1
|
Kim SJ, Cecchini MJ, Woo E, Jayawardena N, Passos DT, Dick FA, Mura M. Spatially resolved gene expression profiles of fibrosing interstitial lung diseases. Sci Rep 2024; 14:26470. [PMID: 39488596 PMCID: PMC11531500 DOI: 10.1038/s41598-024-77469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Fibrosing interstitial lung diseases (ILDs) encompass a diverse range of scarring disorders that lead to progressive lung failure. Previous gene expression profiling studies focused on idiopathic pulmonary fibrosis (IPF) and bulk tissue samples. We employed digital spatial profiling to gain new insights into the spatial resolution of gene expression across distinct lung microenvironments (LMEs) in IPF, chronic hypersensitivity pneumonitis (CHP) and non-specific interstitial pneumonia (NSIP). We identified differentially expressed genes between LMEs within each condition, and across histologically similar regions between conditions. Uninvolved regions in IPF and CHP were distinct from normal controls, and displayed potential therapeutic targets. Hallmark LMEs of each condition retained distinct gene signatures, but these could not be reproduced in matched lung tissue samples. Based on these profiles and unsupervised clustering, we grouped previously unclassified ILD cases into NSIP or CHP. Overall, our work uniquely dissects gene expression profiles between LMEs within and across different types of fibrosing ILDs.
Collapse
Affiliation(s)
- Seung J Kim
- Interstitial Lung Disease Research Laboratory, Lawson Health Research Institute, London, ON, Canada.
- London Health Sciences Research Institute, London, ON, Canada.
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Elissa Woo
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Nathashi Jayawardena
- Interstitial Lung Disease Research Laboratory, Lawson Health Research Institute, London, ON, Canada
- London Health Sciences Research Institute, London, ON, Canada
| | - Daniel T Passos
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Health Sciences Research Institute, London, ON, Canada
- Verspeeten Family Cancer Centre, London, ON, Canada
| | - Frederick A Dick
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Health Sciences Research Institute, London, ON, Canada
- Verspeeten Family Cancer Centre, London, ON, Canada
| | - Marco Mura
- Interstitial Lung Disease Research Laboratory, Lawson Health Research Institute, London, ON, Canada
- Division of Respirology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
2
|
Mondoni M, Rinaldo R, Ryerson CJ, Albrici C, Baccelli A, Tirelli C, Marchetti F, Cefalo J, Nalesso G, Ferranti G, Alfano F, Sotgiu G, Guazzi M, Centanni S. Vascular involvement in idiopathic pulmonary fibrosis. ERJ Open Res 2024; 10:00550-2024. [PMID: 39588083 PMCID: PMC11587140 DOI: 10.1183/23120541.00550-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 11/27/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic, fibrosing and progressive interstitial lung disease of unknown aetiology with a pathogenesis still partly unknown. Several microvascular and macrovascular abnormalities have been demonstrated in the pathogenesis of IPF and related pulmonary hypertension (PH), a complication of the disease. Methods We carried out a non-systematic, narrative literature review aimed at describing the role of the vasculature in the natural history of IPF. Results The main molecular pathogenetic mechanisms involving vasculature (i.e. endothelial-to-mesenchymal transition, vascular remodelling, endothelial permeability, occult alveolar haemorrhage, vasoconstriction and hypoxia) and the genetic basis of vascular remodelling are described. The prevalence and clinical relevance of associated PH are highlighted with focus on the vasculature as a prognostic marker. The vascular effects of current antifibrotic therapies, the role of pulmonary vasodilators in the treatment of disease, and new pharmacological options with vascular-targeted activity are described. Conclusions The vasculature plays a key role in the natural history of IPF from the early phases of disease until development of PH in a subgroup of patients, a complication related to a worse prognosis. Pulmonary vascular volume has emerged as a novel computed tomography finding and a predictor of mortality, independent of PH. New pharmacological options with concomitant vascular-directed activity might be promising in the treatment of IPF.
