1
|
Dyńka D, Rodzeń Ł, Rodzeń M, Pacholak-Klimas A, Ede G, Sethi S, Łojko D, Bartoń K, Berry K, Deptuła A, Grzywacz Ż, Martin P, Unwin J, Unwin D. Ketogenic Diets for Body Weight Loss: A Comparison with Other Diets. Nutrients 2025; 17:965. [PMID: 40289934 PMCID: PMC11945412 DOI: 10.3390/nu17060965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
With the prevalence of obesity and overweight increasing at an alarming rate, more and more researchers are focused on identifying effective weight loss strategies. The ketogenic diet (KD), used as a treatment in epilepsy management for over 100 years, is additionally gaining popularity as a weight loss method. Although its efficacy in weight loss is well documented, the areas where it may be beneficial to other dietary approaches need to be carefully examined. The objective of this paper is to identify the potential benefits of the KD over alternative dietary weight loss strategies based on a comprehensive literature review. It has been shown that the KD may be more bioenergetically efficient than other dietary strategies, inter alia owing to its effect on curtailing hunger, improving satiety and decreasing appetite (influence on hunger and satiety hormones and the sensation of hunger), inducing faster initial weight loss (associated with lower glycogen levels and reduced water retention), and controlling glycaemia and insulinemia (directly attributable to the low-carbohydrate nature of KD and indirectly to the other areas described). These effects are accompanied by improved insulin sensitivity, reduced inflammation (through ketone bodies and avoidance of pro-inflammatory sugars), reduced need for pharmacological obesity control (the diet's mechanisms are similar to those of medication but without the side effects), and positive impacts on psychological factors and food addiction. Based on the authors' review of the latest research, it is reasonable to conclude that, due to these many additional health benefits, the KD may be advantageous to other diet-based weight loss strategies. This important hypothesis deserves further exploration, which could be achieved by including outcome measures other than weight loss in future clinical trials, especially when comparing different diets of equal caloric value.
Collapse
Affiliation(s)
- Damian Dyńka
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | | | | | | | - Georgia Ede
- Independent Researcher, 197 Lions Mouth Road, Amesbury, MA 01913, USA
| | - Shebani Sethi
- Metabolic Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Dorota Łojko
- Department of Psychiatry, Poznan University of Medical Science, 60-572 Poznan, Poland
| | | | - Ken Berry
- Independent Researcher, Holladay, TN 38341, USA
| | - Adam Deptuła
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Żaneta Grzywacz
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Peter Martin
- Funmed Clinics, Vastra Hamngatan 13A, 41117 Gothenburg, Sweden
| | - Jen Unwin
- The Collaborative Health Community Foundation, Oxford OX2 9HZ, UK
| | - David Unwin
- Faculty of Health Social Care and Medicine, Edge Hill University, Ormskirk L39 4QP, UK
| |
Collapse
|
2
|
Alsherif DA, Hussein MA, Abuelkasem SS. Salvia officinalis Improves Glycemia and Suppresses Pro-inflammatory Features in Obese Rats with Metabolic Syndrome. Curr Pharm Biotechnol 2024; 25:623-636. [PMID: 37581324 DOI: 10.2174/1389201024666230811104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES Obesity is regarded as the main cause of metabolic diseases and a core factor for all-cause mortality in the general population, notably from cardiovascular disease. The majority of people with type 2 diabetes have obesity and insulin resistance. Some evidence indicates that an individual with obesity is approximately 10 times more likely to develop type 2 diabetes than someone with moderate body weight. One of the most significant therapeutic herbs, Salvia officinalis (Lamiaceae) (SAGE), possesses potent medicinal importance. The aim of this article was to evaluate the anti-diabetic and antiobesity activity of SAGEAE against