1
|
Li M, Wu Y, Tian J, Yang Q, Gao M, Wang Y, Wang X, Zhang J, Pan Y, Shi H, Shi D, Zhang X, Chen J, Guo L, Feng L. Nuclear shuttling of CDC4 mediated broad-spectrum antiviral activity against diverse coronaviruses. Emerg Microbes Infect 2025; 14:2493922. [PMID: 40260685 PMCID: PMC12064130 DOI: 10.1080/22221751.2025.2493922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/20/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Pandemics of coronavirus (CoV)-related infection have been a major issue since the outbreaks of SARS, MERS and COVID-2019 in the past decades, leading a substantial threat to public health. Porcine deltacoronavirus (PDCoV), a new swine coronavirus, causes enteropathogenic disease characterized by acute diarrhoea, vomiting and dehydration in suckling piglets and poses potential risks of cross-species transmission. Here we reveal a novel function of CDC4 protein in restricting PDCoV infection. Ectopic expression of CDC4 suppresses PDCoV replication, whereas knockdown of CDC4 expression enhances PDCoV infection. Importantly, it was revealed that PDCoV encoded nucleocapsid (N) was involved in CDC4 nuclear-cytoplasmic shuttling, which was critical for CDC4 to exert the antiviral activity against PDCoV replication. Mechanistically, PDCoV N protein was detected to specifically interact with RIG-I to antagonize RIG-I-like receptor (RLR)-mediated IFN-β production, leading to disruptions of host innate immune defense. Meanwhile, CDC4 was proved to interact with PDCoV N protein and disrupted the interaction between PDCoV N and RIG-I, resulting in alleviated antagonism of IFN-β production mediated by PDCoV N. Similarly, a broad-spectrum inhibitory effects of CDC4 on N mediated antagonism were confirmed by the shared mechanisms among the different coronaviruses from Coronaviridae family, such as transmissible gastroenteritis virus (TGEV) from Alphacoronavirus (α-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Betacoronavirus (β-CoV). Therefore, a novel antiviral role of CDC4 was elucidated that CDC4 competes binding with CoVs N proteins to suppress CoVs N mediated antagonism of RLR associated signalling pathway in the context of diverse coronavirus infections.
Collapse
Affiliation(s)
- Mingwei Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yang Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Qian Yang
- Laboratory of Medical Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, People’s Republic of China
| | - Mingze Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yongrui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xuepeng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Ju Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yudi Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Longjun Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
2
|
Liu Y, Wang X, Wang X, Mao W, Weng Y, Zhao Y, Duan C, Wang J. Procyanidins inhibit alphacoronavirus infection by reducing interferon antagonism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156549. [PMID: 40023969 DOI: 10.1016/j.phymed.2025.156549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The development of coronavirus drugs has primarily focused on targeting viral components, such as RNA-dependent RNA polymerase (RdRP), with relatively little attention given to enhancing host antiviral defenses. α-Coronaviruses, including human-infecting HCoV-NL63 and HCoV-229E, utilize immune evasion strategies such as suppressing host interferon production to establish infection. Procyanidins (PC), oligomeric compounds composed of catechin and epicatechin, have demonstrated the ability to stimulate host interferon synthesis, potentially counteracting this immune evasion. Exploring the inhibitory effects of PC specifically on α-coronaviruses offers a promising avenue for developing novel therapeutic strategies that bolster host immunity against these pathogens. PURPOSE This study aims to evaluate the inhibitory effects of PC on α-coronaviruses using different cell models and investigate whether its antiviral activity is linked to enhanced interferon production. By examining PC's effects on selected α-coronaviruses, this research explores its potential as a therapeutic strategy against human-infecting HCoV-NL63 and HCoV-229E, which evade innate immunity. METHODS Vero cells, human embryonic kidney 293T (HEK-293T) cells, and