1
|
Cloos AS, Daenen LGM, Maja M, Stommen A, Vanderroost J, Van Der Smissen P, Rab M, Westerink J, Mignolet E, Larondelle Y, Terrasi R, Muccioli GG, Dumitru AC, Alsteens D, van Wijk R, Tyteca D. Impaired Cytoskeletal and Membrane Biophysical Properties of Acanthocytes in Hypobetalipoproteinemia - A Case Study. Front Physiol 2021; 12:638027. [PMID: 33708142 PMCID: PMC7940373 DOI: 10.3389/fphys.2021.638027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
Familial hypobetalipoproteinemia is a metabolic disorder mainly caused by mutations in the apolipoprotein B gene. In its homozygous form it can lead without treatment to severe ophthalmological and neurological manifestations. In contrast, the heterozygous form is generally asymptomatic but associated with a low risk of cardiovascular disease. Acanthocytes or thorny red blood cells (RBCs) are described for both forms of the disease. However, those morphological changes are poorly characterized and their potential consequences for RBC functionality are not understood. Thus, in the present study, we asked whether, to what extent and how acanthocytes from a patient with heterozygous familial hypobetalipoproteinemia could exhibit altered RBC functionality. Acanthocytes represented 50% of the total RBC population and contained mitoTracker-positive surface patches, indicating the presence of mitochondrial fragments. While RBC osmotic fragility, calcium content and ATP homeostasis were preserved, a slight decrease of RBC deformability combined with an increase of intracellular free reactive oxygen species were observed. The spectrin cytoskeleton was altered, showing a lower density and an enrichment in patches. At the membrane level, no obvious modification of the RBC membrane fatty acids nor of the cholesterol content were detected but the ceramide species were all increased. Membrane stiffness and curvature were also increased whereas transversal asymmetry was preserved. In contrast, lateral asymmetry was highly impaired showing: (i) increased abundance and decreased functionality of sphingomyelin-enriched domains; (ii) cholesterol enrichment in spicules; and (iii) ceramide enrichment in patches. We propose that oxidative stress induces cytoskeletal alterations, leading to increased membrane stiffness and curvature and impaired lipid lateral distribution in domains and spicules. In addition, ceramide- and spectrin-enriched patches could result from a RBC maturation defect. Altogether, the data indicate that acanthocytes are associated with cytoskeletal and membrane lipid lateral asymmetry alterations, while deformability is only mildly impaired. In addition, familial hypobetalipoproteinemia might also affect RBC precursors leading to disturbed RBC maturation. This study paves the way for the potential use of membrane biophysics and lipid vital imaging as new methods for diagnosis of RBC disorders.
Collapse
Affiliation(s)
- Anne-Sophie Cloos
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Laura G M Daenen
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mauriane Maja
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Amaury Stommen
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Juliette Vanderroost
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | - Minke Rab
- Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jan Westerink
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eric Mignolet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Richard van Wijk
- Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Donatienne Tyteca
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
2
|
Mouzaki M, Shah A, Arce-Clachar AC, Hardy J, Bramlage K, Xanthakos SA. Extremely low levels of low-density lipoprotein potentially suggestive of familial hypobetalipoproteinemia: A separate phenotype of NAFLD? J Clin Lipidol 2019; 13:425-431. [DOI: 10.1016/j.jacl.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
|
3
|