HFD-induced obesity in rats. METHODS Thirty adult albino rats were randomly divided into five equal groups: control, High-fat Diet (HFD) administrated rats, HFD + Salvia officinalis Aqueous Extract (SAGEAE) (150 mg/kg.bw.), HFD + SAGEAE (300 mg/kg.bw.) and HFD + metformin (500 mg/kg.bw.). Body weight, plasma biochemical parameters, oxidative stress, inflammatory indicators, hepatic Phosphoenolpyruvate Carboxykinase 1 (PCK1), Glucokinase (GK), brain Leptin Receptor (LepRb), Glucose Transporter-4 (GLUT4), Sirtuin 1 (SIRT1) and mRNA33-5P gene signalling mRNA levels were all assessed after 8 weeks. A histological examination of the liver was also performed to check for lipid accumulation. RESULTS The administration of HFD resulted in increased body weight, glucose, insulin, leptin, Total Cholesterol (TC), Triglycerides (TG), Thiobarbaturic Acid Reactive Substances (TBARS), Monocyte Chemoattractant Protein-1 (MCP1), Interleukine-6 (IL-6) and tumor necrosis factor-α (TNF- α) as well as hepatic PCK1, brain LepRb and adipose tissue mRNA33-5P gene expression. However, our findings revealed a significant reduction in adiponectin, High-density Lipoproteincholesterol (HDL-C), reduced glutathione (GSH) and Superoxide Dismutase (SOD) levels as well as the expression of hepatic GK and adipose tissue SIRT1 and GLUT4 genes. Also, administration of SAGEAE significantly normalized body weight, glucose, insulin, leptin, adiponectin, TC, TG, HDL-C, TBARs, SOD, IL-6, MCP-1 and TNF-α in plasma and liver tissue of HFD-treated rats. On the other hand, PCK1, GK, LepRb, SIRT1, GLUT4 and mRNA33-5P gene expression was enhanced in obese rats when administrated with SAGEAE. Histological and US studies support the biochemical, PCR and electrophoretic results. CONCLUSION The findings imply that SAGEAE could be used as a new pharmaceutical formula in the treatment of obesity.
Collapse
Affiliation(s)
- Diana A Alsherif
- Department of Radiology and Medical Imaging, Faculty of Applied Health Science Technology, October 6th University, October 6th City, Egypt
| | - Mohammed A Hussein
- Department of Biotechnology, Faculty of Applied Health Science Technology, October 6th University, October 6th City, Egypt
| | - Suzan S Abuelkasem
- Department of Biochemistry, Faculty of Applied Health Science Technology, October 6th University, October 6th City, Egypt
| |
Collapse
|
3
|
Harenberg S, Sforzo GA, Edman J. A Rubric to Assess the Design and Intervention Quality of Randomized Controlled Trials in Health and Wellness Coaching. Am J Lifestyle Med 2024; 18:82-94. [PMID: 39184269 PMCID: PMC11339769 DOI: 10.1177/15598276221117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Objective To collect health and wellness coaching (HWC) literature related to treatment of obesity and Type 2 Diabetes (T2D) for systematic assessment using a novel rubric. Data Source Pubmed, CINAHL, and PsychInfo. Study Inclusion and Exclusion Given 282 articles retrieved, only randomized and controlled trials meeting a HWC criteria-based definition were included; studies with intervention <4 months or <4 sessions were excluded. Data Extraction Rubric assessment required details of two theoretical frameworks (i.e., study design and HWC intervention design) be extracted from each included paper. Data Synthesis Data were derived from a 28-item rubric querying items such as sampling characteristics, statistical methods, coach characteristics, HWC strategy, and intervention fidelity. Results 29 articles were reviewed. Inter-rater rubric scoring yielded high intraclass correlation (r = .85). Rubric assessment of HWC literature resulted in moderate scores (56.7%), with study design scoring higher than intervention design; within intervention design, T2D studies scored higher than obesity. Conclusions A novel research design rubric is presented and successfully applied to assess HWC research related to treatment of obesity and T2D. Most studies reported beneficial clinical findings; however, rubric results revealed moderate scores for study and intervention design. Implications for future HWC research are discussed.
