1
|
van der Ham M, Hoytema van Konijnenburg E, van Rossum W, Gerrits J, van Hasselt P, Prinsen H, Jans J, Schlotawa L, Laugwitz L, de Sain-van der Velden M. Profiling and semi-quantitation of urine sulfatides by UHPLC-Orbitrap-HRMS. Anal Chim Acta 2025; 1350:343824. [PMID: 40155161 DOI: 10.1016/j.aca.2025.343824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Sulfatides are a class of sphingolipids which are abundant in the myelin sheet and oligodendrocytes, therefore they play a crucial role in the nervous system. Abnormal sulfatide excretion has been linked to several neurodegenerative disorders including metachromatic leukodystrophy (MLD) and multiple sulfatase deficiency (MSD). In MLD and MSD, sulfatide catabolism is impaired due to the reduced lysosomal arylsulfatase A (ARSA) activity resulting in an accumulation of sulfatides, which can be useful in a diagnostic setting. The current study aims to develop a method for semi-quantitation of urine sulfatides as a diagnostic tool for MLD and MSD. RESULTS We developed a sensitive and accurate method for identifying 48 urinary molecular sulfatide species by UHPLC-Orbitrap-HRMS analysis. Newborns were classified according to their gestational age. The proportion of sulfatides bearing saturated fatty acids attached to d18:1 and d18:0 sulfatide backbone was higher in newborns and increased with prematurity. The 5 most abundant sulfatide species in all samples (controls, MLD and MSD) were C22:0, C24:0, C22:0-OH, C24:0-OH and C24:1-OH fatty acid attached to d18:1 sulfatide backbone. The top discriminant feature between MLD patients and controls was d18:1/C26:1-OH. Total semi-quantitation of 6 sulfatide species (5 most abundant sulfatides + d18:1/C26:1-OH) shows that overall excretion gradually decreases with age and all MLD patients were successfully discriminated from their age-matched controls. While sulfatide excretion was increased in the severe MSD patients (n = 2), it was normal in the attenuated MSD patients, who had high residual ARSA activity. SIGNIFICANCE This study proves the feasibility of diagnosing MLD and severe MSD based on sulfatide excretion in urine. We established (gestational) age-specific cut-offs of the total sulfatide excretion and composition. Interpretation of the composition (e.g. by calculation the ratio (d18:1/C22:0+d18:1/C24:0)/(d18:1/C22:0-OH + d18:1/C24:0-OH)) may reduce false positives, especially when sampling at young age.
Collapse
Affiliation(s)
- Maria van der Ham
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Eva Hoytema van Konijnenburg
- Section of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter van Rossum
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Johan Gerrits
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Peter van Hasselt
- Section of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hubertus Prinsen
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Judith Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Lars Schlotawa
- Department of Paediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology - Translational Neuroinflammaton and Automated Microscopy, Göttingen, Germany
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Neuropediatrics, General Paediatrics, Diabetology, Endocrinology and Social Paediatrics, University of Tübingen, University Hospital Tübingen, Tübingen, Germany
| | | |
Collapse
|
2
|
Zhang J, Jiang W, Li D, Jia W, Wu D, Yang R, Xu W, Shu Q. Resolving Early Targets and Metabolomic Profile of Congenital Heart Disease Through Tandem Mass Spectrometry Screening in Neonates. J Am Heart Assoc 2025; 14:e039500. [PMID: 40314364 DOI: 10.1161/jaha.124.039500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND A good prognosis of congenital heart disease (CHD) depends on early diagnosis and intervention. Under the current screening conditions, a significant proportion still go undetected. Metabolomics, as a phenotype-correlated research methodology, remains underused in the study of CHD, which could provide the possibility to screen neonatal CHD efficiently. METHODS Data for the analysis are from >22 000 neonates captured in the Network Platform for CHD from April 2020 to November 2021 in 11 cities in China. After data matching and quality control, a total of 22 674 neonates were finally included and divided into the CHD group (n=1823), nonsignificant CHD group (n=17 968), and normal group (n=2748). Demographic and clinical characteristics and tandem mass spectrometry-based metabolic data for genetic and metabolic disease screening were gathered and compared for all groups. Machine learning models based on metabolic biomarkers were constructed to screen CHD in neonates. RESULTS After quality control, 22 539 neonates were ultimately included. Among them, 1823 were diagnosed with CHD, 17 968 were nonsignificant CHD, and 2748 were normal. A total of 46 distinguishing metabolic biomarkers were identified, and we found that the CHD group had significantly lower levels of 17-hydroxyprogesterone (CHD versus nonsignificant CHD, P<0.001, log2 fold change=-0.16; CHD versus normal, P<0.001, log2 fold change=-0.15). We constructed CHD and ventricular septal disease screening models based on metabolic biomarkers. The best fitting model achieved an area under the receiver operating characteristic curve of 0.745 (95% CI, 0.696-0.791). CONCLUSIONS This study reveals the unique metabolic profile of neonates with CHD. The screening model demonstrates considerable potential in early neonatal CHD screening and reflects significant value from a health economics perspective.
Collapse
Affiliation(s)
- Jiayu Zhang
- Heart Center Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Wei Jiang
- Heart Center Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Die Li
- Heart Center Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Weijie Jia
- Binjiang Institute of Zhejiang University Hangzhou China
| | - Dingfeng Wu
- Heart Center Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Rulai Yang
- Department of Genetics and Metabolism Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Weize Xu
- Heart Center Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Qiang Shu
- Heart Center Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| |
Collapse
|
3
|
Sanner A, Hardt R, Matzner U, Winter D. Data-Independent Acquisition-Parallel Reaction Monitoring Acquisition Reveals Age-Dependent Alterations of the Lysosomal Proteome in a Mouse Model of Metachromatic Leukodystrophy. Anal Chem 2024; 96:19567-19575. [PMID: 39620638 DOI: 10.1021/acs.analchem.4c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
For the reproducible analysis of peptides by mass spectrometry-based proteomics, data-independent acquisition (DIA) and parallel/multiple reaction monitoring (PRM/MRM) deliver unrivalled performance with respect to sensitivity and reproducibility. Both approaches, however, come with distinct advantages and shortcomings. While DIA enables unbiased whole proteome analysis, it shows limitations with respect to dynamic range and the quantification of low-abundant proteins. PRM, on the other hand, is ideally suited to reproducibly quantify selected proteins even if they are low-abundant, but no knowledge of the remaining sample is obtained. Here, we combine both methods into a mixed DIA-PRM acquisition approach, merging their benefits while operating at reduced machine run times and needed sample amounts. We demonstrate the feasibility of DIA-PRM by merging a scheduled PRM assay for 103 peptides, representing 59 low-abundant lysosomal hydrolases, with a DIA data acquisition scheme. After benchmarking DIA-PRM with mouse embryonic fibroblast (MEF) whole cell lysates, we use the approach to investigate age-related proteomic changes in brain tissues of a mouse model of metachromatic leukodystrophy (MLD). This revealed an MLD-related progressive increase in distinct classes of lysosomal hydrolases as well as alterations of proteins related to myelin and cellular metabolism. All data are available via ProteomeXchange with PXD052313.
Collapse
Affiliation(s)
- Anne Sanner
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Robert Hardt
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Ulrich Matzner
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
4
|
Hammoud M, Domínguez-Ruiz M, Assiri I, Rodrigues D, Aboussair N, Lanza VF, Villarrubia J, Colón C, Fdil N, del Castillo FJ. Metachromatic Leukodystrophy in Morocco: Identification of Causative Variants by Next-Generation Sequencing (NGS). Genes (Basel) 2024; 15:1515. [PMID: 39766783 PMCID: PMC11675868 DOI: 10.3390/genes15121515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: Most rare disease patients endure long delays in obtaining a correct diagnosis, the so-called "diagnostic odyssey", due to a combination of the rarity of their disorder and the lack of awareness of rare diseases among both primary care professionals and specialists. Next-generation sequencing (NGS) techniques that target genes underlying diverse phenotypic traits or groups of diseases are helping reduce these delays; (2) Methods: We used a combination of biochemical (thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry), NGS (resequencing gene panels) and splicing assays to achieve a complete diagnosis of three patients with suspected metachromatic leukodystrophy, a neurologic lysosomal disorder; (3) Results: Affected individuals in each family were homozygotes for harmful variants in the ARSA gene, one of them novel (c.854+1dup, in family 1) and the other already described (c.640G>A, p.(Ala214Thr), in family 2). In addition, both affected individuals in family 2 were carriers of a known pathogenic variant in an additionallysosomal disease gene, GNPTAB (for mucolipidosis III). This additional variant may modify the clinical presentation by increasing lysosomal dysfunction. (4) Conclusions: We demonstrated the deleterious effect of the novel variant c.854+1dup on the splicing of ARSA transcripts. We also confirmed the involvement of variant c.640G>A in metachromatic leukodystrophy. Our results show the power of diagnostic approaches that combine deep phenotyping, NGS, and biochemical and functional techniques.
Collapse
Affiliation(s)
- Miloud Hammoud
- Metabolic Platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, Marrakech B.P. 7010, Morocco; (M.H.); (I.A.); (N.F.)
- Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - María Domínguez-Ruiz
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Imane Assiri
- Metabolic Platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, Marrakech B.P. 7010, Morocco; (M.H.); (I.A.); (N.F.)
- Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - Daniel Rodrigues
- Congenital Metabolic Diseases Unit, Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago (IDIS), European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15706 Santiago de Compostela, Spain; (D.R.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 15706 Santiago de Compostela, Spain
| | - Nisrine Aboussair
- Genetics Department, Clinical Research Center, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech-Principal B.P. 2360, Morocco;
| | - Val F. Lanza
- UCA de Genómica Traslacional y Bioinformática (UCA-GTB), Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28034 Madrid, Spain
| | - Jesús Villarrubia
- Servicio de Hematología, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain;
- CSUR de Enfermedades Metabólicas, European Reference Network for Hereditary Metabolic Disorders (MetabERN), Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Cristóbal Colón
- Congenital Metabolic Diseases Unit, Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago (IDIS), European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15706 Santiago de Compostela, Spain; (D.R.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 15706 Santiago de Compostela, Spain
| | - Naima Fdil
- Metabolic Platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, Marrakech B.P. 7010, Morocco; (M.H.); (I.A.); (N.F.)
- Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - Francisco J. del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| |
Collapse
|
5
|
Qureshi AA, Shaikh B, Aswad AS, Saeed AH, Tabassum H, Tahir MF, Jaber MH. 'Lenmeldy (OTL-200) in MLD: FDA's validation of advanced therapy'. Ann Med Surg (Lond) 2024; 86:6376-6380. [PMID: 39525772 PMCID: PMC11543177 DOI: 10.1097/ms9.0000000000002580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
|
6
|
Adang LA, Bonkowsky JL, Boelens JJ, Mallack E, Ahrens-Nicklas R, Bernat JA, Bley A, Burton B, Darling A, Eichler F, Eklund E, Emrick L, Escolar M, Fatemi A, Fraser JL, Gaviglio A, Keller S, Patterson MC, Orchard P, Orthmann-Murphy J, Santoro JD, Schöls L, Sevin C, Srivastava IN, Rajan D, Rubin JP, Van Haren K, Wasserstein M, Zerem A, Fumagalli F, Laugwitz L, Vanderver A. Consensus guidelines for the monitoring and management of metachromatic leukodystrophy in the United States. Cytotherapy 2024; 26:739-748. [PMID: 38613540 PMCID: PMC11348704 DOI: 10.1016/j.jcyt.2024.03.487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/15/2024]
Abstract
Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.