Collapse
Affiliation(s)
- Michele Mondoni
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Rocco Rinaldo
- Department of Medical Sciences, Respiratory Diseases Unit, AOU Città della Salute e della Scienza di Torino, Molinette Hospital, University of Turin, Turin, Italy
| | - Christopher J. Ryerson
- Department of Medicine and Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Cristina Albrici
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Andrea Baccelli
- Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas’ NHS Foundation Trust, London, UK
| | - Claudio Tirelli
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Francesca Marchetti
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Jacopo Cefalo
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giulia Nalesso
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giulia Ferranti
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Fausta Alfano
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Sotgiu
- Dept of Medical, Clinical Epidemiology and Medical Statistics Unit, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Marco Guazzi
- Department of Cardiology, University of Milano School of Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Stefano Centanni
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Tan X, Zhang N, Zhang G, Xu S, Zeng Y, Bian F, Tang B, Wang H, Fan J, Bo X, Fu Y, Fan H, Zhou Y, Kang P. Exploring the diagnostic and immune infiltration roles of disulfidptosis related genes in pulmonary hypertension. Respir Res 2024; 25:365. [PMID: 39385167 PMCID: PMC11465917 DOI: 10.1186/s12931-024-02978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is marked by elevated pulmonary artery pressures due to various causes, impacting right heart function and survival. Disulfidptosis, a newly recognized cell death mechanism, may play a role in PH, but its associated genes (DiGs) are not well understood in this context. This study aims to define the diagnostic relevance of DiGs in PH. METHODS Using GSE11726 data, we analyzed DiGs and their immune characteristics to identify core genes influencing PH progression. Various machine learning models, including RF, SVM, GLM, and XGB, were compared to determine the most effective diagnostic model. Validation used datasets GSE57345 and GSE48166. Additionally, a CeRNA network was established, and a hypoxia-induced PH rat model was used for experimental validation with Western blot analysis. RESULTS 12 DiGs significantly associated with PH were identified. The XGB model excelled in diagnostic accuracy (AUC = 0.958), identifying core genes DSTN, NDUFS1, RPN1, TLN1, and MYH10. Validation datasets confirmed the model's effectiveness. A CeRNA network involving these genes, 40 miRNAs, and 115 lncRNAs was constructed. Drug prediction suggested therapeutic potential for folic acid, supported by strong molecular docking results. Experimental validation in a rat model aligned with these findings. CONCLUSION We uncovered the distinct expression patterns of DiGs in PH, identified core genes utilizing an XGB machine-learning model, and established a CeRNA network. Drugs targeting the core genes were predicted and subjected to molecular docking. Experimental validation was also conducted for these core genes.
Collapse
Affiliation(s)
- Xin Tan
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China
- Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Ningning Zhang
- Department of Cardiovascular Disease, the First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Shuai Xu
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China
- Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Yiyao Zeng
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China
- Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Fenlan Bian
- Department of Cardiovascular Disease, the First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Bi Tang
- Department of Cardiovascular Disease, the First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Hongju Wang
- Department of Cardiovascular Disease, the First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Jili Fan
- Department of Cardiovascular Disease, Taihe County People's Hospital, Fuyang, 236600, China
| | - Xiaohong Bo
- Department of Cardiovascular Disease, Taihe County People's Hospital, Fuyang, 236600, China
| | - Yangjun Fu
- Department of Neurology, The Third People's Hospital of Hefei, Hefei City, 230041, Anhui Province, China
| | - Huimin Fan
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China.
- Center of Translational Medicine and Clinical Laboratory, Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital to Soochow University, Suzhou, 215028, China.
| | - Yafeng Zhou
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China.
- Institute for Hypertension, Soochow University, Suzhou, 215000, China.
| | - Pinfang Kang
- Department of Cardiovascular Disease, the First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
4
|
Brownstein AJ, Mura M, Ruffenach G, Channick RN, Saggar R, Kim A, Umar S, Eghbali M, Yang X, Hong J. Dissecting the lung transcriptome of pulmonary fibrosis-associated pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L520-L534. [PMID: 39137526 PMCID: PMC11482468 DOI: 10.1152/ajplung.00166.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Integrative multiomics can help elucidate the pathophysiology of pulmonary fibrosis (PF)-associated pulmonary hypertension (PH) (PF-PH). Weighted gene coexpression network analysis (WGCNA) was performed on a transcriptomic dataset of explanted lung tissue from 116 patients with PF. Patients were stratified by pulmonary vascular resistance (PVR), and differential gene expression analysis was conducted. Gene modules were correlated with hemodynamics at the time of transplantation and tested for enrichment in the lung transcriptomics signature of an independent pulmonary arterial hypertension (PAH) cohort. We found 1,250 differentially expressed genes between high and low PVR groups. WGCNA identified that black and yellowgreen modules negatively correlated with PVR, whereas the tan and darkgrey modules are positively correlated with PVR in PF-PH. In addition, the tan module showed the strongest enrichment for an independent PAH gene signature, suggesting shared gene expression patterns between PAH and PF-PH. Pharmacotranscriptomic analysis using the Connectivity Map implicated the tan and darkgrey modules as potentially pathogenic in PF-PH, given their combined module signature demonstrated a high negative connectivity score for treprostinil, a medication used in the treatment of PF-PH, and a high positive connectivity score for bone morphogenetic protein (BMP) loss of function. Pathway enrichment analysis revealed that inflammatory pathways and oxidative phosphorylation were downregulated, whereas epithelial-mesenchymal transition was upregulated in modules associated with increased PVR. Our integrative systems biology approach to the lung transcriptome of PF with and without PH identified several PH-associated coexpression modules and gene targets with shared molecular features with PAH warranting further investigation to uncover potential new therapies for PF-PH.NEW & NOTEWORTHY An integrative systems biology approach that included transcriptomic analysis of explanted lung tissue from patients with pulmonary fibrosis (PF) with and without pulmonary hypertension (PH) undergoing lung transplantation, combined with hemodynamic correlation and pharmacotranscriptomics, identified modules of genes associated with pulmonary vascular disease severity. Comparison with an independent pulmonary arterial hypertension (PAH) dataset identified shared gene expression patterns between PAH and PF-PH.