Collapse
Affiliation(s)
- Sebastian Harenberg
- Department of Human Kinetics, St Francis Xavier
University, Antigonish, NS, Canada (SH); Exercise & Sport Sciences, Ithaca College, Ithaca, NY, USA (GAS); and Edman Wellness Services, Media, PA, USA (JE)
| | - Gary A. Sforzo
- Department of Human Kinetics, St Francis Xavier
University, Antigonish, NS, Canada (SH); Exercise & Sport Sciences, Ithaca College, Ithaca, NY, USA (GAS); and Edman Wellness Services, Media, PA, USA (JE)
| | - Joel Edman
- Department of Human Kinetics, St Francis Xavier
University, Antigonish, NS, Canada (SH); Exercise & Sport Sciences, Ithaca College, Ithaca, NY, USA (GAS); and Edman Wellness Services, Media, PA, USA (JE)
| |
Collapse
|
4
|
Ahmed AA, Musa HH, Essa MEA, Mollica A, Zengin G, Ahmad H, Adam SY. Inhibition of obesity through alterations of C/EBP- α gene expression by gum Arabic in mice with a high-fat feed diet. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
5
|
Wingrove J, O'Daly O, De Lara Rubio A, Hill S, Swedroska M, Forbes B, Amiel S, Zelaya F. The influence of insulin on anticipation and consummatory reward to food intake: A functional imaging study on healthy normal weight and overweight subjects employing intranasal insulin delivery. Hum Brain Mapp 2022; 43:5432-5451. [PMID: 35860945 PMCID: PMC9704782 DOI: 10.1002/hbm.26019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/24/2022] [Accepted: 07/03/2022] [Indexed: 01/15/2023] Open
Abstract
Aberrant responses within homeostatic, hedonic and cognitive systems contribute to poor appetite control in those with an overweight phenotype. The hedonic system incorporates limbic and meso-limbic regions involved in learning and reward processing, as well as cortical regions involved in motivation, decision making and gustatory processing. Equally important within this complex, multifaceted framework are the cognitive systems involved in inhibitory control and valuation of food choices. Regions within these systems display insulin receptors and pharmacologically increasing central insulin concentrations using intranasal administration (IN-INS) has been shown to significantly reduce appealing food cue responsiveness and also food intake. In this work we describe a placebo-controlled crossover pharmacological functional magnetic resonance imaging (fMRI) study that looks at how IN-INS (160 IU) affects anticipatory and consummatory responses to sweet stimuli and importantly how these responses differ between healthy normal weight and overweight male individuals. This work shows that age matched normal weight and overweight (not obese) individuals respond similarly to both the anticipation and receipt of sweet stimuli under placebo conditions. However, increased central insulin concentrations produce marked differences between groups when anticipating sweet stimuli within the prefrontal cortex and midbrain as well as observed differences in the amygdala during consummatory responses.
