodies. Further, the assay was nonreactive, with negative human plasma, and HBV or HCV-positive human plasma demonstrating specificity. Overall, our ORF2 antigen ELISA will be useful for quantifying ORF2 antigen in cell culture medium, gerbil serum, and human plasma. Further studies are warranted to evaluate its utility in HEV clinical diagnosis.
Collapse
Affiliation(s)
| | | | - David R. McGivern
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (S.S.); (R.F.-G.)
| |
Collapse
|