intestinal porcine epithelial-J2 (IPEC-J2) cells were used as cell models, with porcine epidemic diarrhea virus (PEDV) serving as the α-coronavirus infection model. The inhibitory effects of PC on the α-coronaviruses and its activation of interferon were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB). Co-immunoprecipitation (co-IP) was used to assess how PC impacts the degradation of Retinoic acid-inducible gene I (RIG-I) and TANK-binding kinase 1 (TBK1) by coronavirus N protein. Confocal microscopy was utilized to observe the recovery of mitochondrial morphology disrupted by coronavirus, and flow cytometry analyses were conducted. RESULTS Viral cycle and time-of-addition analyses showed that PC inhibited PEDV infection during both the replication and release stages of the virus. Simultaneously, in the early stages of infection, PC countered PEDV's evasion of interferon by elevating host interferon levels. Co-immunoprecipitation experiments confirmed that this effect was achieved by reducing the binding of coronavirus N protein to key proteins in the interferon synthesis pathway, RIG-I and TBK1, a mechanism previously identified as one of the main reasons for interferon evasion by α-coronavirus N protein. Additionally, intriguingly, we observed that PC has the ability to restore excessive mitochondrial fission induced by coronaviruses, an effect achieved by reducing the binding of coronavirus N protein to mitochondrial fusion protein 1 (MFN1). This observation suggests potential mechanistic pathways through which PC impacts mitochondrial antiviral-related proteins. These results suggest that PC may also inhibit human α-coronaviruses, such as HCoV-NL63 and HCoV-229E, by utilizing similar antiviral mechanisms. This provides valuable insights into potential therapeutic strategies for treating human coronaviruses. CONCLUSIONS These results suggest that PC may inhibit α-coronavirus infection by reversing the virus's antagonistic effects on interferon. These findings provide a new perspective for exploring therapeutic mechanisms against coronaviruses like HCoV-NL63, HCoV-229E, SARS-CoV-2, SARS-CoV, and MERS-CoV, which can evade host innate immunity, including the identification of new drug targets.
Collapse
Affiliation(s)
- Yi Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572000, China.
| | - Xue Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xuefei Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572000, China.
| | - Wensai Mao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572000, China.
| | - Yujing Weng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572000, China.
| | - Yiqing Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Cong Duan
- China Institute of Veterinary Drug Control, Beijing, 100081, China.
| | - Jiufeng Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572000, China.
| |
Collapse
|
3
|
Chen H, Charles PD, Gu Q, Liberatori S, Robertson DL, Palmarini M, Wilson SJ, Mohammed S, Castello A. Omics Analyses Uncover Host Networks Defining Virus-Permissive and -Hostile Cellular States. Mol Cell Proteomics 2025; 24:100966. [PMID: 40204275 DOI: 10.1016/j.mcpro.2025.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025] Open
Abstract
The capacity of host cells to sustain or restrict virus infection is influenced by their proteome. Understanding the compendium of proteins defining cellular permissiveness is key to many questions in fundamental virology. Here, we apply a multi-omic approach to determine the proteins that are associated with highly permissive, intermediate, and hostile cellular states. We observed two groups of differentially regulated genes: (i) with robust changes in mRNA and protein levels and (ii) with protein/RNA discordances. While many of the latter are classified as interferon-stimulated genes (ISGs), most exhibit no antiviral effects in overexpression screens. This suggests that IFN-dependent protein changes can be better indicators of antiviral function than mRNA levels. Phosphoproteomics revealed an additional regulatory layer involving non-signaling proteins with altered phosphorylation. Indeed, we confirmed that several permissiveness-associated proteins with changes in abundance or phosphorylation regulate infection fitness. Altogether, our study provides a comprehensive and systematic map of the cellular alterations driving virus susceptibility.