Collapse
Affiliation(s)
- Jed Wingrove
- Department of Neuroimaging, Institute of PsychiatryPsychology and Neuroscience King's College LondonLondonUK,Centre for Obesity Research, Department of MedicineUniversity College LondonLondonUK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of PsychiatryPsychology and Neuroscience King's College LondonLondonUK
| | - Alfonso De Lara Rubio
- Department of Neuroimaging, Institute of PsychiatryPsychology and Neuroscience King's College LondonLondonUK
| | - Simon Hill
- Department of Neuroimaging, Institute of PsychiatryPsychology and Neuroscience King's College LondonLondonUK
| | - Magda Swedroska
- Institute of Pharmaceutical Sciences, Pharmaceutical SciencesKing's College LondonLondonUK
| | - Ben Forbes
- Institute of Pharmaceutical Sciences, Pharmaceutical SciencesKing's College LondonLondonUK
| | - Stephanie Amiel
- Diabetes Research Group, Weston Education CentreKing's College LondonLondonUK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of PsychiatryPsychology and Neuroscience King's College LondonLondonUK
| |
Collapse
|
6
|
Martyushev-Poklad AV, Yankevich DS, Petrova MV, Savitskaya NG. [Two models of insulin resistance development and the strategy to combat age-related diseases: literature review]. PROBLEMY ENDOKRINOLOGII 2022; 68:59-68. [PMID: 36104967 DOI: 10.14341/probl13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Insulin resistance (IR) is the root cause of most age-related diseases (ARD), the major challenge for today's health systems. Therefore, adequate understanding of the mechanisms underlying IR is essential to build effective ARD prevention. OBJECTIVE Analyze the existing models of IR causation and progression in order to justify the most effective ARD prevention strategy. METHODS Search and analysis of publications on IR and hyperinsulinemia (HI) from databases elibrary.ru, PubMed, and Google Scholar. RESULTS Two models of IR development are analyzed along with the relationship between IR, HI, and obesity. The prevailing model considers obesity (imbalance of caloric intake and energy expenditure) as the main factor in the development of IR; HI is seen as a consequence of IR, mostly insignificant for the outcomes of IR. The model contradicts many experimental and clinical findings. The strategy to combat ARDs that follows from the model (hypocaloric diet and pharmacotherapy of IR) has proven mostly ineffective.The alternative model (IR as a consequence of HI, and obesity as one of IR manifestations) is more consistent with the pool of experimental and clinical data. It more precisely predicts ARD development and allows more adequate correction of adverse lifestyle factors. It corresponds to a different strategy for combating ARD: emphasis on low-carb diet and longer fasting window combined with consideration of other factors of IR. CONCLUSION If the prevailing model of IR development is revised, this should open up opportunities for more effective early prevention of a wide range of chronic diseases in which the role of IR is significant.
Collapse
Affiliation(s)
| | - D S Yankevich
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| | - M V Petrova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| | - N G Savitskaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| |
Collapse
|
7
|
Olsen NJ, Lilienthal Heitmann B. Consumption of sugar‐sweetened beverages and metabolic markers in children – a narrative review of the evidence. NUTR BULL 2021. [DOI: 10.1111/nbu.12510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nanna Julie Olsen
- Research Unit for Dietary Studies, The Parker Institute Bispebjerg and Frederiksberg Hospital Frederiksberg Denmark
| | - Berit Lilienthal Heitmann
- Research Unit for Dietary Studies, The Parker Institute Bispebjerg and Frederiksberg Hospital Frederiksberg Denmark
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders The University of Sydney Sydney Australia
- Section for General Practice Department of Public Health University of Copenhagen Denmark
| |
Collapse
|
8
|
Voigt K, Giddens E, Stark R, Frisch E, Moskovsky N, Kakoschke N, Stout JC, Bellgrove MA, Andrews ZB, Verdejo-Garcia A. The Hunger Games: Homeostatic State-Dependent Fluctuations in Disinhibition Measured with a Novel Gamified Test Battery. Nutrients 2021; 13:nu13062001. [PMID: 34200678 PMCID: PMC8230368 DOI: 10.3390/nu13062001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Food homeostatic states (hunger and satiety) influence the cognitive systems regulating impulsive responses, but the direction and specific mechanisms involved in this effect remain elusive. We examined how fasting, and satiety, affect cognitive mechanisms underpinning disinhibition using a novel framework and a gamified test-battery. Thirty-four participants completed the test-battery measuring three cognitive facets of disinhibition: attentional control, information gathering and monitoring of feedback, across two experimental sessions: one after overnight fasting and another after a standardised meal. Homeostatic state was assessed using subjective self-reports and biological markers (i.e., blood-derived liver-expressed antimicrobial protein 2 (LEAP-2), insulin and leptin). We found that participants who experienced greater subjective hunger during the satiety session were more impulsive in the information gathering task; results were not confounded by changes in mood or anxiety. Homeostatic state did not significantly influence disinhibition mechanisms linked to attentional control or feedback monitoring. However, we found a significant interaction between homeostatic state and LEAP-2 on attentional control, with higher LEAP-2 associated with faster reaction times in the fasted condition only. Our findings indicate lingering hunger after eating increases impulsive behaviour via reduced information gathering. These findings identify a novel mechanism that may underpin the tendency to overeat and/or engage in broader impulsive behaviours.