Collapse
Affiliation(s)
- Laura A Adang
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | - Jaap Jan Boelens
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Eric Mallack
- Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | - John A Bernat
- University of Iowa Stead Family Children's Hospital, Iowa City, Iowa, USA
| | - Annette Bley
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Barbara Burton
- Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | | | | | | | - Lisa Emrick
- Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Maria Escolar
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Forge Biologics, Grove City, Ohio, USA
| | - Ali Fatemi
- Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jamie L Fraser
- Children's National Hospital, Washington, District of Columbia, USA
| | - Amy Gaviglio
- Division of Laboratory Services, Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA; Association of Public Health Laboratories, Silver Spring, Maryland, USA
| | | | - Marc C Patterson
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA; Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul Orchard
- University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Jonathan D Santoro
- University of Southern California, Children's Hospital Los Angeles, Keck School of Medicine, Los Angeles, California, USA
| | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Isha N Srivastava
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Deepa Rajan
- University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Keith Van Haren
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Melissa Wasserstein
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York, USA
| | - Ayelet Zerem
- Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Lucia Laugwitz
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital Tübingen, Tübingen, Germany
| | - Adeline Vanderver
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Bekri S, Bley A, Brown HA, Chanson C, Church HJ, Gelb MH, Hong X, Janzen N, Kasper DC, Mechtler T, Morton G, Murko S, Oliva P, Tebani A, Wu THY. Higher precision, first tier newborn screening for metachromatic leukodystrophy using 16:1-OH-sulfatide. Mol Genet Metab 2024; 142:108436. [PMID: 38552449 PMCID: PMC12035966 DOI: 10.1016/j.ymgme.2024.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/08/2024]
Abstract
Newborn screening (NBS) for metachromatic leukodystrophy (MLD) is based on first-tier measurement of sulfatides in dried blood spots (DBS) followed by second-tier measurement of arylsulfatase A in the same DBS. This approach is very precise with 0-1 false positives per ∼30,000 newborns tested. Recent data reported here shows that the sulfatide molecular species with an α-hydroxyl, 16‑carbon, mono-unsaturated fatty acyl group (16:1-OH-sulfatide) is superior to the original biomarker 16:0-sulfatide in reducing the number of first-tier false positives. This result is consistent across 4 MLD NBS centers. By measuring 16:1-OH-sulfatide alone or together with 16:0-sulfatide, the estimated false positive rate is 0.048% and is reduced essentially to zero with second-tier arylsulfatase A activity assay. The false negative rate is predicted to be extremely low based on the demonstration that 40 out of 40 newborn DBS from clinically-confirmed MLD patients are detected with these methods. The work shows that NBS for MLD is extremely precise and ready for deployment. Furthermore, it can be multiplexed with several other inborn errors of metabolism already tested in NBS centers worldwide.
Collapse
Affiliation(s)
- Soumeya Bekri
- Hospital Charles Nicolle, UNIROUEN INSERM U1245, CHU Rouen, Referral Center for Lysosomal Diseases, Department of Metabolic Biochemistry, 76000 Rouen, France..
| | - Annette Bley
- Department of Pediatrics, University Medical Center, Hamburg Eppendorf, Hamburg, Germany
| | - Heather A Brown
- Willink Biochemical Genetics Laboratory, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | | | - Heather J Church
- Willink Biochemical Genetics Laboratory, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Michael H Gelb
- Dept. of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Xinying Hong
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nils Janzen
- Screening-Laboratory Hannover, Hannover 30430, Germany; Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany; Centre for Children and Adolescents, Kinder- and Jugenbrankenhaus Auf der Bult, Hannover, Germany
| | | | | | - Georgina Morton
- ArchAngel MLD Trust, 506 Betula House, North Wharf Road, London W1 2DT, UK
| | - Simona Murko
- Newborn Screening and Metabolic Laboratory, Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | | | - Abdellah Tebani
- Hospital Charles Nicolle, UNIROUEN INSERM U1245, CHU Rouen, Referral Center for Lysosomal Diseases, Department of Metabolic Biochemistry, 76000 Rouen, France
| | - Teresa H Y Wu
- Willink Biochemical Genetics Laboratory, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK.
| |
Collapse
|
8
|
Wu THY, Brown HA, Church HJ, Kershaw CJ, Hutton R, Egerton C, Cooper J, Tylee K, Cohen RN, Gokhale D, Ram D, Morton G, Henderson M, Bigger BW, Jones SA. Improving newborn screening test performance for metachromatic leukodystrophy: Recommendation from a pre-pilot study that identified a late-infantile case for treatment. Mol Genet Metab 2024; 142:108349. [PMID: 38458124 DOI: 10.1016/j.ymgme.2024.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024]
Abstract
Metachromatic leukodystrophy (MLD) is a devastating rare neurodegenerative disease. Typically, loss of motor and cognitive skills precedes early death. The disease is characterised by deficient lysosomal arylsulphatase A (ARSA) activity and an accumulation of undegraded sulphatide due to pathogenic variants in the ARSA gene. Atidarsagene autotemcel (arsa-cel), an ex vivo haematopoietic stem cell gene therapy was approved for use in the UK in 2021 to treat early-onset forms of pre- or early-symptomatic MLD. Optimal outcomes require early diagnosis, but in the absence of family history this is difficult to achieve without newborn screening (NBS). A pre-pilot MLD NBS study was conducted as a feasibility study in Manchester UK using a two-tiered screening test algorithm. Pre-established cutoff values (COV) for the first-tier C16:0 sulphatide (C16:0-S) and the second-tier ARSA tests were evaluated. Before the pre-pilot study, initial test validation using non‑neonatal diagnostic bloodspots demonstrated ARSA pseudodeficiency status was associated with normal C16:0-S results for age (n = 43) and hence not expected to cause false positive results in this first-tier test. Instability of ARSA in bloodspot required transfer of NBS bloodspots from ambient temperature to -20°C storage within 7-8 days after heel prick, the earliest possible in this UK pre-pilot study. Eleven of 3687 de-identified NBS samples in the pre-pilot were positive for C16:0-S based on the pre-established COV of ≥170 nmol/l or ≥ 1.8 multiples of median (MoM). All 11 samples were subsequently tested negative determined by the ARSA COV of <20% mean of negative controls. However, two of 20 NBS samples from MLD patients would be missed by this C16:0-S COV. A further suspected false negative case that displayed 4% mean ARSA activity by single ARSA analysis for the initial test validation was confirmed by genotyping of this NBS bloodspot, a severe late infantile MLD phenotype was predicted. This led to urgent assessment of this child by authority approval and timely commencement of arsa-cel gene therapy at 11 months old. Secondary C16:0-S analysis of this NBS bloodspot was 150 nmol/l or 1.67 MoM. This was the lowest result reported thus far, a new COV of 1.65 MoM is recommended for future pilot studies. Furthermore, preliminary data of this study showed C16:1-OH sulphatide is more specific for MLD than C16:0-S. In conclusion, this pre-pilot study adds to the international evidence that recommends newborn screening for MLD, making it possible for patients to benefit fully from treatment through early diagnosis.
Collapse
Affiliation(s)
- Teresa H Y Wu
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK.
| | - Heather A Brown
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Heather J Church
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Christopher J Kershaw
- North-West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Rebekah Hutton
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Christine Egerton
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - James Cooper
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Karen Tylee
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Rebecca N Cohen
- North-West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - David Gokhale
- North-West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Dipak Ram
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Georgina Morton
- ArchAngel MLD Trust, 506 Betula House, North Wharf Road, London W2 1DT, UK
| | - Michael Henderson
- Specialist Laboratory Medicine, Leeds Teaching Hospitals Trust, Leeds LS9 7TF, UK
| | - Brian W Bigger
- Stem Cell & Neurotherapies, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Simon A Jones
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| |
Collapse
|
9
|
Laugwitz L, Schoenmakers DH, Adang LA, Beck-Woedl S, Bergner C, Bernard G, Bley A, Boyer A, Calbi V, Dekker H, Eichler F, Eklund E, Fumagalli F, Gavazzi F, Grønborg SW, van Hasselt P, Langeveld M, Lindemans C, Mochel F, Oberg A, Ram D, Saunier-Vivar E, Schöls L, Scholz M, Sevin C, Zerem A, Wolf NI, Groeschel S. Newborn screening in metachromatic leukodystrophy - European consensus-based recommendations on clinical management. Eur J Paediatr Neurol 2024; 49:141-154. [PMID: 38554683 DOI: 10.1016/j.ejpn.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Metachromatic leukodystrophy (MLD) is a rare autosomal recessive lysosomal storage disorder resulting from arylsulfatase A enzyme deficiency, leading to toxic sulfatide accumulation. As a result affected individuals exhibit progressive neurodegeneration. Treatments such as hematopoietic stem cell transplantation (HSCT) and gene therapy are effective when administered pre-symptomatically. Newborn screening (NBS) for MLD has recently been shown to be technically feasible and is indicated because of available treatment options. However, there is a lack of guidance on how to monitor and manage identified cases. This study aims to establish consensus among international experts in MLD and patient advocates on clinical management for NBS-identified MLD cases. METHODS A real-time Delphi procedure using eDELPHI software with 22 experts in MLD was performed. Questions, based on a literature review and workshops, were answered during a seven-week period. Three levels of consensus were defined: A) 100%, B) 75-99%, and C) 50-74% or >75% but >25% neutral votes. Recommendations were categorized by agreement level, from strongly recommended to suggested. Patient advocates participated in discussions and were involved in the final consensus. RESULTS The study presents 57 statements guiding clinical management of NBS-identified MLD patients. Key recommendations include timely communication by MLD experts with identified families, treating early-onset MLD with gene therapy and late-onset MLD with HSCT, as well as pre-treatment monitoring schemes. Specific knowledge gaps were identified, urging prioritized research for future evidence-based guidelines. DISCUSSION Consensus-based recommendations for NBS in MLD will enhance harmonized management and facilitate integration in national screening programs. Structured data collection and monitoring of screening programs are crucial for evidence generation and future guideline development. Involving patient representatives in the development of recommendations seems essential for NBS programs.
Collapse
Affiliation(s)
- Lucia Laugwitz
- Neuropediatrics, General Pediatrics, Diabetology, Endocrinology and Social Pediatrics, University of Tuebingen, University Hospital Tübingen, 72016, Tübingen, Germany; Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72070, Tübingen, Germany.