Collapse
Grants
- R01HL147586,R01HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08169982 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL141995 NHLBI NIH HHS
- UL1TR001881 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- K08 HL169982 NHLBI NIH HHS
- R01 HL159507 NHLBI NIH HHS
- R01HL16038,K08HL141995 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL161038 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- R01 NS117148 NINDS NIH HHS
- R01NS117148,R01NS111378 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- UL1 TR001881 NCATS NIH HHS
- R01HL159507 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Adam J Brownstein
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - Gregoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Richard N Channick
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Rajan Saggar
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Airie Kim
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States
| | - Jason Hong
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
5
|
Lawrence A, Myall KJ, Mukherjee B, Marino P. Converging Pathways: A Review of Pulmonary Hypertension in Interstitial Lung Disease. Life (Basel) 2024; 14:1203. [PMID: 39337985 PMCID: PMC11433497 DOI: 10.3390/life14091203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Pulmonary hypertension (PH) in interstitial lung disease (ILD) is relatively common, affecting up to 50% of patients with idiopathic pulmonary fibrosis (IPF). It occurs more frequently in advanced fibrotic ILD, although it may also complicate milder disease and carries significant clinical implications in terms of morbidity and mortality. Key pathological processes driving ILD-PH include hypoxic pulmonary vasoconstriction and pulmonary vascular remodelling. While current understanding of the complex cell signalling pathways and molecular mechanisms underlying ILD-PH remains incomplete, there is evidence for an interplay between the disease pathogenesis of fibrotic ILD and PH, with interest in the role of the pulmonary endothelium in driving pulmonary fibrogenesis more recently. This review examines key clinical trials in ILD-PH therapeutics, including recent research showing promise for the treatment of both ILD-PH and the underlying pulmonary fibrotic process, further supporting the hypothesis of interrelated pathogenesis. Other important management considerations are discussed, including the value of accurate phenotyping in ILD-PH and the success of the "pulmonary vascular" phenotype. This article highlights the close and interconnected nature of fibrotic ILD and PH disease pathogenesis, a perspective likely to improve our understanding and therapeutic approach to this complex condition in the future.
Collapse
Affiliation(s)
| | - Katherine Jane Myall
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
- King's College Hospital, London SE5 9RS, UK
| | - Bhashkar Mukherjee
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London SW3 6NP, UK
| | - Philip Marino
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| |
Collapse
|
6
|
Weatherald J, Hemnes AR, Maron BA, Mielniczuk LM, Gerges C, Price LC, Hoeper MM, Humbert M. Phenotypes in pulmonary hypertension. Eur Respir J 2024; 64:2301633. [PMID: 38964779 DOI: 10.1183/13993003.01633-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
The clinical classification of pulmonary hypertension (PH) has guided diagnosis and treatment of patients with PH for several decades. Discoveries relating to underlying mechanisms, pathobiology and responses to treatments for PH have informed the evolution in this clinical classification to describe the heterogeneity in PH phenotypes. In more recent years, advances in imaging, computational science and multi-omic approaches have yielded new insights into potential phenotypes and sub-phenotypes within the existing clinical classification. Identification of novel phenotypes in pulmonary arterial hypertension (PAH) with unique molecular profiles, for example, could lead to new precision therapies. Recent phenotyping studies have also identified groups of patients with PAH that more closely resemble patients with left heart disease (group 2 PH) and lung disease (group 3 PH), which has important prognostic and therapeutic implications. Within group 2 and group 3 PH, novel phenotypes have emerged that reflect a persistent and severe pulmonary vasculopathy that is associated with worse prognosis but still distinct from PAH. In group 4 PH (chronic thromboembolic pulmonary disease) and sarcoidosis (group 5 PH), the current approach to patient phenotyping integrates clinical, haemodynamic and imaging characteristics to guide treatment but applications of multi-omic approaches to sub-phenotyping in these areas are sparse. The next iterations of the PH clinical classification are likely to reflect several emerging PH phenotypes and improve the next generation of prognostication tools and clinical trial design, and improve treatment selection in clinical practice.