Di Filippo M, Collardeau Frachon S, Janin A, Rajan S, Marmontel O, Decourt C, Rubio A, Nony S, Dumont S, Cuerq C, Charrière S, Moulin P, Lachaux A, Hussain MM, Bozon D, Peretti N. Normal serum ApoB48 and red cells vitamin E concentrations after supplementation in a novel compound heterozygous case of abetalipoproteinemia. Atherosclerosis 2019; 284:75-82. [PMID: 30875496 DOI: 10.1016/j.atherosclerosis.2019.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Abetalipoproteinemia (ABL) is a rare recessive monogenic disease due to MTTP (microsomal triglyceride transfer protein) mutations leading to the absence of plasma apoB-containing lipoproteins. Here we characterize a new ABL case with usual clinical phenotype, hypocholesterolemia, hypotriglyceridemia but normal serum apolipoprotein B48 (apoB48) and red blood cell vitamin E concentrations. METHODS Histology and MTP activity measurements were performed on intestinal biopsies. Mutations in MTTP were identified by Sanger sequencing, quantitative digital droplet and long-range PCR. Functional consequences of the variants were studied in vitro using a minigene splicing assay, measurement of MTP activity and apoB48 secretion. RESULTS Intestinal steatosis and the absence of measurable lipid transfer activity in intestinal protein extract supported the diagnosis of ABL. A novel MTTP c.1868G>T variant inherited from the patient's father was identified. This variant gives rise to three mRNA transcripts: one normally spliced, found at a low frequency in intestinal biopsy, carrying the p.(Arg623Leu) missense variant, producing in vitro 65% of normal MTP activity and apoB48 secretion, and two abnormally spliced transcripts resulting in a non-functional MTP protein. Digital droplet PCR and long-range sequencing revealed a previously described c.1067+1217_1141del allele inherited from the mother, removing exon 10. Thus, the patient is compound heterozygous for two dysfunctional MTTP alleles. The p.(Arg623Leu) variant may maintain residual secretion of apoB48. CONCLUSIONS Complex cases of primary dyslipidemia require the use of a cascade of different methodologies to establish the diagnosis in patients with non-classical biological phenotypes and provide better knowledge on the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Mathilde Di Filippo
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France; INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France.
| | - Sophie Collardeau Frachon
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Institut de Pathologie, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Alexandre Janin
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France; Université de Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Lyon, F-69622, France.
| | - Sujith Rajan
- NYU Winthrop Hospital, 101 Mineola Blvd, Mineola, USA.
| | - Oriane Marmontel
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France; INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France.
| | - Charlotte Decourt
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Amandine Rubio
- Gastroentérologie et Nutrition Pédiatrique Hôpital Couple Enfant, CHU de Grenoble Alpes, Grenoble, F-38043, France; Laboratoire de Bioénergétique Fondamentale et Appliquée, INSERM U1055, Univ. Grenoble Alpes, F-38000, France.
| | - Séverine Nony
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Sabrina Dumont
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Charlotte Cuerq
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Sud, Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, Pierre, Benite cedex, F-69495, France.
| | - Sybil Charrière
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Philippe Moulin
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Alain Lachaux
- Service de Nutrition Pediatrique, Gastroenterologie and Hepatologie, Hôpital Femme Mère Enfants, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | | | - Dominique Bozon
- Laboratoire de Biologie Médicale Multi Sites, Centre de Biologie et de Pathologie Est, Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| | - Noël Peretti
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne F-69621, Oullins cedex, F-69921, France; Service de Nutrition Pediatrique, Gastroenterologie and Hepatologie, Hôpital Femme Mère Enfants, Hospices Civils de Lyon, Bron cedex, F-69677, France.