| | - Daphne H Schoenmakers
- Department of Child Neurology, Emma's Children's Hospital, Amsterdam UMC Location Vrije Universiteit, Amsterdam, the Netherlands; Amsterdam Leukodystrophy Center, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, the Netherlands; Medicine for Society, Platform at Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - Laura A Adang
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stefanie Beck-Woedl
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72070, Tübingen, Germany
| | - Caroline Bergner
- Leukodystrophy Center, Departement of Neurology, University Hospital Leipzig, Germany
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Canada; Department Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | | | | | - Valeria Calbi
- Pediatric Immuno-Hematology Unit, Ospedale San Raffaele Milan, Italy; San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
| | - Hanka Dekker
- Dutch Association for Inherited Metabolic Diseases (VKS), the Netherlands
| | | | - Erik Eklund
- Pediatrics, Clinical Sciences, Lund University, Sweden
| | - Francesca Fumagalli
- Pediatric Immuno-Hematology Unit, Ospedale San Raffaele Milan, Italy; San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Gavazzi
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sabine W Grønborg
- Center for Inherited Metabolic Diseases, Department of Pediatrics and Adolescent Medicine and Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Peter van Hasselt
- Department of Metabolic Diseases, University Medical Center Utrecht, the Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Caroline Lindemans
- Department of Pediatric Hematopoietic Stem Cell Transplantation, UMC Utrecht and Princess Maxima Center, the Netherlands
| | - Fanny Mochel
- Reference Center for Adult Leukodystrophy, Department of Medical Genetics, Sorbonne University, Paris Brain Institute, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Andreas Oberg
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Norway
| | - Dipak Ram
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Manchester, UK
| | | | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research, German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | | | - Ayelet Zerem
- Pediatric Neurology Institute, Leukodystrophy Center, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicole I Wolf
- Department of Child Neurology, Emma's Children's Hospital, Amsterdam UMC Location Vrije Universiteit, Amsterdam, the Netherlands; Amsterdam Leukodystrophy Center, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, the Netherlands
| | - Samuel Groeschel
- Neuropediatrics, General Pediatrics, Diabetology, Endocrinology and Social Pediatrics, University of Tuebingen, University Hospital Tübingen, 72016, Tübingen, Germany
| |
Collapse
|
10
|
Pham V, Sertori Finoti L, Cassidy MM, Maguire JA, Gagne AL, Waxman EA, French DL, King K, Zhou Z, Gelb MH, Wongkittichote P, Hong X, Schlotawa L, Davidson BL, Ahrens-Nicklas RC. A novel iPSC model reveals selective vulnerability of neurons in multiple sulfatase deficiency. Mol Genet Metab 2024; 141:108116. [PMID: 38161139 PMCID: PMC10951942 DOI: 10.1016/j.ymgme.2023.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Multiple sulfatase deficiency (MSD) is an ultra-rare, inherited lysosomal storage disease caused by mutations in the gene sulfatase modifying factor 1 (SUMF1). MSD is characterized by the functional deficiency of all sulfatase enzymes, leading to the storage of sulfated substrates including glycosaminoglycans (GAGs), sulfolipids, and steroid sulfates. Patients with MSD experience severe neurological impairment, hearing loss, organomegaly, corneal clouding, cardiac valve disease, dysostosis multiplex, contractures, and ichthyosis. Here, we generated a novel human model of MSD by reprogramming patient peripheral blood mononuclear cells to establish an MSD induced pluripotent stem cell (iPSC) line (SUMF1 p.A279V). We also generated an isogenic control iPSC line by correcting the pathogenic variant with CRISPR/Cas9 gene editing. We successfully differentiated these iPSC lines into neural progenitor cells (NPCs) and NGN2-induced neurons (NGN2-iN) to model the neuropathology of MSD. Mature neuronal cells exhibited decreased SUMF1 gene expression, increased lysosomal stress, impaired neurite outgrowth and maturation, reduced sulfatase activities, and GAG accumulation. Interestingly, MSD iPSCs and NPCs did not exhibit as severe of phenotypes, suggesting that as neurons differentiate and mature, they become more vulnerable to loss of SUMF1. In summary, we demonstrate that this human iPSC-derived neuronal model recapitulates the cellular and biochemical features of MSD. These cell models can be used as tools to further elucidate the mechanisms of MSD pathology and for the development of therapeutics.
Collapse
Affiliation(s)
- Vi Pham
- The Children's Hospital of Philadelphia, Division of Human Genetics and Metabolism, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA; University of Pennsylvania, Perelman School of Medicine, Department of Pediatrics, Philadelphia, PA 19104, USA.
| | - Livia Sertori Finoti
- The Children's Hospital of Philadelphia, Division of Human Genetics and Metabolism, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Margaret M Cassidy
- The Children's Hospital of Philadelphia, Division of Human Genetics and Metabolism, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA; University of Pennsylvania, Perelman School of Medicine, Department of Pediatrics, Philadelphia, PA 19104, USA.
| | - Jean Ann Maguire
- The Children's Hospital of Philadelphia, Center for Cellular and Molecular Therapeutics, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Alyssa L Gagne
- The Children's Hospital of Philadelphia, Center for Cellular and Molecular Therapeutics, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Elisa A Waxman
- The Children's Hospital of Philadelphia, Center for Cellular and Molecular Therapeutics, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA; Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Deborah L French
- The Children's Hospital of Philadelphia, Center for Cellular and Molecular Therapeutics, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA; Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA.
| | - Kaitlyn King
- The Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Zitao Zhou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Parith Wongkittichote
- The Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Xinying Hong
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA; The Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Lars Schlotawa
- University Medical Center Goettingen, Department of Pediatrics and Adolescent Medicine, Robert-Koch-Str. 40, 37075 Goettingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology - Translational Neuroinflammation and Automated Microscopy, Robert-Koch-Str. 40, 37075, Goettingen, Germany.
| | - Beverly L Davidson
- The Children's Hospital of Philadelphia, Center for Cellular and Molecular Therapeutics, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA; University of Pennsylvania, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA.
| | - Rebecca C Ahrens-Nicklas
- The Children's Hospital of Philadelphia, Division of Human Genetics and Metabolism, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA; University of Pennsylvania, Perelman School of Medicine, Department of Pediatrics, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Helman G, Orthmann-Murphy JL, Vanderver A. Approaches to diagnosis for individuals with a suspected inherited white matter disorder. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:21-35. [PMID: 39322380 DOI: 10.1016/b978-0-323-99209-1.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Leukodystrophies are heritable disorders with white matter abnormalities observed on central nervous system magnetic resonance imaging. Pediatric leukodystrophies have long been known for their classically high, "unsolved" rate. Indeed, these disorders provide a diagnostic dilemma for many clinicians as over 100 genetic disorders alone may present with white matter abnormalities, with this figure not taking into account the substantial number of infectious agents, toxicities, and acquired disorders that may affect the white matter of the brain. Achieving a diagnosis may be the single most important step in the clinical course of a leukodystrophy-affected individual, with important implications for care and quality of life. For certain disorders, prompt recognition can direct therapeutic intervention with significant implications and requires urgent recognition. In this review, we cover newborn screening efforts, standard-of-care testing methodologies, and next generation sequencing approaches that continue to change the landscape of leukodystrophy diagnosis. Early studies have shown that next generation sequencing approaches, particularly exome and now genome sequencing have proven to be powerful in helping resolve many cases that were refractory to a single gene or linkage analysis approach. In addition, other methods are required for cases that remain persistently unsolved after next generation sequencing methods have been used. In the past more than half of affected individuals never achieved an etiologic diagnosis, and when they did, the reported times to diagnosis were >5 years although molecular testing has allowed this to be reduced to closer to 16 months. For affected families, next generation sequencing technologies have finally provided a way to fill gaps in diagnosis.
Collapse
Affiliation(s)
- Guy Helman
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer L Orthmann-Murphy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adeline Vanderver
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Hammoud M, Rodrigues AMS, Assiri I, Sabir E, Lafhal K, Najeh S, Jakani M, Imad N, Bourrahouat A, Ait Sab I, Elqadiry R, Nassih H, Outzourit A, Elamiri M, Maoulainine F, Slitine Elidrissi N, Bennaoui F, Bourous M, Mrhar S, Essaadouni L, Stien D, Rada N, Bouskraoui M, Houël E, Fdil N. Sphingolipidoses in Morocco: Chemical profiling for an affordable and rapid diagnosis strategy. Prostaglandins Other Lipid Mediat 2023; 168:106751. [PMID: 37295489 DOI: 10.1016/j.prostaglandins.2023.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/28/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Sphingolipidoses are a group of metabolic diseases in which lysosomal hydrolases dysfunction disrupt normal sphingolipids' metabolism, leading to excess accumulation in cellular compartments and excretion in urine. These pathologies represent a significant burden among Moroccan population, for which an easy access to enzymatic assays and genetic tests is not guaranteed. Parallel analytical methods thus have to be developed for preliminary screening. In this study, 107 patients were addressed to the metabolic platform of the Marrakesh Faculty of Medicine for diagnosis confirmation. Thin-Layer Chromatography was used as a first step to perform chemical profiling of the patients' urinary lipids, allowing 36% of the patients to be efficiently oriented towards the adequate enzymatic assay. UPLC-MS/MS analyses of urinary sulfatides excreted in urines patient had been used to control the reliability of TLC analysis and to obtain more accurate information related to the sulfatides isoforms. This analytical process combining TLC with UPLC-MS/MS has enabled rapid and appropriate patient management in a reduced time and with reduced resources.
Collapse
Affiliation(s)
- M Hammoud
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - A M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer 66650, France
| | - I Assiri
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - Es Sabir
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - K Lafhal
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - S Najeh
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - M Jakani
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - N Imad
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - A Bourrahouat
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - I Ait Sab
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - R Elqadiry
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - H Nassih
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - A Outzourit
- Internal Medicine Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - M Elamiri
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco
| | - F Maoulainine
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - N Slitine Elidrissi
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - F Bennaoui
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - M Bourous
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - S Mrhar
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - L Essaadouni
- Internal Medicine Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - D Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer 66650, France
| | - N Rada
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - M Bouskraoui
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - E Houël
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer 66650, France.
| | - N Fdil
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco.
| |
Collapse
|
13
|
Jonckheere AI, Kingma SDK, Eyskens F, Bordon V, Jansen AC. Metachromatic leukodystrophy: To screen or not to screen? Eur J Paediatr Neurol 2023; 46:1-7. [PMID: 37354699 DOI: 10.1016/j.ejpn.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/11/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Metachromatic leukodystrophy (MLD) is a neurodegenerative lysosomal storage disorder caused by biallelic pathogenic variants in the gene encoding arylsulfatase A. Disease onset is variable (with late infantile, early and late juvenile, and adult forms) and treatment options depend on age and disease symptoms at onset. In the past, allo-hematopoietic stem cell transplantation (allo-HSCT) has been the best treatment option, following strict selection criteria. The outcome however is variable and morbidity remains high. This paved the way to the development of new treatment options, some of them aiming to be curative. In the light of this changing therapeutic field, newborn screening is becoming a valuable option. This narrative review aims to describe the outcome of allo-HSCT in the different MLD disease forms, and, in addition, reviews new treatment options. Finally, the shift of the field towards newborn screening for MLD is discussed.
Collapse
Affiliation(s)
- An I Jonckheere
- Department of Child Neurology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium; Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Belgium.
| | - Sandra D K Kingma
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Belgium
| | - François Eyskens
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Belgium
| | - Victoria Bordon
- Department of Child Oncology, Ghent University Hospital, Ghent, Belgium
| | - Anna C Jansen
- Department of Child Neurology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| |
Collapse
|
14
|
Horgan C, Watts K, Ram D, Rust S, Hutton R, Jones S, Wynn R. A retrospective cohort study of Libmeldy (atidarsagene autotemcel) for MLD: What we have accomplished and what opportunities lie ahead. JIMD Rep 2023; 64:346-352. [PMID: 37701322 PMCID: PMC10494509 DOI: 10.1002/jmd2.12378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 09/14/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) results from ARSA gene mutations. Affected individuals meet early milestones before neurological deterioration and early death. Atidarsagene autotemcel (arsa-cel), an autologous haematopoietic stem cell gene therapy (HSC-GT) product, has demonstrated sustained clinical benefits in MLD. Arsa-cel was approved for NHS treatment in February 2022 for asymptomatic late infantile or early juvenile disease, or early symptomatic early juvenile MLD. We evaluate the impact of this approval in the largest real-world dataset of MLD HSC-GT. Hospital records were reviewed for all patients referred for NHS treatment following arsa-cel approval. Information was gathered about disease phenotype, presentation, eligibility, and affected siblings. In the year following NHS approval, 17 UK MLD patients were referred for treatment. Four patients met eligibility criteria and have been treated, including 1 infant who weighed 5 kg at leukapheresis. Eleven patients failed screening: 10 symptomatic patients with late infantile disease and 1 with early juvenile disease and cognitive decline. Two further patients with later onset subtypes did not meet the approval criteria. Three out of four treated patients were diagnosed by screening after MLD was diagnosed in a symptomatic older sibling. The success of HSC-GT for MLD has heralded a new era of hope for families affected by this devastating disease, yet currently, most patients are ineligible for treatment at diagnosis. The feasibility of apheresis in infants and the availability of a licenced, effective HSC-GT product highlights the urgent need for newborn screening to ensure that patients can be diagnosed and treated before symptom onset.