Collapse
Affiliation(s)
- Jason Weatherald
- Department of Medicine, Division of Pulmonary Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley A Maron
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland-Institute for Health Computing, Bethesda, MD, USA
| | - Lisa M Mielniczuk
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Christian Gerges
- Department of Internal Medicine, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Laura C Price
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Yu X, Huang J, Liu X, Li J, Yu M, Li M, Xie Y, Li Y, Qiu J, Xu Z, Zhu T, Zhang W. LncRNAH19 acts as a ceRNA of let-7 g to facilitate endothelial-to-mesenchymal transition in hypoxic pulmonary hypertension via regulating TGF-β signalling pathway. Respir Res 2024; 25:270. [PMID: 38987833 PMCID: PMC11238495 DOI: 10.1186/s12931-024-02895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality rates, and the efficiency of current HPH treatment strategies is unsatisfactory. Endothelial-to-mesenchymal transition (EndMT) in the pulmonary artery plays a crucial role in HPH. Previous studies have shown that lncRNA-H19 (H19) is involved in many cardiovascular diseases by regulating cell proliferation and differentiation but the role of H19 in EndMT in HPH has not been defined. METHODS In this research, the expression of H19 was investigated in PAH human patients and rat models. Then, we established a hypoxia-induced HPH rat model to evaluate H19 function in HPH by Echocardiography and hemodynamic measurements. Moreover, luciferase reporter gene detection, and western blotting were used to explore the mechanism of H19. RESULTS Here, we first found that the expression of H19 was significantly increased in the endodermis of pulmonary arteries and that H19 deficiency obviously ameliorated pulmonary vascular remodelling and right heart failure in HPH rats, and these effects were associated with inhibition of EndMT. Moreover, an analysis of luciferase activity indicated that microRNA-let-7 g (let-7 g) was a direct target of H19. H19 deficiency or let-7 g overexpression can markedly downregulate the expression of TGFβR1, a novel target gene of let-7 g. Furthermore, inhibition of TGFβR1 induced similar effects to H19 deficiency. CONCLUSIONS In summary, our findings demonstrate that the H19/let-7 g/TGFβR1 axis is crucial in the pathogenesis of HPH by stimulating EndMT. Our study may provide new ideas for further research on HPH therapy in the near future.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Rats
- Disease Models, Animal
- Epithelial-Mesenchymal Transition/physiology
- Epithelial-Mesenchymal Transition/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypoxia/metabolism
- Hypoxia/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- RNA, Competitive Endogenous/genetics
- RNA, Competitive Endogenous/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/physiology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Xin Yu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Xu Liu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, P.R. China
| | - Juan Li
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Miao Yu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Minghui Li
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Yuliang Xie
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Ye Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junyu Qiu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, 330031, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China.
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China.
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China.
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China.
| |
Collapse
|
8
|
Aravamudhan A, Dieffenbach PB, Choi KM, Link PA, Meridew JA, Haak AJ, Fredenburgh LE, Tschumperlin DJ. Non-canonical IKB kinases regulate YAP/TAZ and pathological vascular remodeling behaviors in pulmonary artery smooth muscle cells. Physiol Rep 2024; 12:e15999. [PMID: 38610069 PMCID: PMC11014870 DOI: 10.14814/phy2.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.