| |
Collapse
|
4
|
Cuerq C, Restier L, Drai J, Blond E, Roux A, Charriere S, Michalski MC, Di Filippo M, Levy E, Lachaux A, Peretti N. Establishment of reference values of α-tocopherol in plasma, red blood cells and adipose tissue in healthy children to improve the management of chylomicron retention disease, a rare genetic hypocholesterolemia. Orphanet J Rare Dis 2016; 11:114. [PMID: 27520363 PMCID: PMC4982212 DOI: 10.1186/s13023-016-0498-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/03/2016] [Indexed: 01/04/2023] Open
Abstract
Background Chylomicron retention disease (CMRD), a rare genetic hypocholesterolemia, results in neuro-ophtalmologic damages, which can be prevented by high doses of vitamin E during infancy. In these patients, plasma vitamin E concentration is significantly reduced due to defects of chylomicron secretion. Vitamin E in adipose tissue (AT) and red blood cells (RBC) have been proposed as potential relevant biomarkers of vitamin E status but no reference values in children are available. The objectives were (i) to establish age-reference intervals in healthy children for α-tocopherol in plasma, red blood cells (RBC) and adipose tissue (AT) and (ii) to determine the variations of α-tocopherol in patients with CMRD after oral treatment with vitamin E. Methods This prospective study included 166 healthy children (1 month - 18 years) and 4 patients with CMRD. Blood and AT were collected in healthy children during a scheduled surgery and in patients before and after a 4-month treatment with α-tocopherol acetate. Results The reference ranges for α-tocopherol were 11.9 - 30 μmol/L in plasma, 2.0 - 7.8 μmol/L packed cells in RBC and 60 - 573 nmol/g in AT. α-tocopherol levels in plasma correlated with those of RBC (r = 0.31; p < 0.01). In patients with CMRD after 4 months treatment, α-tocopherol concentrations remained less than 70 % of the control values in plasma, increased by 180 % to reach normal values in RBC, and remained stable in the normal range in AT. Conclusion This study establishes pediatric reference intervals for α-tocopherol in plasma, RBC and AT. These values will be beneficial in assessing accurate α-tocopherol status in children and to optimize the monitoring of rare diseases such as CMRD. Our data suggest that RBC α-tocopherol, appears as a relevant biomarker to appreciate the effectiveness of treatment with α-tocopherol in patients with a rare primary hypocholesterolemia. The biopsy of AT could be used at diagnosis to assess the severity of the vitamin E deficiency and periodically after a long duration of vitamin E therapy to assess whether the treatment is effective, based on reference intervals defined in this study.
Collapse
Affiliation(s)
- Charlotte Cuerq
- Biochemistry Department, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France.,INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France
| | - Lioara Restier
- Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon, Hospices Civils de Lyon, Lyon, Bron, France
| | - Jocelyne Drai
- Biochemistry Department, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France.,INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France
| | - Emilie Blond
- Biochemistry Department, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France.,INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France
| | - Adeline Roux
- Hospices Civils de Lyon, Pole IMER, Lyon, France
| | - Sybil Charriere
- INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France.,Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, Bron, France
| | | | - Mathilde Di Filippo
- INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France.,Dyslipidemia Unity, Department of Biochemistry and Molecular Biology, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, Bron, France
| | - Emile Levy
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, H3T 1C5, Canada.,Department of Nutrition, Université de Montréal, Montréal, Québec, H3T 1A8, Canada
| | - Alain Lachaux
- INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France.,Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon, Hospices Civils de Lyon, Lyon, Bron, France
| | - Noël Peretti
- INSERM U1060, INRA UMR 1397, INSA-Lyon, CarMeN Laboratory, Université Lyon 1, Lyon, France. .,Pediatric Hepato-Gastroenterology and Nutrition Unit, Hôpital Femme Mère Enfant de Lyon, Hospices Civils de Lyon, Lyon, Bron, France.