Collapse
Affiliation(s)
- Claire Horgan
- Royal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Kelly Watts
- Royal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Dipak Ram
- Royal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Stewart Rust
- Royal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Rebekah Hutton
- Royal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Simon Jones
- Royal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
| | - Rob Wynn
- Royal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
| |
Collapse
|
15
|
Hong X, Pollard L, He M, Gelb MH, Wood TC. Multiplex tandem mass spectrometry enzymatic activity assay for the screening and diagnosis of Mucolipidosis type II and III. Mol Genet Metab Rep 2023; 35:100978. [PMID: 37275682 PMCID: PMC10233272 DOI: 10.1016/j.ymgmr.2023.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Mucolipidosis type II and III (MLII/III) is caused by defects in the mannose-6-phosphate system, which is essential to target most of the lysosomal hydrolases to the lysosome. MLII/III patients present with marked elevations in the activities of most lysosomal enzymes in plasma, but their profiles in dried blood spots (DBS) have not been well described. In the current study, we measured the activities of 12 lysosomal enzymes in DBS, among which acid sphingomyelinase, iduronate-2-sulfatase, and alpha-N-acetylglucosaminidase were significantly elevated in MLII/III patients when compared to random newborns. This sets the stage for using DBS to diagnose MLII/III. Furthermore, given an increasing number of lysosomal storage disorders are being included in the recommended uniform screening panel, our results also indicate that population-based newborn screening for MLII/III can be implemented with minimal efforts.
Collapse
Affiliation(s)
- Xinying Hong
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Miao He
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Timothy C. Wood
- Department of Pediatrics, University of Colorado Anschutz Medical Campus/Children's Hospital of Colorado, Aurora, CO, USA
| |
Collapse
|
16
|
Morton G, Thomas S, Roberts P, Clark V, Imrie J, Morrison A. The importance of early diagnosis and views on newborn screening in metachromatic leukodystrophy: results of a Caregiver Survey in the UK and Republic of Ireland. Orphanet J Rare Dis 2022; 17:403. [PMID: 36329444 PMCID: PMC9635117 DOI: 10.1186/s13023-022-02550-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Metachromatic Leukodystrophy (MLD) is a rare, autosomal recessive lysosomal storage disorder caused by a deficiency of the enzyme arylsulfatase A (ARSA). MLD causes progressive loss of motor function and severe decline in cognitive function, leading to premature death. Early diagnosis of MLD provides the opportunity to begin treatment before the disease progresses and causes severe disability. MLD is not currently included in newborn screening (NBS) in the UK. This study consisted of an online survey, and follow-up semi-structured interviews open to MLD patients or caregivers, aged 18 years and over. The aims of the study were to understand the importance of early diagnosis and to establish the views of families and caregivers of patients with MLD on NBS. A total of 24 patients took part in the survey, representing 20 families (two families had two children with MLD, one family had three children with MLD). Following on from the survey, six parents participated in the interviews. Our data showed diagnostic delay from first symptoms was between 0 and 3 years, with a median of 1 year (n = 18); during this time deterioration was rapid, especially in earlier onset MLD. In patients with late infantile MLD (n = 10), 50% were wheelchair dependent, 30% were unable to speak, and 50% were tube fed when a diagnosis of MLD was confirmed. In patients with early juvenile MLD (n = 5), over half used a wheelchair some of the time, had uncontrollable crying, and difficulty speaking (all 60%) before or at the time of diagnosis. A high degree of support was expressed for NBS among caregivers, 95% described it as very or extremely important and 86% believed detection of MLD at birth would have changed their child’s future. One parent expressed their gratitude for an early diagnosis as a result of familial MLD screening offered at birth and how it had changed their child’s future: “It did and it absolutely has I will be forever grateful for his early diagnosis thanks to his older sister.” The rapid rate of deterioration in MLD makes it an essential candidate for NBS, particularly now the first gene therapy (Libmeldy™) has been approved by the European Medicines Agency. Libmeldy™ has also been recommended as a treatment option in England and Wales by the National Institute for Health and Care Excellence (NICE) and is being made available to patients in Scotland via the Scottish Medicines Consortium’s ultra-orphan pathway.
Collapse
|
17
|
Laugwitz L, Santhanakumaran V, Spieker M, Boehringer J, Bender B, Gieselmann V, Beck‐Woedl S, Bruchelt G, Harzer K, Kraegeloh‐Mann I, Groeschel S. Extremely low arylsulfatase A enzyme activity does not necessarily cause symptoms: A long-term follow-up and review of the literature. JIMD Rep 2022; 63:292-302. [PMID: 35822086 PMCID: PMC9259399 DOI: 10.1002/jmd2.12293] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disease caused by deficiency of arylsulfatase A (ARSA). Heterozygous carriers of disease-causing variants and individuals harbouring pseudodeficiency alleles in the ARSA gene exhibit reduced ARSA activity. In the context of these genotypes, low ARSA activity has been suggested to lead to an atypical form of MLD or other neurological abnormalities, but data are limited. The aim of our study was to analyse the impact of low ARSA activity in two subjects who are heterozygous for the ARSA pseudodeficiency allele and a disease-causing variant. Biochemical testing included ARSA activity measurements and urinary sulfatide analysis. Biochemical data of a large cohort of MLD patients, heterozygotes, pseudodeficient individuals and healthy controls were analysed. MRI was performed at 3T using T1- and T2-weighted sequences and MR spectroscopy. We present two long-term follow-ups who are heterozygous for the ARSA pseudodeficiency allele and a disease-causing variant in the ARSA gene in cis. The two related index cases exhibit markedly reduced ARSA activity compared to controls and heterozygous carriers. The neurological evaluation and MRI do not reveal any abnormalities. Our data underline that extremely low enzyme activity due to a pseudodeficiency allele and a disease-causing variant in the ARSA gene even in cis does not lead to clinical symptoms or pre-symptomatic MRI changes suspicious for MLD. The review of literature corroborates that any association of low ARSA activity with disease features remains questionable. It seems important to combine the measurement of ARSA activity with elevated sulfatide as well as genetic testing, as done in current newborn screening approaches. Heterozygosity for metachromatic leukodystrophy and an arylsulfatase A pseudodeficiency allele does not cause neurological or neuropsychiatric features.
Collapse
Affiliation(s)
- Lucia Laugwitz
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
- Department of Neuropediatrics, Developmental Neurology and Social PaediatricsUniversity of TübingenTübingenGermany
| | - Vidiyaah Santhanakumaran
- Department of Neuropediatrics, Developmental Neurology and Social PaediatricsUniversity of TübingenTübingenGermany
| | - Mareike Spieker
- Department of Neuropediatrics, Developmental Neurology and Social PaediatricsUniversity of TübingenTübingenGermany
| | - Judith Boehringer
- Department of Neuropediatrics, Developmental Neurology and Social PaediatricsUniversity of TübingenTübingenGermany
| | - Benjamin Bender
- Diagnostic and Interventional NeuroradiologyRadiologic Clinics, University of TübingenTübingenGermany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular BiologyUniversity of BonnBonnGermany
| | - Stefanie Beck‐Woedl
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Gernot Bruchelt
- Department of Neuropediatrics, Developmental Neurology and Social PaediatricsUniversity of TübingenTübingenGermany
| | - Klaus Harzer
- Department of Neuropediatrics, Developmental Neurology and Social PaediatricsUniversity of TübingenTübingenGermany
| | - Ingeborg Kraegeloh‐Mann
- Department of Neuropediatrics, Developmental Neurology and Social PaediatricsUniversity of TübingenTübingenGermany
| | - Samuel Groeschel
- Department of Neuropediatrics, Developmental Neurology and Social PaediatricsUniversity of TübingenTübingenGermany
| |
Collapse
|
18
|
Methylmalonic acid analysis using urine filter paper samples to screen for metabolic vitamin B 12 deficiency in older adults. Bioanalysis 2022; 14:615-626. [PMID: 35546317 DOI: 10.4155/bio-2022-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Methylmalonic acid (MMA) analysis in urine represents a noninvasive approach to screening for vitamin B12 deficiency in older adults. A method allowing the analysis of MMA/creatinine in fasting urine collected on filter paper was developed/validated. Method: Dry urine specimens were eluted using a solution containing internal standards, filtrated and analyzed by ultra-performance LC-MS/MS. Results: The method allowed the chromatographic separation of MMA from succinic acid. Dried urine samples were stable for 86 days at room temperature. The MMA/creatinine ratios measured in urine collected on filter paper were highly correlated with values derived from the corresponding liquid specimens. Conclusion: This robust filter paper method might greatly improve the accessibility and cost-effectiveness of vitamin B12 deficiency screening in older adults.
Collapse
|
19
|
Kubaski F, Herbst ZM, Burin MG, Michelin‐Tirelli K, Trapp FB, Gus R, Netto ABO, Brusius‐Facchin AC, Leistner‐Segal S, Sanseverino MT, de Souza CMF, Wilke MVMB, Oliveira T, Magalhães JAA, Giugliani R. Measurement of sulfatides in the amniotic fluid supernatant: A useful tool in the prenatal diagnosis of metachromatic leukodystrophy. JIMD Rep 2022; 63:162-167. [PMID: 35281662 PMCID: PMC8898714 DOI: 10.1002/jmd2.12270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal disorder caused by deficiency of arylsulfatase A (ARSA), leading to an accumulation of sulfatides. Sulfatides have been quantified in urine, dried blood spots (DBS), and tissues of patients with MLD. Newborn screening (NBS) for MLD has already been proposed based on a two-tier approach with the quantification of sulfatides in DBS followed by the quantification of ARSA by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Prenatal screening for MLD is also crucial, and sulfatide quantification in amniotic fluid (AF) can aid diagnosis. The prenatal study was initiated due to a family history of MLD at 19 weeks of gestation. ARSA was quantified in cultured amniocytes. C16:0 sulfatide was quantified by LC-MS/MS in the supernatant of AF. Molecular analysis of the ARSA gene was performed in cultured amniocytes. ARSA was deficient in fetal cells, and C16:0 sulfatides were significantly elevated in comparison to age-matched controls (3-fold higher). Genetic studies identified the c.465+1G>A variant in homozygosis in the ARSA gene. Our study shows that sulfatides can be quantified in the supernatant of AF of MLD fetuses, and it could potentially aid in a faster and more accurate diagnosis of MLD patients.
Collapse
Affiliation(s)
- Francyne Kubaski
- PPGBMUFRGSPorto AlegreBrazil
- Medical Genetics ServiceHCPAPorto AlegreBrazil
- INAGEMPPorto AlegreBrazil
| | | | | | | | | | - Rejane Gus
- Medical Genetics ServiceHCPAPorto AlegreBrazil
| | - Alice B. O. Netto
- PPGBMUFRGSPorto AlegreBrazil
- Medical Genetics ServiceHCPAPorto AlegreBrazil
| | | | | | | | | | | | | | | | - Roberto Giugliani
- PPGBMUFRGSPorto AlegreBrazil
- Medical Genetics ServiceHCPAPorto AlegreBrazil
- INAGEMPPorto AlegreBrazil
- PPGCMUFRGSPorto AlegreBrazil
- Department of GeneticsUFRGSPorto AlegreBrazil
| |
Collapse
|
20
|
Lysosphingolipid urine screening test using mass spectrometry for the early detection of lysosomal storage disorders. Bioanalysis 2022; 14:289-306. [PMID: 35118880 DOI: 10.4155/bio-2021-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Sphingolipidoses are caused by a defective sphingolipid catabolism, leading to an accumulation of several glycolipid species in tissues and resulting in neurotoxicity and severe systemic manifestations. Methods & results: Urine samples from controls and patients were purified by solid-phase extraction prior to the analysis by ultra-high-performance liquid chromatography (UPLC) combined with MS/MS. A UPLC-MS/MS method for the analysis of 21 urinary creatinine-normalized biomarkers for eight diseases was developed and validated. Conclusion: Considering the growing demand to identify patients with different sphingolipidoses early and reliably, this methodology will be applied for high-risk screening to target efficiently patients with various sphingolipidoses.