Collapse
Affiliation(s)
- Katharina Voigt
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Emily Giddens
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Romana Stark
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (R.S.); (Z.B.A.)
| | - Emma Frisch
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Neda Moskovsky
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Naomi Kakoschke
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Julie C. Stout
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Mark A. Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
| | - Zane B. Andrews
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (R.S.); (Z.B.A.)
| | - Antonio Verdejo-Garcia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; (K.V.); (E.G.); (E.F.); (N.M.); (N.K.); (J.C.S.); (M.A.B.)
- Correspondence: ; Tel.: +61-3-9905-5374
| |
Collapse
|
9
|
Gum Arabic modifies anti-inflammatory cytokine in mice fed with high fat diet induced obesity. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bcdf.2020.100258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Meng F, Sun Q, Zhou D, Li Q, Han J, Liu D, Yang J. Inhibition of Aurora-A improves insulin resistance by ameliorating islet inflammation and controlling interleukin-6 in a diabetic mouse model. Adipocyte 2020; 9:609-619. [PMID: 33043822 PMCID: PMC7553512 DOI: 10.1080/21623945.2020.1829851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Aurora-A kinase, a serine/threonine mitotic kinase, is reportedly upregulated in skin tissues of individuals with type 2 diabetes mellitus , although its function in diabetes is unclear. C57BL/6 J mice were utilized to establish a type 2 diabetic model and explore the functions of Aurora-A in diabetes. Aurora-A was highly expressed in the pancreas of the diabetic mice as confirmed by western blot. Inhibition of Aurora-A did not affect fasting blood glucose and body weight, but did improve insulin resistance, as indicated by improved oral glucose tolerance, insulin tolerance, and the Homoeostasis Model Assessment-Insulin Resistance index. Blockade of Aurora-A dramatically decreased the number of infiltrating macrophages in the pancreas in parallel with decreases in the levels of serum insulin and interleukin-6 (IL-6) mRNA. The levels of phosphorylated forms of protein kinase B, which are the key mediators of in insulin resistance, were not induced in liver, adipocyte tissues, and skeletal muscle by alisertib treatment. Our findings indicate that suppression of Aurora-A could at least partially enhance insulin sensitivity by decreasing the number of infiltrating macrophages and IL-6 level in a type 2 diabetic mouse model.
Collapse
Affiliation(s)
- Fandong Meng
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University
| | - Qiangwei Sun
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University
- Department of Endocrinology, Wuhan Third Hospital, Wuhan, China
| | - Dongmei Zhou
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University
| | - Jing Han
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jing Yang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University
| |
Collapse
|
11
|
Panach L, Pertusa C, Martínez-Rojas B, Acebrón Á, Mifsut D, Tarín JJ, Cano A, García-Pérez MÁ. Comparative transcriptome analysis identifies CARM1 and DNMT3A as genes associated with osteoporosis. Sci Rep 2020; 10:16298. [PMID: 33004909 PMCID: PMC7530982 DOI: 10.1038/s41598-020-72870-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
To identify new candidate genes in osteoporosis, mainly involved in epigenetic mechanisms, we compared whole gene-expression in osteoblasts (OBs) obtained from women undergoing hip replacement surgery due to fragility fracture and severe osteoarthritis. Then, we analyzed the association of several SNPs with BMD in 1028 women. Microarray analysis yielded 2542 differentially expressed transcripts belonging to 1798 annotated genes, of which 45.6% (819) were overexpressed, and 54.4% (979) underexpressed (fold-change between - 7.45 and 4.0). Among the most represented pathways indicated by transcriptome analysis were chondrocyte development, positive regulation of bone mineralization, BMP signaling pathway, skeletal system development and Wnt signaling pathway. In the translational stage we genotyped 4 SNPs in DOT1L, HEY2, CARM1 and DNMT3A genes. Raw data analyzed against inheritance patterns showed a statistically significant association between a SNP of DNMT3A and femoral neck-(FN) sBMD and primarily a SNP of CARM1 was correlated with both FN and lumbar spine-(LS) sBMD. Most of these associations remained statistically significant after adjusting for confounders. In analysis with anthropometric and clinical variables, the SNP of CARM1 unexpectedly revealed a close association with BMI (p = 0.000082), insulin (p = 0.000085), and HOMA-IR (p = 0.000078). In conclusion, SNPs of the DNMT3A and CARM1 genes are associated with BMD, in the latter case probably owing to a strong correlation with obesity and fasting insulin levels.