Collapse
Affiliation(s)
- Honglin Chen
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK; Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | | | - Sam J Wilson
- Cambridge Institute of Therapeutic Immunol & Infect Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, UK; The Rosalind Franklin Institute, Oxfordshire, UK; Department of Chemistry, University of Oxford, Oxford, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
4
|
Zhang Y, Ji X, Huang D, Lu G, Chen X. The SARS-CoV-2 3CL protease inhibits pyroptosis through the cleavage of gasdermin D. Virol Sin 2025:S1995-820X(25)00028-8. [PMID: 40118151 DOI: 10.1016/j.virs.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of novel coronavirus disease 2019, can cause acute respiratory symptoms and even death globally. However, the immune escape mechanism and viral pathogenesis remain poorly understood. Here, we report that the SARS-CoV-2 3C-like (3CL) protease specifically cleaves gasdermin D (GSDMD) at Q29 and Q193, producing two N-terminal fragments, GSDMD1-29 and GSDMD1-193. We also found that SARS-CoV-2 infection induced the cleavage of GSDMD. Then, we demonstrated that the ability to cleave GSDMD was dependent on the protease activity of the 3CL protease. Interestingly, unlike the GSDMD1-275 fragment cleaved by caspase-1, GSDMD1-29 and GSDMD1-193 did not trigger pyroptosis or inhibit SARS-CoV-2 replication. Additionally, various RNA viral proteases display different preferences for cleaving GSDMD at Q29 and Q193. Our findings reveal a mechanism by which SARS-CoV-2 and other RNA viruses inhibit pyroptosis, highlighting the critical role of the 3CL protease in immune evasion and viral replication.
Collapse
Affiliation(s)
- Yecheng Zhang
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Xinlei Ji
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Dan Huang
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Gen Lu
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| | - Xinwen Chen
- Guangzhou Laboratory, Guangzhou 510005, China.
| |
Collapse
|
5
|
Li K, Chen D, Zhao K, Liu D, Kong D, Sun Y, Guan A, Zhou P, Jin H, Jongkaewwattana A, Suolang S, Wang D, Zhou H, Luo R. Cleavage of the selective autophagy receptor NBR1 by the PDCoV main protease NSP5 impairs autophagic degradation of the viral envelope protein. Autophagy 2025:1-16. [PMID: 40047225 DOI: 10.1080/15548627.2025.2474576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that causes severe diarrhea in neonatal piglets worldwide and presents a significant public health threat due to its potential for cross-species transmission. Selective macroautophagy/autophagy, mediated by autophagy receptors such as NBR1 (NBR1 autophagy cargo receptor), plays a key role in restricting viral infection and modulating the host immune response. In this study, we revealed that overexpression of NBR1 inhibits PDCoV replication, while its knockdown increases viral titers. Further analysis demonstrated that NBR1 interacts with the PDCoV envelope (E) protein independently of ubiquitination, directing it to phagophores for autophagic degradation to limit viral proliferation. To counteract this defense, PDCoV 3C-like protease, encoded by NSP5, cleaves porcine NBR1 at glutamine 353 (Q353), impairing its selective autophagy function and antiviral activity. Additionally, we demonstrated that NSP5 proteases from other coronaviruses including PEDV, TGEV, and SARS-CoV-2 also cleave NBR1 at the same site, suggesting that coronaviruses employ a conserved strategy of NSP5-mediated cleavage of NBR1 to evade host antiviral responses and facilitate infection. Overall, our study underscores the importance of NBR1-mediated selective autophagy in the host's defense against PDCoV and reveals a strategy by which PDCoV evades autophagic mechanisms to promote successful infection.Abbreviation: Cas9: CRISPR-associated protein 9; CC1: coiled-coil 1; Co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeats; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; KO: knockout; LIR: MAP1LC3/LC3-interacting region; mAb: monoclonal antibody; NBR1: NBR1 autophagy cargo receptor; NBR1-C: C-terminal fragment of NBR1; NBR1-N: N-terminal fragment of NBR1; OPTN: optineurin; pAb: polyclonal antibody; PB1: Phox/BEM1 domain; PDCoV: porcine deltacoronavirus; PEDV: porcine epidemic diarrhea virus; Q353A: a NBR1 construct with the glutamine (Q) residue at position 353 replaced with glutamic acid (A); SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SQSTM1: sequestosome 1; TCID50: 50% tissue culture infective dose; TGEV: porcine transmissible gastroenteritis virus; UBA: ubiquitin-associated domain; Ub: ubiquitin; WT: wild type; ZZ: ZZ-type zinc finger domain.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dong Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kangli Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Dongni Kong