| |
Collapse
|
5
|
Burnett JR, Hooper AJ. Vitamin E and oxidative stress in abetalipoproteinemia and familial hypobetalipoproteinemia. Free Radic Biol Med 2015; 88:59-62. [PMID: 26086616 DOI: 10.1016/j.freeradbiomed.2015.05.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/07/2015] [Accepted: 05/26/2015] [Indexed: 01/13/2023]
Abstract
Abetalipoproteinemia (ABL) and familial hypobetalipoproteinemia (FHBL) are genetic diseases characterized by low density lipoprotein deficiency. ABL presents early in life with the gastroenterological manifestations of fat malabsorption, steatorrhea, and failure to thrive, and later in life, with progressive ophthalmopathy and neuropathy as a result of deficiency of the fat-soluble vitamins A and E. Heterozygous FHBL subjects are usually asymptomatic, but may develop fatty liver disease. In homozygous (compound heterozygous) FHBL, the clinical and biochemical features are indistinguishable from those of ABL and treatment recommendations are the same: dietary fat restriction to prevent steatorrhea, and long-term high-dose vitamin E and A supplementation to prevent or at least slow the progression of neuromuscular and retinal degenerative disease. Despite their low plasma vitamin E levels, individuals with heterozygous FHBL do not require vitamin E supplementation. There are conflicting reports on whether increased oxidative stress is seen in ABL; these differences may relate to the small size of patient groups as well as differences in patient age and dose of vitamin E supplementation, or the contribution from dietary sources of vitamin E. High density lipoproteins in ABL appear to be severely oxidized yet able to inhibit platelet aggregation by binding to scavenger receptor B1. We review the role of vitamin E and oxidative stress in ABL and FHBL.
Collapse
Affiliation(s)
- John R Burnett
- Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Australia; School of Medicine & Pharmacology, University of Western Australia, Perth, Australia.
| | - Amanda J Hooper
- Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Australia; School of Medicine & Pharmacology, University of Western Australia, Perth, Australia; School of Pathology & Laboratory Medicine, University of Western Australia, Perth, Australia
| |
Collapse
|
6
|
Abstract
"Primary hypobetalipoproteinemia" refers to an eclectic group of inherited lipoprotein disorders characterized by low concentrations of or absence of low-density lipoprotein cholesterol and apolipoprotein B in plasma. Abetalipoproteinemia and homozygous familial hypobetalipoproteinemia, although caused by mutations in different genes, are clinically indistinguishable. A framework for the clinical follow-up and management of these two disorders has been proposed recently, focusing on monitoring of growth in children and preventing complications by providing specialized dietary advice and fat-soluble vitamin therapeutic regimens. Other recent publications on familial combined hypolipidemia suggest that although a reduction of angiopoietin-like 3 activity may improve insulin sensitivity, complete deficiency also reduces serum cholesterol efflux capacity and increases the risk of early vascular atherosclerotic changes, despite low low-density lipoprotein cholesterol levels. Specialist laboratories offer exon-by-exon sequence analysis for the molecular diagnosis of primary hypobetalipoproteinemia. In the future, massively parallel sequencing of panels of genes involved in dyslipidemia may play a greater role in the diagnosis of these conditions.
Collapse
|
7
|
Hooper AJ, Burnett JR, Watts GF. Contemporary Aspects of the Biology and Therapeutic Regulation of the Microsomal Triglyceride Transfer Protein. Circ Res 2015; 116:193-205. [DOI: 10.1161/circresaha.116.304637] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Amanda J. Hooper
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA (A.J.H., J.R.B.), School of Medicine and Pharmacology (A.J.H., J.R.B., G.F.W.), School of Pathology and Laboratory Medicine (A.J.H), and Lipid Disorders Clinic, Cardiovascular Medicine (J.R.B., G.F.W), Royal Perth Hospital, University of Western Australia, Perth, Western Australia, Australia
| | - John R. Burnett
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA (A.J.H., J.R.B.), School of Medicine and Pharmacology (A.J.H., J.R.B., G.F.W.), School of Pathology and Laboratory Medicine (A.J.H), and Lipid Disorders Clinic, Cardiovascular Medicine (J.R.B., G.F.W), Royal Perth Hospital, University of Western Australia, Perth, Western Australia, Australia
| | - Gerald F. Watts