Collapse
|
21
|
Zhou H, Wu Z, Wang Y, Wu Q, Hu M, Ma S, Zhou M, Sun Y, Yu B, Ye J, Jiang W, Fu Z, Gong Y. Rare Diseases in Glycosphingolipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:189-213. [DOI: 10.1007/978-981-19-0394-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Blomqvist M, Zetterberg H, Blennow K, Månsson JE. Sulfatide in health and disease. The evaluation of sulfatide in cerebrospinal fluid as a possible biomarker for neurodegeneration. Mol Cell Neurosci 2021; 116:103670. [PMID: 34562592 DOI: 10.1016/j.mcn.2021.103670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022] Open
Abstract
Sulfatide (3-O-sulfogalactosylceramide, SM4) is a glycosphingolipid, highly multifunctional and particularly enriched in the myelin sheath of neurons. The role of sulfatide has been implicated in various biological fields such as the nervous system, immune system, host-pathogen recognition and infection, beta cell function and haemostasis/thrombosis. Thus, alterations in sulfatide metabolism and production are associated with several human diseases such as neurological and immunological disorders and cancers. The unique lipid-rich composition of myelin reflects the importance of lipids in this specific membrane structure. Sulfatide has been shown to be involved in the regulation of oligodendrocyte differentiation and in the maintenance of the myelin sheath by influencing membrane dynamics involving sorting and lateral assembly of myelin proteins as well as ion channels. Sulfatide is furthermore essential for proper formation of the axo-glial junctions at the paranode together with axonal glycosphingolipids. Alterations in sulfatide metabolism are suggested to contribute to myelin deterioration as well as synaptic dysfunction, neurological decline and inflammation observed in different conditions associated with myelin pathology (mouse models and human disorders). Body fluid biomarkers are of importance for clinical diagnostics as well as for patient stratification in clinical trials and treatment monitoring. Cerebrospinal fluid (CSF) is commonly used as an indirect measure of brain metabolism and analysis of CSF sulfatide might provide information regarding whether the lipid disruption observed in neurodegenerative disorders is reflected in this body fluid. In this review, we evaluate the diagnostic utility of CSF sulfatide as a biomarker for neurodegenerative disorders associated with dysmyelination/demyelination by summarising the current literature on this topic. We can conclude that neither CSF sulfatide levels nor individual sulfatide species consistently reflect the lipid disruption observed in many of the demyelinating disorders. One exception is the lysosomal storage disorder metachromatic leukodystrophy, possibly due to the genetically determined accumulation of non-metabolised sulfatide. We also discuss possible explanations as to why myelin pathology in brain tissue is poorly reflected by the CSF sulfatide concentration. The previous suggestion that CSF sulfatide is a marker of myelin damage has thereby been challenged by more recent studies using more sophisticated laboratory techniques for sulfatide analysis as well as improved sample selection criteria due to increased knowledge on disease pathology.
Collapse
Affiliation(s)
- Maria Blomqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jan-Eric Månsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Wasserstein MP, Orsini JJ, Goldenberg A, Caggana M, Levy PA, Breilyn M, Gelb MH. The future of newborn screening for lysosomal disorders. Neurosci Lett 2021; 760:136080. [PMID: 34166724 PMCID: PMC10387443 DOI: 10.1016/j.neulet.2021.136080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 10/25/2022]
Abstract
The goal of newborn screening is to enhance the outcome of individuals with serious, treatable disorders through early, pre-symptomatic detection. The lysosomal storage disorders (LSDs) comprise a group of more than 50 diseases with a combined frequency of approximately 1:7000. With the availability of existing and new enzyme replacement therapies, small molecule treatments and gene therapies, there is increasing interest in screening newborns for LSDs with the goal of reducing disease-related morbidity and mortality through early detection. Novel screening methods are being developed, including efforts to enhance accuracy of screening using an array of multi-tiered, genomic, statistical, and bioinformatic approaches. While NBS data for Gaucher disease, Fabry disease, Krabbe disease, MPS I, and Pompe disease has demonstrated the feasibility of widespread screening, it has also highlighted some of the complexities of screening for LSDs. These include the identification of infants with later-onset, untreatable, and uncertain phenotypes, raising interesting ethical concerns that should be addressed as part of the NBS implementation process. Taken together, these efforts will provide critical, detailed data to help guide objective, ethically sensitive decision-making about NBS for LSDs.
Collapse
Affiliation(s)
- Melissa P Wasserstein
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, United States.
| | - Joseph J Orsini
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Aaron Goldenberg
- Department of Bioethics, Case Western Reserve University, Cleveland, OH, United States
| | - Michele Caggana
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Paul A Levy
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, United States
| | - Margo Breilyn
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, United States
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
24
|
Ruzhnikov MRZ, Brimble E, Hickey RE. Early Signs and Symptoms of Leukodystrophies: A Case-Based Guide. Pediatr Rev 2021; 42:133-146. [PMID: 33648992 DOI: 10.1542/pir.2019-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Maura R Z Ruzhnikov
- Department of Neurology and Neurological Sciences and.,Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Elise Brimble
- Department of Neurology and Neurological Sciences and
| | - Rachel E Hickey
- Department of Medical Genetics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL
| | | |
Collapse
|
25
|
Mingbunjerdsuk D, Wong M, Bozarth X, Sun A. Co-occurrence of Metachromatic Leukodystrophy in Phelan-McDermid Syndrome. J Child Neurol 2021; 36:148-151. [PMID: 32991243 DOI: 10.1177/0883073820960308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phelan-McDermid syndrome or 22q13.3 deletion syndrome is a rare neurodevelopmental disorder characterized by neonatal hypotonia, severe speech delay, moderate to profound intellectual disability, and minor dysmorphic features. Regression of developmental milestones is often recognized as characteristic of this syndrome. We report a 6-year-old patient with Phelan-McDermid syndrome who presented with rapid neurologic deterioration secondary to metachromatic leukodystrophy due to a mutation of the arylsulfatase A gene (ARSA) on the other allele of 22q13.3. Metachromatic leukodystrophy was diagnosed later after clinical deterioration. Currently, there are no guidelines for screening Phelan-McDermid syndrome patients for metachromatic leukodystrophy. We propose screening for urine sulfatides at the time of Phelan-McDermid syndrome diagnosis to identify patients with pre-symptomatic or early symptomatic metachromatic leukodystrophy as it is important to facilitate discussion of treatment options and prognosis and provide medical surveillance for associated complications.
Collapse
Affiliation(s)
- Dararat Mingbunjerdsuk
- Department of Neurology, Division of Pediatric Neurology, 7274Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Melissa Wong
- Department of Neurology, Division of Pediatric Neurology, 7274Seattle Children's Hospital, University of Washington, Seattle, WA, USA.,12353School of Medicine, University of Washington, Seattle, WA, USA
| | - Xiuhua Bozarth
- Department of Neurology, Division of Pediatric Neurology, 7274Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Angela Sun
- Department of Pediatrics, Division of Biochemical Genetics, 7274Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Koshu K, Ikeda T, Tamura D, Muramatsu K, Osaka H, Ono S, Adachi K, Nanba E, Nakajima T, Yamagata T. Gallbladder cancer with ascites in a child with metachromatic leukodystrophy. Brain Dev 2021; 43:140-143. [PMID: 32855001 DOI: 10.1016/j.braindev.2020.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Metachromatic leukodystrophy (MLD) refers to leukodystrophy caused by the accumulation of sulfatide from arylsulfatase A (ARSA) gene mutations. Sulfatide also accumulates in various organs, including the peripheral nerves, kidney, and gallbladder. Proliferative changes in the gallbladder have been reported in several patients, while gallbladder cancer is reported in only two adult MLD cases. We report what is likely the first pediatric case of MLD with gallbladder cancer. CASE REPORT The patient was a 5-year-old girl diagnosed with MLD using head magnetic resonance imaging and detecting a homozygous mutation of c.302G>A (p.Gly101Asp) in ARSA. Abdominal bloating was observed at the age of 4 years; CT revealed a giant tumor in the gallbladder and massive ascites. Cholecystectomy was performed and pathological examination revealed adenocarcinoma. Measurement of serum sulfatide revealed increased levels compared to the average healthy range. DISCUSSION Rapidly increased ascites and large polyps which are reported as risk factors for cancer were characteristic in our MLD case. When such lesions are detected, they should be removed immediately because of the possibility of cancer, even in a pediatric patient.
Collapse
Affiliation(s)
- Kiri Koshu
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Takahiro Ikeda
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan.
| | - Daisuke Tamura
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | | | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Shigeru Ono
- Department of Pediatric Surgery, Jichi Medical University, Tochigi, Japan
| | - Kaori Adachi
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Tottori, Japan
| | - Eiji Nanba
- Research Strategy Division, Organization for Research Initiative and Promotion, Tottori University, Tottori, Japan
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University School of Medicine, Nagano, Japan
| | | |
Collapse
|
27
|
Alonso-Fernández JR, López JF. Review and Proposal of Alternative Technologies for Comprehensive and Reliable Newborn Screening Using Paper Borne Urine Samples for Lysosomal Storage Disorders: Glycosphingolipid Disorders. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2020-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Hong X, Daiker J, Sadilek M, Ruiz-Schultz N, Kumar AB, Norcross S, Dansithong W, Suhr T, Escolar ML, Ronald Scott C, Rohrwasser A, Gelb MH. Toward newborn screening of metachromatic leukodystrophy: results from analysis of over 27,000 newborn dried blood spots. Genet Med 2020; 23:555-561. [PMID: 33214709 PMCID: PMC10395749 DOI: 10.1038/s41436-020-01017-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by the deficiency of arylsulfatase A (ARSA), which results in the accumulation of sulfatides. Newborn screening for MLD may be considered in the future as innovative treatments are advancing. We carried out a research study to assess the feasibility of screening MLD using dried blood spots (DBS) from de-identified newborns. METHODS To minimize the false-positive rate, a two-tier screening algorithm was designed. The primary test was to quantify C16:0-sulfatide in DBS by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The screening cutoff was established based on the results from 15 MLD newborns to achieve 100% sensitivity. The secondary test was to measure the ARSA activity in DBS from newborns with abnormal C16:0-sulfatide levels. Only newborns that displayed both abnormal C16:0-sulfatide abundance and ARSA activity were considered screen positives. RESULTS A total of 27,335 newborns were screened using this two-tier algorithm, and 2 high-risk cases were identified. ARSA gene sequencing identified these two high-risk subjects to be a MLD-affected patient and a heterozygote. CONCLUSION Our study demonstrates that newborn screening for MLD is highly feasible in a real-world scenario with near 100% assay specificity.
Collapse
Affiliation(s)
- Xinying Hong
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jessica Daiker
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | - Arun Babu Kumar
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | | | | | - Maria L Escolar
- The Program for the Study of Neurodevelopment in Rare Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - C Ronald Scott
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, USA. .,Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
LC-MS/MS assays to quantify sulfatides and lysosulfatide in cerebrospinal fluid of metachromatic leukodystrophy patients. Bioanalysis 2020; 12:1621-1633. [PMID: 33151743 DOI: 10.4155/bio-2020-0200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Two separate LC-MS/MS assays were developed to quantitate sulfatides and lysosulfatide in human cerebrospinal fluid (CSF). Materials & methods: Lysosulfatide and the 15 most abundant sulfatide species were quantitated by LC-MS/MS using artificial CSF as surrogate matrix to prepare calibration curves. Results: Validation criteria were met (linear range: 0.02-1.00 μg/ml sulfatides [0.02-1.00 ng/ml lysosulfatide]); accuracy/precision were within ±15%. CSF from 21 children with metachromatic leukodystrophy had significantly higher sulfatide and lysosulfatide concentrations than CSF from 60 healthy children (p < 0.0001). Worse motor function correlated with higher CSF sulfatide (p = 0.0087) and lysosulfatide (p = 0.0034) levels. Conclusion: These assays, validated in patients with metachromatic leukodystrophy, may aid the clinical assessment of therapeutic responses.