Collapse
Affiliation(s)
- Layla Panach
- Research Unit, INCLIVA Health Research Institute, 46010, Valencia, Spain
| | - Clara Pertusa
- Research Unit, INCLIVA Health Research Institute, 46010, Valencia, Spain
| | | | - Álvaro Acebrón
- Orthopedic Surgery and Traumatology, Clinic Hospital, Institute of Health Research INCLIVA, 46010, Valencia, Spain
| | - Damián Mifsut
- Orthopedic Surgery and Traumatology, Clinic Hospital, Institute of Health Research INCLIVA, 46010, Valencia, Spain
| | - Juan J Tarín
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100, Burjassot, Spain
| | - Antonio Cano
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010, Valencia, Spain
| | - Miguel Ángel García-Pérez
- Research Unit, INCLIVA Health Research Institute, 46010, Valencia, Spain.
- Department of Genetics, University of Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
12
|
Sirdah MM, Reading NS. Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clin Genet 2020; 98:525-547. [PMID: 32385895 DOI: 10.1111/cge.13772] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus, also known simply as diabetes, has been described as a chronic and complex endocrine metabolic disorder that is a leading cause of death across the globe. It is considered a key public health problem worldwide and one of four important non-communicable diseases prioritized for intervention through world health campaigns by various international foundations. Among its four categories, Type 2 diabetes (T2D) is the commonest form of diabetes accounting for over 90% of worldwide cases. Unlike monogenic inherited disorders that are passed on in a simple pattern, T2D is a multifactorial disease with a complex etiology, where a mixture of genetic and environmental factors are strong candidates for the development of the clinical condition and pathology. The genetic factors are believed to be key predisposing determinants in individual susceptibility to T2D. Therefore, identifying the predisposing genetic variants could be a crucial step in T2D management as it may ameliorate the clinical condition and preclude complications. Through an understanding the unique genetic and environmental factors that influence the development of this chronic disease individuals can benefit from personalized approaches to treatment. We searched the literature published in three electronic databases: PubMed, Scopus and ISI Web of Science for the current status of T2D and its associated genetic risk variants and discus promising approaches toward a personalized management of this chronic, non-communicable disorder.
Collapse
Affiliation(s)
- Mahmoud M Sirdah
- Division of Hematology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Biology Department, Al Azhar University-Gaza, Gaza, Palestine
| | - N Scott Reading
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Scudiero O, Pero R, Ranieri A, Terracciano D, Fimiani F, Cesaro A, Gentile L, Leggiero E, Laneri S, Moscarella E, Mazzaccara C, Frisso G, D'Alicandro G, Limongelli G, Pastore L, Calabrò P, Lombardo B. Childhood obesity: an overview of laboratory medicine, exercise and microbiome. Clin Chem Lab Med 2019; 58:1385-1406. [PMID: 31821163 DOI: 10.1515/cclm-2019-0789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
In the last few years, a significant increase of childhood obesity incidence unequally distributed within countries and population groups has been observed, thus representing an important public health problem associated with several health and social consequences. Obese children have more than a 50% probability of becoming obese adults, and to develop pathologies typical of obese adults, that include type 2-diabetes, dyslipidemia and hypertension. Also environmental factors, such as reduced physical activity and increased sedentary activities, may also result in increased caloric intake and/or decreased caloric expenditure. In the present review, we aimed to identify and describe a specific panel of parameters in order to evaluate and characterize the childhood obesity status useful in setting up a preventive diagnostic approach directed at improving health-related behaviors and identifying predisposing risk factors. An early identification of risk factors for childhood obesity could definitely help in setting up adequate and specific clinical treatments.