- China Institute of Veterinary Drug Control, Beijing, China
| | - Yu Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Aohan Guan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sizhu Suolang
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
6
|
Zhang X, Xu H, Sun R, Xiong G, Shi X. An insight into G-quadruplexes: Identification and potential therapeutic targets in livestock viruses. Eur J Med Chem 2024; 279:116848. [PMID: 39255642 DOI: 10.1016/j.ejmech.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that involve in the regulation of some key biological processes, such as replication, transcription, and translation. G4s have been extensively described in the genomes of human and related diseases. In recent years, G4s were identified in several livestock viruses, including those of the emerging epidemics, like Nipah virus (NiV). Since their discovery, G4s have been developed as the potential antiviral targets, and the employment of G4 ligands or interacting proteins has helped to expound the viral infectivity and pathogenesis through G4-mediated mechanisms, and highlight the potential as therapeutic approaches. However, the comprehensively studies of G4s in livestock viruses have not been summarized. This review delves into the reported literatures of G4s in livestock viruses, particular focus on the presence, biophysical identification, and possible function of G4s in viral genome, summarizing the G4 ligands, interacted proteins and aptamers on antiviral applications. The strengths and the challenges of G4 targeting in this field are also discussed. Therefore, this review will shed new light on the future development of highly potent and targeting antiviral therapy.
Collapse
Affiliation(s)
- Xianpeng Zhang
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China; Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China
| | - Hongyu Xu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Ranran Sun
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Guihong Xiong
- Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China
| | - Xugen Shi
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China; Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China; Jiangxi Xiajiang Dry Direct-seeded Rice Science and Technology Backyard, Ji'an, Jiangxi Province, 331400, PR China.
| |
Collapse
|
7
|
Zhou P, Zhang Q, Yang Y, Wu W, Chen D, Zheng Z, Jongkaewwattana A, Jin H, Zhou H, Luo R. Cleavage of SQSTM1/p62 by the Zika virus protease NS2B3 prevents autophagic degradation of viral NS3 and NS5 proteins. Autophagy 2024; 20:2769-2784. [PMID: 39128850 PMCID: PMC11587865 DOI: 10.1080/15548627.2024.2390810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Macroautophagy/autophagy plays a crucial role in inhibiting viral replication and regulating the host's immune response. The autophagy receptor SQSTM1/p62 (sequestosome 1) restricts viral replication by directing specific viral proteins to phagophores for degradation. In this study, we investigate the reciprocal relationship between Zika virus (ZIKV) and selective autophagy mediated by SQSTM1/p62. We show that NS2B3 protease encoded by ZIKV cleaves human SQSTM1/p62 at arginine 265 (R265). This cleavage also occurs with endogenous SQSTM1 in ZIKV-infected cells. Furthermore, overexpression of SQSTM1 inhibits ZIKV replication in A549 cells, while its absence increases viral titer. We have also shown that SQSTM1 impedes ZIKV replication by interacting with NS3 and NS5 and directing them to autophagic degradation, and that NS2B3-mediated cleavage could potentially alter this antiviral function of SQSTM1. Taken together, our study highlights the role of SQSTM1-mediated selective autophagy in the host's antiviral defense against ZIKV and uncovers potential viral evasion strategies that exploit the host's autophagic machinery to ensure successful infection.Abbreviation: Cas9: CRISPR-associated protein 9; Co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeats; DENV: dengue virus; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; KIR: KEAP1-interacting region; KO: knockout; LIR: MAP1LC3/LC3-interacting region; mAb: monoclonal antibody; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; pAb: polyclonal antibody; PB1: Phox/BEM1 domain; R265A, a SQSTM1 construct with the arginine (R) residue at position 265 replaced with glutamic acid (A); SQSTM1: sequestosome 1; SQSTM1-C, C-terminal fragment of SQSTM1; SQSTM1-N, N-terminal fragment of SQSTM1; SVV: Seneca Valley virus; TAX1BP1: Tax1 binding protein 1; TBD: TRAF6-binding domain; TCID50: 50% tissue culture infective dose; UBA: ubiquitin-associated domain; Ub: ubiquitin; WT: wild type; ZIKV: Zika virus; ZZ: ZZ-type zinc finger domain.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Qingxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Yueshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Wanrong Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Dong Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Nueng, Thailand
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Wuhan, China
| |
Collapse
|
8
|
Zhao C, Rong Y, Shi S, Gao WC, Zhang C. A novel method for synthesizing authentic SARS-CoV-2 main protease. Protein Expr Purif 2024; 222:106531. [PMID: 38852715 DOI: 10.1016/j.pep.2024.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The SARS-CoV-2 main protease (Mpro) plays a crucial role in virus amplification and is an ideal target for antiviral drugs. Currently, authentic Mpro is prepared through two rounds of proteolytic cleavage. In this method, Mpro carries a self-cleavage site at the N-terminus and a protease cleavage site followed by an affinity tag at the C-terminus. This article proposes a novel method for producing authentic Mpro through single digestion. Mpro was constructed by fusing a His tag containing TEV protease cleavage sites at the N-terminus. The expressed recombinant protein was digested by TEV protease, and the generated protein had a decreased molecular weight and significantly increased activity, which was consistent with that of authentic Mpro generated by the previous method. These findings indicated that authentic Mpro was successfully obtained. Moreover, the substrate specificity of Mpro was investigated. Mpro had a strong preference for Phe at position the P2, which suggested that the S2 subsite was an outstanding target for designing inhibitors. This article also provides a reference for the preparation of Mpro for sudden coronavirus infection in the future.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Yi Rong
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Shuyuan Shi
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Wen-Chao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Chaofeng Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| |
Collapse
|
9
|
Ma X, Zheng H, Chen H, Ma S, Wei Z. Porcine epidemic diarrhea virus: A review of detection, inhibition of host gene expression and evasion of host innate immune. Microb Pathog 2024; 195:106873. [PMID: 39173850 DOI: 10.1016/j.micpath.2024.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
As one of the most important swine enteropathogenic coronavirus, porcine epidemic diarrhea virus (PEDV) is the causative agent of an acute and devastating enteric disease that causes lethal watery diarrhea in suckling piglets. Recent progress in studying PEDV has revealed many intriguing findings on its prevalence and genetic evolution, rapid diagnosis, suppression of host gene expression, and suppression of the host innate immune system. Due to the continuous mutation of the PEDV genome, viral evasions from innate immune defenses and mixed infection with other coronaviruses, the spread of the virus is becoming wider and faster, making it even more necessary to prevent the infections caused by wild-type PEDV variants. It has also been reported that PEDV nsp1 is an essential virulence determinant and is critical for inhibiting host gene expression by structural and biochemical analyses. The inhibition of host protein synthesis employed by PEDV nsp1 may contribute to the regulation of host cell proliferation and immune evasion-related biological functions. In this review, we critically evaluate the recent studies on these aspects of PEDV and assess prospects in understanding the function of PEDV proteins in regulating host innate immune response and viral virulence.