Collapse
|
30
|
Adang LA, Schlotawa L, Groeschel S, Kehrer C, Harzer K, Staretz‐Chacham O, Silva TO, Schwartz IVD, Gärtner J, De Castro M, Costin C, Montgomery EF, Dierks T, Radhakrishnan K, Ahrens‐Nicklas RC. Natural history of multiple sulfatase deficiency: Retrospective phenotyping and functional variant analysis to characterize an ultra-rare disease. J Inherit Metab Dis 2020; 43:1298-1309. [PMID: 32749716 PMCID: PMC7693296 DOI: 10.1002/jimd.12298] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/11/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
Multiple sulfatase deficiency (MSD) is an ultra-rare neurodegenerative disorder caused by pathogenic variants in SUMF1. This gene encodes formylglycine-generating enzyme (FGE), a protein required for sulfatase activation. The clinical course of MSD results from additive effect of each sulfatase deficiency, including metachromatic leukodystrophy (MLD), several mucopolysaccharidoses (MPS II, IIIA, IIID, IIIE, IVA, VI), chondrodysplasia punctata, and X-linked ichthyosis. While it is known that affected individuals demonstrate a complex and severe phenotype, the genotype-phenotype relationship and detailed clinical course is unknown. We report on 35 cases enrolled in our retrospective natural history study, n = 32 with detailed histories. Neurologic function was longitudinally assessed with retrospective scales. Biochemical and computational modeling of novel SUMF1 variants was performed. Genotypes were classified based on predicted functional change, and each individual was assigned a genotype severity score. The median age at symptom onset was 0.25 years; median age at diagnosis was 2.7 years; and median age at death was 13 years. All individuals demonstrated developmental delay, and only a subset of individuals attained ambulation and verbal communication. All subjects experienced an accumulating systemic symptom burden. Earlier age at symptom onset and severe variant pathogenicity correlated with poor neurologic outcomes. Using retrospective deep phenotyping and detailed variant analysis, we defined the natural history of MSD. We found that attenuated cases can be distinguished from severe cases by age of onset, attainment of ambulation, and genotype. Results from this study can help inform prognosis and facilitate future study design.
Collapse
Affiliation(s)
- Laura A. Adang
- Division of NeurologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGermany
| | | | | | | | | | - Thiago Oliveira Silva
- Nuclimed‐Clinical Research Center, Hospital de Clinicas de Porto Alegre‐RSPorto AlegreBrazil
| | - Ida Vanessa D. Schwartz
- Nuclimed‐Clinical Research Center, Hospital de Clinicas de Porto Alegre‐RSPorto AlegreBrazil
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGermany
| | | | | | | | - Thomas Dierks
- Department of Chemistry, Biochemistry IBielefeld UniversityBielefeldGermany
| | | | - Rebecca C. Ahrens‐Nicklas
- Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia, Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
31
|
Shaimardanova AA, Chulpanova DS, Solovyeva VV, Mullagulova AI, Kitaeva KV, Allegrucci C, Rizvanov AA. Metachromatic Leukodystrophy: Diagnosis, Modeling, and Treatment Approaches. Front Med (Lausanne) 2020; 7:576221. [PMID: 33195324 PMCID: PMC7606900 DOI: 10.3389/fmed.2020.576221] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Metachromatic leukodystrophy is a lysosomal storage disease, which is characterized by damage of the myelin sheath that covers most of nerve fibers of the central and peripheral nervous systems. The disease occurs due to a deficiency of the lysosomal enzyme arylsulfatase A (ARSA) or its sphingolipid activator protein B (SapB) and it clinically manifests as progressive motor and cognitive deficiency. ARSA and SapB protein deficiency are caused by mutations in the ARSA and PSAP genes, respectively. The severity of clinical course in metachromatic leukodystrophy is determined by the residual ARSA activity, depending on the type of mutation. Currently, there is no effective treatment for this disease. Clinical cases of bone marrow or cord blood transplantation have been reported, however the therapeutic effectiveness of these methods remains insufficient to prevent aggravation of neurological disorders. Encouraging results have been obtained using gene therapy for delivering the wild-type ARSA gene using vectors based on various serotypes of adeno-associated viruses, as well as using mesenchymal stem cells and combined gene-cell therapy. This review discusses therapeutic strategies for the treatment of metachromatic leukodystrophy, as well as diagnostic methods and modeling of this pathology in animals to evaluate the effectiveness of new therapies.
Collapse
Affiliation(s)
- Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Aysilu I Mullagulova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Science (SVMS) and Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
32
|
Barrientos RC, Zhang Q. Recent advances in the mass spectrometric analysis of glycosphingolipidome - A review. Anal Chim Acta 2020; 1132:134-155. [PMID: 32980104 PMCID: PMC7525043 DOI: 10.1016/j.aca.2020.05.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022]
Abstract
Aberrant expression of glycosphingolipids has been implicated in a myriad of diseases, but our understanding of the strucural diversity, spatial distribution, and biological function of this class of biomolecules remains limited. These challenges partly stem from a lack of sensitive tools that can detect, identify, and quantify glycosphingolipids at the molecular level. Mass spectrometry has emerged as a powerful tool poised to address most of these challenges. Here, we review the recent developments in analytical glycosphingolipidomics with an emphasis on sample preparation, mass spectrometry and tandem mass spectrometry-based structural characterization, label-free and labeling-based quantification. We also discuss the nomenclature of glycosphingolipids, and emerging technologies like ion mobility spectrometry in differentiation of glycosphingolipid isomers. The intrinsic advantages and shortcomings of each method are carefully critiqued in line with an individual's research goals. Finally, future perspectives on analytical sphingolipidomics are stated, including a need for novel and more sensive methods in isomer separation, low abundance species detection, and profiling the spatial distribution of glycosphingolipid molecular species in cells and tissues using imaging mass spectrometry.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, United States; UNCG Center for Translational Biomedical Research, NC Research Campus, Kannapolis, NC, 28081, United States.
| |
Collapse
|
33
|
Novel biomarkers for lysosomal storage disorders: Metabolomic and proteomic approaches. Clin Chim Acta 2020; 509:195-209. [PMID: 32561345 DOI: 10.1016/j.cca.2020.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) are characterized by the accumulation of specific disease substrates inside the lysosomes of various cells, eventually leading to the deterioration of cellular function and multisystem organ damage. With the continuous discovery and validation of novel and advanced therapies for most LSDs, there is an urgent need to discover more versatile and clinically relevant biomarkers. The utility of these biomarkers should ideally extend beyond the screening and diagnosis of LSDs to the evaluation of disease severity and monitoring of therapy. Metabolomic and proteomic approaches provide the means to the discovery and validation of such novel biomarkers. This is achieved mainly through the application of various mass spectrometric techniques to common and easily accessible biological samples, such as plasma, urine and dried blood spots. In this review, we tried to summarize the complexity of the lysosomal disorders phenotypes, their current diagnostic and therapeutic approaches, the various techniques supporting metabolomic and proteomic studies and finally we tried to explore the newly discovered biomarkers for most LSDs and their reported clinical values.
Collapse
|
34
|
A highly multiplexed biochemical assay for analytes in dried blood spots: application to newborn screening and diagnosis of lysosomal storage disorders and other inborn errors of metabolism. Genet Med 2020; 22:1262-1268. [DOI: 10.1038/s41436-020-0790-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
|
35
|
Hong X, Kumar AB, Daiker J, Yi F, Sadilek M, De Mattia F, Fumagalli F, Calbi V, Damiano R, Della Bona M, la Marca G, Vanderver AL, Waldman AT, Adang L, Sherbini O, Woidill S, Suhr T, Kurtzberg J, Beltran-Quintero ML, Escolar M, Aiuti A, Finglas A, Olsen A, Gelb MH. Leukocyte and Dried Blood Spot Arylsulfatase A Assay by Tandem Mass Spectrometry. Anal Chem 2020; 92:6341-6348. [PMID: 31922725 DOI: 10.1021/acs.analchem.9b05274] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays were developed to measure arylsulfatase A (ARSA) activity in leukocytes and dried blood spots (DBS) using deuterated natural sulfatide substrate. These new assays were highly specific and sensitive. Patients with metachromatic leukodystrophy (MLD) and multiple sulfatase deficiency (MSD) displayed a clear deficit in the enzymatic activity and could be completely distinguished from normal controls. The leukocyte assay reported here will be important for diagnosing MLD and MSD patients and for monitoring the efficacy of therapeutic treatments. ARSA activity was measured in DBS for the first time without an antibody. This new ARSA DBS assay can serve as a second-tier test following the sulfatide measurement in DBS for newborn screening of MLD. This leads to an elimination of most of the false positives identified by the sulfatide assay.
Collapse
Affiliation(s)
- Xinying Hong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Arun Babu Kumar
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jessica Daiker
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Fan Yi
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Fabiola De Mattia
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy
| | - Francesca Fumagalli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy.,Pediatric Immunohematology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - Valeria Calbi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy.,Pediatric Immunohematology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - Roberta Damiano
- Newborn Screening, Clinical Chemistry, and Pharmacology Lab, Meyer Children's Hospital, Florence, 50139, Italy
| | - Maria Della Bona
- Newborn Screening, Clinical Chemistry, and Pharmacology Lab, Meyer Children's Hospital, Florence, 50139, Italy
| | - Giancarlo la Marca
- Newborn Screening, Clinical Chemistry, and Pharmacology Lab, Meyer Children's Hospital, Florence, 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, 50121, Italy
| | - Adeline L Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amy T Waldman
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Laura Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Omar Sherbini
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Sarah Woidill
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Teryn Suhr
- MLD Foundation, West Linn, Oregon 97068, United States
| | - Joanne Kurtzberg
- Department of Pediatrics, Duke University, Durham, North Carolina 27705, United States
| | | | - Maria Escolar
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy
| | | | - Amber Olsen
- United MSD Foundation, Ocean Springs, Misssissippi 39564, United States
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
36
|
Beerepoot S, Nierkens S, Boelens JJ, Lindemans C, Bugiani M, Wolf NI. Peripheral neuropathy in metachromatic leukodystrophy: current status and future perspective. Orphanet J Rare Dis 2019; 14:240. [PMID: 31684987 PMCID: PMC6829806 DOI: 10.1186/s13023-019-1220-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/09/2019] [Indexed: 11/23/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is an autosomal recessively inherited metabolic disease characterized by deficient activity of the lysosomal enzyme arylsulfatase A. Its deficiency results in accumulation of sulfatides in neural and visceral tissues, and causes demyelination of the central and peripheral nervous system. This leads to a broad range of neurological symptoms and eventually premature death. In asymptomatic patients with juvenile and adult MLD, treatment with allogeneic hematopoietic stem cell transplantation (HCT) provides a symptomatic and survival benefit. However, this treatment mainly impacts brain white matter, whereas the peripheral neuropathy shows no or only limited response. Data about the impact of peripheral neuropathy in MLD patients are currently lacking, although in our experience peripheral neuropathy causes significant morbidity due to neuropathic pain, foot deformities and neurogenic bladder disturbances. Besides, the reasons for residual and often progressive peripheral neuropathy after HCT are not fully understood. Preliminary studies suggest that peripheral neuropathy might respond better to gene therapy due to higher enzyme levels achieved than with HCT. However, histopathological and clinical findings also suggest a role of neuroinflammation in the pathology of peripheral neuropathy in MLD. In this literature review, we discuss clinical aspects, pathological findings, distribution of mutations, and treatment approaches in MLD with particular emphasis on peripheral neuropathy. We believe that future therapies need more emphasis on the management of peripheral neuropathy, and additional research is needed to optimize care strategies.