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA (A.J.H., J.R.B.), School of Medicine and Pharmacology (A.J.H., J.R.B., G.F.W.), School of Pathology and Laboratory Medicine (A.J.H), and Lipid Disorders Clinic, Cardiovascular Medicine (J.R.B., G.F.W), Royal Perth Hospital, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Ferreira F, Patel V, Matts S. A successful spontaneous pregnancy in abetalipoproteinemia: Amsterdam or the art of vitamin replacement? BMJ Case Rep 2014; 2014:bcr-2014-206754. [PMID: 25488886 DOI: 10.1136/bcr-2014-206754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abetalipoproteinemia is a rare metabolic disorder that causes disturbed lipid absorption with consequent hypocholesterolaemia and liposoluble avitaminosis. The broad spectrum of presentations includes malabsorption, failure to thrive and acanthocytosis in children, while later in life expected manifestations include coagulopathy, myopathy, retinitis pigmentosa, peripheral neuropathy, hyporeflexia and ataxia. These neurological complications stem from demyelination secondary to vitamin E deficiency. Another complication is reduced fertility in women. In the event of a successful conception, issues arise in vitamin supplementation, the mainstay of treatment of abetalipoproteinemia. The skilful clinician must master the delicate balance between the teratogenic effects on the fetus of over as well as under replacement of vitamins, pregnancy complications such as premature rupture of membranes and eclampsia, and, finally, maternal complications such as corneal ulcers. We describe the management of a patient ranging from pubertal growth to bearing a successful spontaneous pregnancy with an outcome of a completely healthy mother and child.
Collapse
Affiliation(s)
| | - Vinod Patel
- Warwick Medical School University of Warwick, Coventry, UK Departments of Endocrinology and Diabetes, General Internal Medicine, Medical Obstetrics, George Eliot Hospital NHS Trust, Nuneaton, UK
| | - Suzy Matts
- Department of Obstetrics and Gynaecology, George Eliot Hospital, Nuneaton, UK
| |
Collapse
|
9
|
Burnett JR, Bell DA, Hooper AJ, Hegele RA. Clinical utility gene card for: Familial hypobetalipoproteinaemia (APOB)--Update 2014. Eur J Hum Genet 2014; 23:ejhg2014225. [PMID: 25335495 DOI: 10.1038/ejhg.2014.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 01/08/2023] Open
Affiliation(s)
- John R Burnett
- 1] Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia [2] School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Damon A Bell
- 1] Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia [2] School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Amanda J Hooper
- 1] Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia [2] School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia [3] School of Pathology & Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
10
|
Calzada C, Véricel E, Colas R, Guillot N, El Khoury G, Drai J, Sassolas A, Peretti N, Ponsin G, Lagarde M, Moulin P. Inhibitory effects of in vivo oxidized high-density lipoproteins on platelet aggregation: evidence from patients with abetalipoproteinemia. FASEB J 2013; 27:2855-61. [PMID: 23507868 DOI: 10.1096/fj.12-225169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is evidence that high-density lipoproteins (HDLs) may regulate platelet function, but disparate results exist regarding the effects of oxidized HDLs on platelets. The objective of our study was to determine the role of in vivo oxidized HDLs on platelet aggregation. Platelet aggregation and redox status were investigated in 5 patients with abetalipoproteinemia (ABLP) or homozygous hypobetalipoproteinemia, two rare metabolic diseases characterized by the absence of apolipoprotein B-containing lipoproteins, compared to 5 control subjects. Platelets isolated from plasma of patients with ABLP aggregated 4 to 10 times more than control platelets, depending on the agonist. By contrast, no differences in the extent of platelet aggregation were observed between ABLP platelet-rich plasma (PRP) and control PRP, suggesting the presence of a protective factor in ABLP plasma. ABLP HDLs inhibited agonist-induced platelet aggregation by binding to SR-BI, while control HDLs had no effect. On the other hand, lipoprotein-deficient plasma from patients with ABLP did not inhibit platelet aggregation. Severe oxidative stress was evidenced in patients with ABLP. Compared to control HDLs, ABLP HDLs showed a 40% decrease of α-tocopherol and an 11-fold increased malondialdehyde concentration. These results demonstrate that in vivo oxidized HDLs do not lose their antiaggregatory properties despite oxidation.