Collapse
Affiliation(s)
- Olga Scudiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Raffaela Pero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy
| | - Annaluisa Ranieri
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Daniela Terracciano
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Naples "Federico II", Napoli, Italy
| | - Fabio Fimiani
- Divisione di Cardiologia, Dipartimento di Scienze Cardiotoraciche e Respiratorie, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Arturo Cesaro
- Divisione di Cardiologia, Dipartimento di Scienze Cardiotoraciche e Respiratorie, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Naples "Federico II", Napoli, Italy
| | - Elisabetta Moscarella
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", Caserta, Italy.,Unità di Cardiologia, Ospedale "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Cristina Mazzaccara
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Giovanni D'Alicandro
- Centro di Medicina dello Sport e delle Disabilità, Dipartimento di Neuroscienze e Riabilitazione, AORN, Santobono-Pausillipon, Naples, Italy
| | - Giuseppe Limongelli
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Lucio Pastore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Paolo Calabrò
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", Caserta, Italy.,Unità di Cardiologia, Ospedale "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Barbara Lombardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
14
|
Xu J, Zhang M, Zhang X, Yang H, Sun B, Wang Z, Zhou Y, Wang S, Liu X, Liu L. Contribution of Hepatic Retinaldehyde Dehydrogenase Induction to Impairment of Glucose Metabolism by High-Fat-Diet Feeding in C57BL/6J Mice. Basic Clin Pharmacol Toxicol 2018; 123:539-548. [PMID: 29753302 DOI: 10.1111/bcpt.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/27/2018] [Indexed: 11/27/2022]
Abstract
Obesity and insulin resistance are associated with overexpression of retinaldehyde dehydrogenase 1 (RALDH1). We aimed to investigate the roles of hepatic RALDH1 induction in glucose metabolism impairment using mice fed with high-fat-diet (HFD). Mice were fed with HFD for 8 weeks and treated with RALDH inhibitor citral for another 4 weeks. Oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT) and insulin tolerance test were performed. Expressions of phosphoenolpyruvate carboxykinase 1 (PCK1), glucokinase (GCK) and RALDH1 were measured. Therapeutic effects of citral were also documented in diabetic rats. Effects of retinaldehyde on PCK1 and GCK expressions were examined in rat primary hepatocytes and HepG2 cells. The results showed that HFD mice were characterized by hyperlipidaemia and insulin resistance, accompanied by significantly increased RALDH1 activity and expression. Citral (10 and 50 mg/kg) ameliorated HFD-induced hyperlipidaemia and insulin resistance, as demonstrated by the improved fasting glucose, insulin levels and lipid profiles. OGTT and PTT demonstrated that citral reversed HFD-induced glucose disposal impairment and glucose production enhancement. Citral also reversed the increased PCK1 expression and decreased GCK expression by HFD. Citral therapeutic effects were reconfirmed in diabetic rats. In vitro data indicated that retinaldehyde had the strongest PCK1 induction in primary hepatocytes of diabetic rats compared with HFD rats and control rats, in line with the increased RALDH1 expression. Citral reversed the retinaldehyde-induced PCK1 expression in primary rat hepatocytes and HepG2 cells. In conclusion, RALDH1 induction impaired glucose metabolism partly via modulating PCK1 and GCK expressions. Citral improved glucose metabolism through inhibiting RALDH activity.
Collapse
Affiliation(s)
- Jiong Xu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mian Zhang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiangping Zhang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Yang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Binbin Sun
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongjian Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yaqian Zhou
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuting Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|