Collapse
Affiliation(s)
- Shanice Beerepoot
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Pediatric Blood and Marrow Transplantation Program, Princess Máxima Center and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap Jan Boelens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Pediatrics, Stem Cell Transplant and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline Lindemans
- Pediatric Blood and Marrow Transplantation Program, Princess Máxima Center and University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative medicine institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
37
|
Abdel Aziz M, Kotb M, Abdelmeguid Y, Shehata S, Abdel-Hadi M. Gallbladder Papilloma in a Child Unmasking Metachromatic Leukodystrophy: A Case Report With Review of Literature. Fetal Pediatr Pathol 2019; 38:345-351. [PMID: 30912695 DOI: 10.1080/15513815.2019.1588442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Metachromatic leukodystrophy (MLD) is a lipid storage disease characterized the accumulation of sulfatides in different viscera including the gallbladder. Case report: A 2-year-old girl had upper right quadrant lesion that was preoperatively thought to be a biliary cystadenoma. Histologically, the gallbladder lesion was a tubulo-villous papilloma with multiple foci of papillary mucosal hyperplasia. Many storage histiocytes containing metachromatic granules, characteristic of MLD, were present in the tips of the papillae. MLD was later confirmed by enzyme studies. Conclusion: Gallbladder papilloma can be the presenting feature of MLD.
Collapse
Affiliation(s)
- Marwa Abdel Aziz
- a Department of Pathology, Faculty of Medicine, Alexandria University , Alexandria , Egypt
| | - Mostafa Kotb
- b Department of Pediatric Surgery, Faculty of Medicine, Alexandria University , Alexandria , Egypt
| | - Yasmine Abdelmeguid
- c Department of Pediatrics, Faculty of Medicine, Alexandria University , Alexandria , Egypt
| | - Sameh Shehata
- b Department of Pediatric Surgery, Faculty of Medicine, Alexandria University , Alexandria , Egypt
| | - Mona Abdel-Hadi
- a Department of Pathology, Faculty of Medicine, Alexandria University , Alexandria , Egypt
| |
Collapse
|
38
|
Kumar AB, Hong X, Yi F, Wood T, Gelb MH. Tandem mass spectrometry-based multiplex assays for α-mannosidosis and fucosidosis. Mol Genet Metab 2019; 127:207-211. [PMID: 31235216 PMCID: PMC6710107 DOI: 10.1016/j.ymgme.2019.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 02/08/2023]
Abstract
Multiplex tandem mass spectrometry (MS/MS)-based enzyme activity assays for newborn screening (NBS) and diagnosis of lysosomal storage diseases (LSDs) in newborns, using dried blood spots (DBS) on newborn screening cards, have garnered much attention due to its sensitivity, high precision, and the capability to screen for an unprecedented number of diseases in a single assay. Herein we report the development of MS/MS-based enzyme assays for the diagnosis of α-mannosidosis and fucosidosis. These new protocols are able to distinguish untreated patients from random newborns, carriers and a post-bone marrow transplant patient. We have successfully multiplexed the α-mannosidosis assay with a multiplex MS/MS assay for the screening and diagnosis of other LSDs, namely Fabry, Pompe, MPS I, Gaucher, Niemann-Pick-A/B, and Krabbe diseases. Additionally, we also multiplexed the fucosidosis NBS assay with a 5-plex assay that tests for MPS-II, MPS-IIIB, MPS-IVA, MPS-VI and MPS-VII.
Collapse
Affiliation(s)
- Arun Babu Kumar
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Xinying Hong
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Fan Yi
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Tim Wood
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
39
|
Li X, Nakayama K, Goto T, Akamatsu S, Shimizu K, Ogawa O, Inoue T. Comparative evaluation of the extraction and analysis of urinary phospholipids and lysophospholipids using MALDI-TOF/MS. Chem Phys Lipids 2019; 223:104787. [PMID: 31255592 DOI: 10.1016/j.chemphyslip.2019.104787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022]
Abstract
Lipids, particularly phospholipids (PLs) and lysophospholipids (LPLs), are attracting increasing scientific interest for their biological functions in cells and their potential as disease biomarkers for Alzheimer's disease and several types of cancer. Urinary PLs and LPLs could be ideal clinical biomarkers, because urine can be collected easily and noninvasively. However, due to their very low concentrations in urine compared with the relatively large quantity of contaminants in this matrix, efficient extraction and sensitive detection are required for analyzing urinary PLs and LPLs. In this study, various methods for analyzing PLs and LPLs in urine were compared and optimized from a clinical perspective. An optimized lipid extraction method and a matrix for matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) were established using two external ionization standards and an internal standard mix containing 13 human urinary lipids. 9-Aminoacridine (9-AA) was a useful and effective matrix for the MALDI-TOF/MS analysis of all the internal standard lipids in both positive and negative ion modes. However, it was necessary to determine the proportional lipid concentrations from the balance between the extracted lipid and the matrix. The extraction efficiency and reproducibility of the acidified Bligh and Dyer method were excellent for both positively and negatively charged lipids. Analysis of small volumes of urine was the most efficient with the 9-AA MALDI matrix at concentrations of or below 5 mM. The combined analytical procedures allowed rapid and comprehensive screening of low concentrations of PLs and LPLs in clinical samples.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenji Nakayama
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Support Center for Precision Medicine, Shimadzu Techno-Research, Inc., 1 Nishinokyou-Shimoai-cho, Nakagyou-ku, Kyoto 604-8436, Japan.
| | - Takayuki Goto
- Support Center for Precision Medicine, Shimadzu Techno-Research, Inc., 1 Nishinokyou-Shimoai-cho, Nakagyou-ku, Kyoto 604-8436, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koji Shimizu
- Clinical Research Center for Medical Equipment Development, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takahiro Inoue
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
40
|
Dias IHK, Ferreira R, Gruber F, Vitorino R, Rivas-Urbina A, Sanchez-Quesada JL, Vieira Silva J, Fardilha M, de Freitas V, Reis A. Sulfate-based lipids: Analysis of healthy human fluids and cell extracts. Chem Phys Lipids 2019; 221:53-64. [PMID: 30910732 DOI: 10.1016/j.chemphyslip.2019.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Sulfate-based lipids (SL) have been proposed as players in inflammation, immunity and infection. In spite of the many biochemical processes linked to SL, analysis on this class of lipids has only focused on specific SL sub-classes in individual fluids or cells leaving a range of additional SL in other biological samples unaccounted for. This study describes the mass spectrometry screening of SL in lipid extracts of human fluids (saliva, plasma, urine, seminal fluid) and primary human cells (RBC, neutrophils, fibroblasts and skin epidermal) using targeted precursor ion scanning (PIS) approach. The PIS 97 mass spectra reveal a wide diversity of SL including steroid sulfates, sulfoglycolipids and other unidentified SL, as well as metabolites such as taurines, sulfated polyphenols and hypurate conjugates. Semi-quantification of SL revealed that plasma exhibited the highest content of SL whereas seminal fluid and epithelial cells contained the highest sulphur to phosphorous (S/P) ratio. The complexity of biofluids and cells sulfateome presented in this study highlight the importance of expanding the panel of synthetic sulfate-based lipid standards. Also, the heterogenous distribution of SL provides evidence for the interplay of sulfotransferases/sulfatases, opening new avenues for biomarker discovery in oral health, cardiovascular, fertility and dermatology research areas.
Collapse
Affiliation(s)
| | - Rita Ferreira
- Departamento de Quimica, Research Unit of Química Orgânica, Produtos Naturais e Agro-alimentares (QOPNA), Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Florian Gruber
- Medical University of Vienna, Department of Dermatology, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andrea Rivas-Urbina
- Cardiovascular Biochemistry, Biomedical Research Institute IIB Sant Pau, Sant Antoni Ma Claret, 167, Barcelona, Spain
| | - José Luis Sanchez-Quesada
- Cardiovascular Biochemistry, Biomedical Research Institute IIB Sant Pau, Sant Antoni Ma Claret, 167, Barcelona, Spain
| | - Joana Vieira Silva
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal; Reproductive Genetics & Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Victor de Freitas
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Ana Reis
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
| |
Collapse
|
41
|
Newborn Screening for Lysosomal Storage Disorders: Methodologies for Measurement of Enzymatic Activities in Dried Blood Spots. Int J Neonatal Screen 2019; 5:1. [PMID: 30957052 PMCID: PMC6448570 DOI: 10.3390/ijns5010001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
All worldwide newborn screening (NBS) for lysosomal storage diseases (LSDs) is performed as a first-tier test by measurement of lysosomal enzymatic activities in dried blood spots (DBS). The currently two available methodologies used for measurement of enzymatic activities are tandem mass spectrometry (MS/MS) and digital microfluidics fluorimetry (DMF-F). In this chapter we summarize the workflows for the two platforms. Neither platform is fully automated, but the relative ease of workflow will be dependent upon the specific operation of each newborn screening laboratory on a case-by-case basis. We provide the screen positive rate (the number of below cutoff newborns per 100,000 newborns) from all NBS laboratories worldwide carrying out MS/MS-based NBS of one or more LSDs. The analytical precision of the MS/MS method is higher than that for DMF-F as shown by analysis of a common set of quality control DBS by the Centers for Disease Control and Prevention (CDC). Both the MS/MS and DMF-F platforms enable multiplexing of the LSD enzymes. An advantage of MS/MS over DMF-F is the ability to include assays of enzymatic activities and biomarkers for which no fluorimetric methods exist. Advantages of DMF-F over MS/MS are: 1) Simple to use technology with same-day turn-around time for the lysosomal enzymes with the fastest rates compared to MS/MS requiring overnight analytical runs.; 2) The DMF-F instrumentation, because of its simplicity, requires less maintenance than the MS/MS platform.
Collapse
|
42
|
Tanphaichitr N, Kongmanas K, Faull KF, Whitelegge J, Compostella F, Goto-Inoue N, Linton JJ, Doyle B, Oko R, Xu H, Panza L, Saewu A. Properties, metabolism and roles of sulfogalactosylglycerolipid in male reproduction. Prog Lipid Res 2018; 72:18-41. [PMID: 30149090 PMCID: PMC6239905 DOI: 10.1016/j.plipres.2018.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022]
Abstract
Sulfogalactosylglycerolipid (SGG, aka seminolipid) is selectively synthesized in high amounts in mammalian testicular germ cells (TGCs). SGG is an ordered lipid and directly involved in cell adhesion. SGG is indispensable for spermatogenesis, a process that greatly depends on interaction between Sertoli cells and TGCs. Spermatogenesis is disrupted in mice null for Cgt and Cst, encoding two enzymes essential for SGG biosynthesis. Sperm surface SGG also plays roles in fertilization. All of these results indicate the significance of SGG in male reproduction. SGG homeostasis is also important in male fertility. Approximately 50% of TGCs become apoptotic and phagocytosed by Sertoli cells. SGG in apoptotic remnants needs to be degraded by Sertoli lysosomal enzymes to the lipid backbone. Failure in this event leads to a lysosomal storage disorder and sub-functionality of Sertoli cells, including their support for TGC development, and consequently subfertility. Significantly, both biosynthesis and degradation pathways of the galactosylsulfate head group of SGG are the same as those of sulfogalactosylceramide (SGC), a structurally related sulfoglycolipid important for brain functions. If subfertility in males with gene mutations in SGG/SGC metabolism pathways manifests prior to neurological disorder, sperm SGG levels might be used as a reporting/predicting index of the neurological status.