Collapse
Affiliation(s)
- Catherine Calzada
- Université de Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1060, Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN) Laboratory, Villeurbanne, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Clinical utility gene card for: Familial Hypobetalipoproteinaemia (APOB). Eur J Hum Genet 2012; 20:ejhg201285. [PMID: 22588666 DOI: 10.1038/ejhg.2012.85] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
12
|
Perlman SL. Treatment and management issues in ataxic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:635-54. [PMID: 21827924 DOI: 10.1016/b978-0-444-51892-7.00046-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susan L Perlman
- David Geffen School of Medicine at the University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Srivastava N, Cefalu A, Noto D, Schonfeld G, Averna M, Srivastava RAK. The production of 85kDa N-terminal fragment of apolipoprotein B in mutant HepG2 cells generated by targeted modification of apob gene occurs by ALLN-inhibitable protease cleavage during translocation. Biochem Biophys Res Commun 2010; 398:665-70. [DOI: 10.1016/j.bbrc.2010.06.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
|
14
|
New mutations in APOB100 involved in familial hypobetalipoproteinemia. J Clin Lipidol 2010; 4:181-4. [DOI: 10.1016/j.jacl.2010.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 11/15/2022]
|
15
|
Identification of two novel mutations and long-term follow-up in abetalipoproteinemia: a report of four cases. Eur J Pediatr 2009; 168:983-9. [PMID: 19066957 DOI: 10.1007/s00431-008-0888-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022]
Abstract
Abetalipoproteinemia (ABL; OMIM 200100) is an inherited disorder resulting from mutations in the microsomal triglyceride transfer protein gene and characterized by a major lipid malabsorption leading to extremely low plasma cholesterol and triglyceride levels and fat-soluble vitamins deficiencies. We report two novel mutations (c.59del17 and c.582C>A) and the long-term follow-up of four ABL subjects treated with vitamin E. The good outcome of the early-treated patients contrasts with severe ataxia and retinopathy observed in the patient with delayed treatment. In conclusion, early diagnosis and early management are essential to prevent the manifestations following the fat-soluble vitamin deficiencies.
Collapse
|
16
|
Nagasaka H, Yorifuji T, Momoi T, Yorifuji J, Hirano K, Ota A, Takatani T, Tsukahara H, Takayanagi M, Kobayashi K, Chiba H, Sato Y, Miida T. Lipoprotein profiles in children with two common cholesteryl ester transfer protein gene mutations, D442G and I14A, during the first year of life. Clin Chim Acta 2009; 406:52-6. [DOI: 10.1016/j.cca.2009.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/11/2009] [Accepted: 05/12/2009] [Indexed: 11/24/2022]
|
17
|
Katsuda S, Kawashiri MA, Inazu A, Tada H, Tsuchida M, Kaneko Y, Nozue T, Nohara A, Okada T, Kobayashi J, Michishita I, Mabuchi H, Yamagishi M. Apolipoprotein B gene mutations and fatty liver in Japanese hypobetalipoproteinemia. Clin Chim Acta 2009; 399:64-8. [DOI: 10.1016/j.cca.2008.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/27/2008] [Accepted: 09/12/2008] [Indexed: 11/26/2022]
|
18
|
Abstract
Vitamin E in nature is comprised of a family of tocopherols and tocotrienols. The most studied of these is alpha-tocopherol (alpha-TOH), because this form is retained within the body, and vitamin E deficiency is corrected with this supplement. alpha-TOH is a lipid-soluble antioxidant required for the preservation of cell membranes, and it potentially acts as a defense against oxidative stress. Many studies have investigated the metabolism, transport, and efficacy alpha-TOH in the prevention of sequelae associated with cardiovascular disease (CVD). Supplementation with vitamin E is considered to provide health benefits against CVD through its antioxidant activity, the prevention of lipoprotein oxidation, and the inhibition of platelet aggregation. However, the results from large prospective, randomized, placebo-controlled clinical trials with alpha-TOH have been largely negative. A recent meta-analysis suggests that alpha-TOH supplements may actually increase all-cause mortality; however, the mechanism for this increased risk is unknown. In vitro studies performed in human cell cultures and animal models suggest that vitamin E might increase the hepatic production of cytochrome P450s and MDR1. Induction of CYP3A4 or MDR1 by vitamin E could potentially lower the efficacy of any drug metabolized by CYP3A4 or MDR1. Other possibilities include an adverse effect of alpha-TOH on blood pressure in high-risk populations. Because of the wide popularity and use of vitamin E supplements, further research into potential adverse effects is clearly warranted.