Collapse
Affiliation(s)
- Xiao Ma
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihua Zheng
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, China
| | - Hongying Chen
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| | - Shijie Ma
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| | - Zhanyong Wei
- The College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Yu R, Dong S, Chen B, Si F, Li C. Developing Next-Generation Live Attenuated Vaccines for Porcine Epidemic Diarrhea Using Reverse Genetic Techniques. Vaccines (Basel) 2024; 12:557. [PMID: 38793808 PMCID: PMC11125984 DOI: 10.3390/vaccines12050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the etiology of porcine epidemic diarrhea (PED), a highly contagious digestive disease in pigs and especially in neonatal piglets, in which a mortality rate of up to 100% will be induced. Immunizing pregnant sows remains the most promising and effective strategy for protecting their neonatal offspring from PEDV. Although half a century has passed since its first report in Europe and several prophylactic vaccines (inactivated or live attenuated) have been developed, PED still poses a significant economic concern to the swine industry worldwide. Hence, there is an urgent need for novel vaccines in clinical practice, especially live attenuated vaccines (LAVs) that can induce a strong protective lactogenic immune response in pregnant sows. Reverse genetic techniques provide a robust tool for virological research from the function of viral proteins to the generation of rationally designed vaccines. In this review, after systematically summarizing the research progress on virulence-related viral proteins, we reviewed reverse genetics techniques for PEDV and their application in the development of PED LAVs. Then, we probed into the potential methods for generating safe, effective, and genetically stable PED LAV candidates, aiming to provide new ideas for the rational design of PED LAVs.
Collapse
Affiliation(s)
| | | | | | - Fusheng Si
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| | - Chunhua Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| |
Collapse
|
11
|
Taefehshokr N, Lac A, Vrieze AM, Dickson BH, Guo PN, Jung C, Blythe EN, Fink C, Aktar A, Dikeakos JD, Dekaban GA, Heit B. SARS-CoV-2 NSP5 antagonizes MHC II expression by subverting histone deacetylase 2. J Cell Sci 2024; 137:jcs262172. [PMID: 38682259 PMCID: PMC11166459 DOI: 10.1242/jcs.262172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Alex Lac
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Angela M. Vrieze
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Brandon H. Dickson
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Peter N. Guo
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Catherine Jung
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Eoin N. Blythe
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Corby Fink
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Amena Aktar
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Gregory A. Dekaban
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Bryan Heit
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| |
Collapse
|
12
|
Huang H, Lei X, Zhao C, Qin Y, Li Y, Zhang X, Li C, Lan T, Zhao B, Sun W, Lu H, Jin N. Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving IFIT3. J Virol 2024; 98:e0168223. [PMID: 38289117 PMCID: PMC10878044 DOI: 10.1128/jvi.01682-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) has caused enormous economic losses to the global pig industry. However, the immune escape mechanism of PDCoV remains to be fully clarified. Transcriptomic analysis revealed a high abundance of interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) transcripts after PDCoV infection, which initially implied a correlation between IFIT3 and PDCoV. Further studies showed that PDCoV nsp5 could antagonize the host type I interferon signaling pathway by cleaving IFIT3. We demonstrated that PDCoV nsp5 cleaved porcine IFIT3 (pIFIT3) at Gln-406. Similar cleavage of endogenous IFIT3 has also been observed in PDCoV-infected cells. The pIFIT3-Q406A mutant was resistant to nsp5-mediated cleavage and exhibited a greater ability to inhibit PDCoV infection than wild-type pIFIT3. Furthermore, we found that cleavage of IFIT3 is a common characteristic of nsp5 proteins of human coronaviruses, albeit not alphacoronavirus. This finding suggests that the cleavage of IFIT3 is an important mechanism by which PDCoV nsp5 antagonizes IFN signaling. Our study provides new insights into the mechanisms by which PDCoV antagonizes the host innate immune response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a potential emerging zoonotic pathogen, and studies on the prevalence and pathogenesis of PDCoV are ongoing. The main protease (nsp5) of PDCoV provides an excellent target for antivirals due to its essential and conserved function in the viral replication cycle. Previous studies have revealed that nsp5 of PDCoV antagonizes type I interferon (IFN) production by targeting the interferon-stimulated genes. Here, we provide the first demonstration that nsp5 of PDCoV antagonizes IFN signaling by cleaving IFIT3, which affects the IFN response after PDCoV infection. Our findings reveal that PDCoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by deltacoronaviruses.
Collapse
Affiliation(s)
- Haixin Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xiaoxiao Lei
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Chenchen Zhao
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yan Qin
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuying Li
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xinyu Zhang
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Chengkai Li
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Tian Lan
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Baopeng Zhao
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Huijun Lu
- Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|