Collapse
Affiliation(s)
- Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Obstetrics/Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California, USA
| | - Julian Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California, USA
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kanagawa 252-0880, Japan
| | - James-Jules Linton
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Brendon Doyle
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Hongbin Xu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Luigi Panza
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Arpornrad Saewu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
43
|
Gelb MH. Newborn Screening for Lysosomal Storage Diseases: Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools. Int J Neonatal Screen 2018; 4:23. [PMID: 30882045 PMCID: PMC6419971 DOI: 10.3390/ijns4030023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
All of the worldwide newborn screening (NBS) for lysosomal storage diseases (LSDs) is done by measurement of lysosomal enzymatic activities in dried blood spots (DBS). Substrates used for these assays are discussed. While the positive predictive value (PPV) is the gold standard for evaluating medical tests, current PPVs for NBS of LSDs cannot be used as a performance metric due to statistical sampling errors and uncertainty in the onset of disease symptoms. Instead, we consider the rate of screen positives as the only currently reliable way to compare LSD NBS results across labs worldwide. It has been suggested that the expression of enzymatic activity data as multiple-of-the-mean is a way to normalize datasets obtained using different assay platforms, so that results can be compared, and universal cutoffs can be developed. We show that this is often not the case, and normalization is currently not feasible. We summarize the recent use of pattern matching statistical analysis together with measurement of an expanded group of enzymatic activities and biomarkers to greatly reduce the number of false positives for NBS of LSDs. We provide data to show that these post-enzymatic activity assay methods are more powerful than genotype analysis for the stratification of NBS for LSDs.
Collapse
Affiliation(s)
- Michael H Gelb
- Departments of Chemistry, University of Washington, Seattle, WA 98195, USA;
- Departments of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The leukodystrophies, typically considered incurable neurodegenerative disorders, are often diagnosed after irreversible central and peripheral nervous system injury has occurred. Early recognition of these disorders is imperative to enable potential therapeutic interventions. This article provides a summary of the symptoms of and diagnostic evaluation for leukodystrophies, along with the currently available therapies and recent advances in management. RECENT FINDINGS The leukodystrophies are a rapidly expanding field because of advances in neuroimaging and genetics; however, recognition of the clinical and biochemical features of a leukodystrophy is essential to accurately interpret an abnormal MRI or genetic result. Moreover, the initial symptoms of leukodystrophies may mimic other common pediatric disorders, leading to a delay in the recognition of a degenerative disorder. SUMMARY This article will aid the clinician in recognizing the clinical features of leukodystrophies and providing accurate diagnosis and management.
Collapse
|
45
|
Piraud M, Pettazzoni M, Lavoie P, Ruet S, Pagan C, Cheillan D, Latour P, Vianey-Saban C, Auray-Blais C, Froissart R. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J Inherit Metab Dis 2018; 41:457-477. [PMID: 29556840 DOI: 10.1007/s10545-017-0126-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Tandem mass spectrometry (MS/MS) is a highly sensitive and specific technique. Thanks to the development of triple quadrupole analyzers, it is becoming more widely used in laboratories working in the field of inborn errors of metabolism. We review here the state of the art of this technique applied to the diagnosis of lysosomal storage disorders (LSDs) and how MS/MS has changed the diagnostic rationale in recent years. This fine technology brings more sensitive, specific, and reliable methods than the previous biochemical ones for the analysis of urinary glycosaminoglycans, oligosaccharides, and sialic acid. In sphingolipidoses, the quantification of urinary sphingolipids (globotriaosylceramide, sulfatides) is possible. The measurement of new plasmatic biomarkers such as oxysterols, bile acids, and lysosphingolipids allows the screening of many sphingolipidoses and related disorders (Niemann-Pick type C), replacing tedious biochemical techniques. Applied to amniotic fluid, a more reliable prenatal diagnosis or screening of LSDs is now available for fetuses presenting with antenatal manifestations. Applied to enzyme measurements, it allows high throughput assays for the screening of large populations, even newborn screening. The advent of this new method can modify the diagnostic rationale behind LSDs.
Collapse
Affiliation(s)
- Monique Piraud
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France.
| | - Magali Pettazzoni
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Pamela Lavoie
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Séverine Ruet
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Cécile Pagan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - David Cheillan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Philippe Latour
- Unité de Neurogénétique Moléculaire, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Christine Vianey-Saban
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Christiane Auray-Blais
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roseline Froissart
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| |
Collapse
|
46
|
Jašíková L, Roithová J. Infrared Multiphoton Dissociation Spectroscopy with Free-Electron Lasers: On the Road from Small Molecules to Biomolecules. Chemistry 2018; 24:3374-3390. [PMID: 29314303 DOI: 10.1002/chem.201705692] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 01/07/2023]
Abstract
Infrared multiphoton dissociation (IRMPD) spectroscopy is commonly used to determine the structure of isolated, mass-selected ions in the gas phase. This method has been widely used since it became available at free-electron laser (FEL) user facilities. Thus, in this Minireview, we examine the use of IRMPD/FEL spectroscopy for investigating ions derived from small molecules, metal complexes, organometallic compounds and biorelevant ions. Furthermore, we outline new applications of IRMPD spectroscopy to study biomolecules.
Collapse
Affiliation(s)
- Lucie Jašíková
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| |
Collapse
|
47
|
Chen X, Yuan L, Sun M, Liu Q, Wu Y. Two novel CPS1 mutations in a case of carbamoyl phosphate synthetase 1 deficiency causing hyperammonemia and leukodystrophy. J Clin Lab Anal 2018; 32:e22375. [PMID: 29314318 DOI: 10.1002/jcla.22375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/02/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is a rare autosomal recessive disorder of the urea cycle, mostly characterized by hyperammonemia and the concomitant leukodystrophy. The onset of CPS1D can be at any age, and the clinical manifestations are variable and atypical. Genetic tests are indispensable for accurate diagnosis of CPS1D on the basis of biochemical tests. METHODS Blood tandem mass spectrometric analysis and urea organic acidemia screening were performed on a Chinese neonatal patient with low activity, recurrent seizures, and hyperammonemia. Next-generation sequencing and Sanger sequencing were followed up for making a definite diagnosis. Bioinformatics tools were used for the conservation analysis and pathogenicity predictions of the identified mutations. RESULTS Increased lactate in urea and decreased citrulline in blood were detected in the patient. Two novel mutations (c.173G>T, p.G58V in exon 2 and c.796G>A, p.G266R in exon 8) in CPS1 identified in the neonatal patient were found through coseparation verification. Both of the two mutations were predicted to be deleterious, and the two relevant amino acids exerted highly evolutionarily conserved. The final diagnosis of the patient was compound heterozygous CPS1D. CONCLUSION This study described the specific clinical characteristics and the variations of physiological and biochemical indices in a Chinese neonatal patient with CPS1D, which facilitated the diagnosis and mechanism research of the disease. Two novel causative missense mutations were identified, which enriched the mutation spectrum of CPS1D in China and worldwide. Advice of prenatal diagnosis was given to the family for a new pregnancy.
Collapse
Affiliation(s)
- Xihui Chen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Center for DNA Typing, Fourth Military Medical University, Xi'an, China
| | - Lijuan Yuan
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Center for DNA Typing, Fourth Military Medical University, Xi'an, China.,Department of General Surgery, Tangdu Hospital, Fourth Military Medical Universiy, Xi'an, China
| | - Mao Sun
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Center for DNA Typing, Fourth Military Medical University, Xi'an, China
| | - Qingbo Liu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Center for DNA Typing, Fourth Military Medical University, Xi'an, China
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Center for DNA Typing, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
48
|
Mashima R, Maekawa M. Lipid biomarkers for the peroxisomal and lysosomal disorders: their formation, metabolism and measurement. Biomark Med 2018; 12:83-95. [DOI: 10.2217/bmm-2017-0225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lipid biomarkers play important roles in the diagnosis of and monitoring of treatment in peroxisomal disorders and lysosomal storage disorders. Today, a variety of lipids, including very long chain fatty acids, glycolipids, bile acids and the oxidation products of cholesterol, have been considered as biomarkers for these disorders. In this brief review, the authors summarized the recent advances regarding these lipid biomarkers in terms of their formation, metabolism and measurement in these disorders. An understanding of these biomarkers will offer a key to the development of novel diagnoses and help create more effective therapies in the future.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health & Development, 2–10–1 Okura, Setagaya-ku, Tokyo 157–8535, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai 980–8574, Japan
| |
Collapse
|
49
|
Jirásko R, Holčapek M, Khalikova M, Vrána D, Študent V, Prouzová Z, Melichar B. MALDI Orbitrap Mass Spectrometry Profiling of Dysregulated Sulfoglycosphingolipids in Renal Cell Carcinoma Tissues. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1562-1574. [PMID: 28361385 DOI: 10.1007/s13361-017-1644-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 06/07/2023]
Abstract
Matrix-assisted laser desorption/ionization coupled with Orbitrap mass spectrometry (MALDI-Orbitrap-MS) is used for the clinical study of patients with renal cell carcinoma (RCC), as the most common type of kidney cancer. Significant changes in sulfoglycosphingolipid abundances between tumor and autologous normal kidney tissues are observed. First, sulfoglycosphingolipid species in studied RCC samples are identified using high mass accuracy full scan and tandem mass spectra. Subsequently, optimization, method validation, and statistical evaluation of MALDI-MS data for 158 tissues of 80 patients are discussed. More than 120 sulfoglycosphingolipids containing one to five hexosyl units are identified in human RCC samples based on the systematic study of their fragmentation behavior. Many of them are recorded here for the first time. Multivariate data analysis (MDA) methods, i.e., unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-DA), are used for the visualization of differences between normal and tumor samples to reveal the most up- and downregulated lipids in tumor tissues. Obtained results are closely correlated with MALDI mass spectrometry imaging (MSI) and histologic staining. Important steps of the present MALDI-Orbitrap-MS approach are also discussed, such as the selection of best matrix, correct normalization, validation for semiquantitative study, and problems with possible isobaric interferences on closed masses in full scan mass spectra. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Maria Khalikova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - David Vrána
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Vladimír Študent
- Department of Urology, Faculty of Medicine and Dentistry, Palacký University, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Zuzana Prouzová
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| |
Collapse
|
50
|
Mashima R, Okuyama T. Enzyme activities of α-glucosidase in Japanese neonates with pseudodeficiency alleles. Mol Genet Metab Rep 2017; 12:110-114. [PMID: 28725570 PMCID: PMC5503834 DOI: 10.1016/j.ymgmr.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 11/25/2022] Open
Abstract
Lysosomal storage disorders (LSDs) are caused by defective enzyme activities in lysosomes, characterized by the accumulation of sphingolipids, glycolipids, oligosaccharides, mucopolysaccharides, the oxidation products of cholesterol, and other biological substances. A growing number of clinical studies have suggested the enhanced efficacy of existing therapies, including enzyme replacement therapy, which is effective when it is initiated during the presymptomatic period. Thus, the identification of disease-affected individuals by newborn screening has been considered an effective platform. Previous studies have suggested that the discrimination of infantile-onset Pompe disease (IOPD) requires multi-step examination of GAA enzyme activity using the fluorometric technique. In sharp contrast, the MS/MS-based technique can identify the population of IOPD and the pseudodeficiency alleles of the GAA enzyme [Liao HC et al. Clin Chem (2017) in press; doi: http://dx.doi.org/10.1373/clinchem.2016.269027]. To determine whether MS/MS-based assay can identify these two populations in Japanese neonates, we first performed a validation study of this assay using flow-injection analysis (FIA)-MS/MS and liquid chromatography (LC)-MS/MS followed by examination of GAA enzyme activity in our population. By minimizing the effect of substrate-derived in-source decomposition products, the activities of 6 LSD enzymes were quantified in FIA-MS/MS and LC-MS/MS. The mean value of GAA activity with IOPD, pseudodeficiency alleles, and healthy controls by FIA-MS/MS were 1.0 ± 0.3 μmol/h/L (max, 1.3; min, 0.7; median, 1.2; n = 3), 2.7 ± 0.7 μmol/h/L (max, 4.5; min, 1.5; median, 2.5; n = 19), and 12.9 ± 5.4 μmol/h/L (max, 29.6; min, 2.5; median, 11.0; n = 83), respectively. These results suggest that the population of GAA with pseudodeficiency alleles has approximately 20% of GAA enzyme activity compared to controls, providing the preliminary evidence to estimate the cut-off values in the Japanese population using this technique.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|