Collapse
Affiliation(s)
- Michael W Clarke
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | | | | |
Collapse
|
19
|
Hooper AJ, Akinci B, Comlekci A, Burnett JR. Familial hypobetalipoproteinemia in a Turkish family with hereditary spastic paraplegia. Clin Chim Acta 2008; 390:152-5. [PMID: 18261467 DOI: 10.1016/j.cca.2008.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/16/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
A 24-year-old male presented with progressive gait disturbance and was diagnosed with hereditary spastic paraplegia. His brother and possibly one uncle also had the condition. Routine biochemical testing found that the patient had unusually low plasma concentrations of low density lipoprotein (LDL) cholesterol and apolipoprotein (apo) B, the hallmark of familial hypobetalipoproteinemia. DNA sequencing showed that he, along with other family members (n=5; mean LDL cholesterol 0.8 mmol/L, apoB 0.31 g/L), were heterozygous for a single nucleotide deletion in exon 26 of the APOB gene. This mutation is predicted to form a truncated apoB species of 3545 amino acids, which we have designated apoB-78.2.
Collapse
Affiliation(s)
- Amanda J Hooper
- Department of Core Clinical Pathology & Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital, Perth, Australia
| | | | | | | |
Collapse
|
20
|
Burnett JR, Zhong S, Jiang ZG, Hooper AJ, Fisher EA, McLeod RS, Zhao Y, Barrett PHR, Hegele RA, van Bockxmeer FM, Zhang H, Vance DE, McKnight CJ, Yao Z. Missense mutations in APOB within the betaalpha1 domain of human APOB-100 result in impaired secretion of ApoB and ApoB-containing lipoproteins in familial hypobetalipoproteinemia. J Biol Chem 2007; 282:24270-83. [PMID: 17588943 DOI: 10.1074/jbc.m702442200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Familial hypobetalipoproteinemia (FHBL) is associated with mutations in the APOB gene. We reported the first missense APOB mutation, R463W, in an FHBL kindred (Burnett, J. R., Shan, J., Miskie, B. A., Whitfield, A. J., Yuan, J., Tran, K., Mc-Knight, C. J., Hegele, R. A., and Yao, Z. (2003) J. Biol. Chem. 278, 13442-13452). Here we identified a second nonsynonymous APOB mutation, L343V, in another FHBL kindred. Heterozygotes for L343V (n = 10) had a mean plasma apoB at 0.31 g/liter as compared with 0.80 g/liter in unaffected family members (n = 22). The L343V mutation impaired secretion of apoB-100 and very low density lipoproteins. The secretion efficiency was 20% for B100wt and 10% for B100LV and B100RW. Decreased secretion of mutant apoB-100 was associated with increased endoplasmic reticulum retention and increased binding to microsomal triglyceride transfer protein and BiP. Reduced secretion efficiency was also observed with B48LV and B17LV. Biochemical and biophysical analyses of apoB domain constructs showed that L343V and R463W altered folding of the alpha-helical domain within the N terminus of apoB. Thus, proper folding of the alpha-helical domain of apoB-100 is essential for efficient secretion.
Collapse
Affiliation(s)
- John R Burnett
- Department of Core Clinical Pathology and Biochemistry, Royal Perth Hospital, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|