Collapse
Affiliation(s)
- Aja Aravamudhan
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Paul B. Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Patrick A. Link
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Andrew J. Haak
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Laura E. Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | | |
Collapse
|
9
|
Jandl K, Radic N, Zeder K, Kovacs G, Kwapiszewska G. Pulmonary vascular fibrosis in pulmonary hypertension - The role of the extracellular matrix as a therapeutic target. Pharmacol Ther 2023; 247:108438. [PMID: 37210005 DOI: 10.1016/j.pharmthera.2023.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Pulmonary hypertension (PH) is a condition characterized by changes in the extracellular matrix (ECM) deposition and vascular remodeling of distal pulmonary arteries. These changes result in increased vessel wall thickness and lumen occlusion, leading to a loss of elasticity and vessel stiffening. Clinically, the mechanobiology of the pulmonary vasculature is becoming increasingly recognized for its prognostic and diagnostic value in PH. Specifically, the increased vascular fibrosis and stiffening resulting from ECM accumulation and crosslinking may be a promising target for the development of anti- or reverse-remodeling therapies. Indeed, there is a huge potential in therapeutic interference with mechano-associated pathways in vascular fibrosis and stiffening. The most direct approach is aiming to restore extracellular matrix homeostasis, by interference with its production, deposition, modification and turnover. Besides structural cells, immune cells contribute to the level of ECM maturation and degradation by direct cell-cell contact or the release of mediators and proteases, thereby opening a huge avenue to target vascular fibrosis via immunomodulation approaches. Indirectly, intracellular pathways associated with altered mechanobiology, ECM production, and fibrosis, offer a third option for therapeutic intervention. In PH, a vicious cycle of persistent activation of mechanosensing pathways such as YAP/TAZ initiates and perpetuates vascular stiffening, and is linked to key pathways disturbed in PH, such as TGF-beta/BMPR2/STAT. Together, this complexity of the regulation of vascular fibrosis and stiffening in PH allows the exploration of numerous potential therapeutic interventions. This review discusses connections and turning points of several of these interventions in detail.
Collapse
Affiliation(s)
- Katharina Jandl
- Division of Pharmacology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria.
| | - Nemanja Radic
- Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Katarina Zeder
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
10
|
Hong J, Wong B, Huynh C, Tang B, Ruffenach G, Li M, Umar S, Yang X, Eghbali M. Tm4sf1-marked Endothelial Subpopulation Is Dysregulated in Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2023; 68:381-394. [PMID: 36252184 PMCID: PMC10112423 DOI: 10.1165/rcmb.2022-0020oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
The identification and role of endothelial progenitor cells in pulmonary arterial hypertension (PAH) remain controversial. Single-cell omics analysis can shed light on endothelial progenitor cells and their potential contribution to PAH pathobiology. We aim to identify endothelial cells that may have stem/progenitor potential in rat lungs and assess their relevance to PAH. Differential expression, gene set enrichment, cell-cell communication, and trajectory reconstruction analyses were performed on lung endothelial cells from single-cell RNA sequencing of Sugen-hypoxia, monocrotaline, and control rats. Relevance to human PAH was assessed in multiple independent blood and lung transcriptomic data sets. Rat lung endothelial cells were visualized by immunofluorescence in situ, analyzed by flow cytometry, and assessed for tubulogenesis in vitro. A subpopulation of endothelial cells (endothelial arterial type 2 [EA2]) marked by Tm4sf1 (transmembrane 4 L six family member 1), a gene strongly implicated in cancer, harbored a distinct transcriptomic signature enriched for angiogenesis and CXCL12 signaling. Trajectory analysis predicted that EA2 has a less differentiated state compared with other endothelial subpopulations. Analysis of independent data sets revealed that TM4SF1 is downregulated in lungs and endothelial cells from patients and PAH models, is a marker for hematopoietic stem cells, and is upregulated in PAH circulation. TM4SF1+CD31+ rat lung endothelial cells were visualized in distal pulmonary arteries, expressed hematopoietic marker CD45, and formed tubules in coculture with lung fibroblasts. Our study uncovered a novel Tm4sf1-marked subpopulation of rat lung endothelial cells that may have stem/progenitor potential and demonstrated its relevance to PAH. Future studies are warranted to further elucidate the role of EA2 and Tm4sf1 in PAH.
Collapse
Affiliation(s)
- Jason Hong
- Division of Pulmonary and Critical Care Medicine
| | - Brenda Wong
- Division of Pulmonary and Critical Care Medicine
| | | | - Brian Tang
- Department of Integrative Biology and Physiology, and
| | - Gregoire Ruffenach
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, California
| | - Min Li
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, California
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, California
| | - Xia Yang
- Department of Integrative Biology and Physiology, and
| | - Mansoureh Eghbali
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
11
|
Piccari L, Allwood B, Antoniou K, Chung JH, Hassoun PM, Nikkho SM, Saggar R, Shlobin OA, Vitulo P, Nathan SD, Wort SJ. Pathogenesis, clinical features, and phenotypes of pulmonary hypertension associated with interstitial lung disease: A consensus statement from the Pulmonary Vascular Research Institute's Innovative Drug Development Initiative - Group 3 Pulmonary Hypertension. Pulm Circ 2023; 13:e12213. [PMID: 37025209 PMCID: PMC10071306 DOI: 10.1002/pul2.12213] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a frequent complication of interstitial lung disease (ILD). Although PH has mostly been described in idiopathic pulmonary fibrosis, it can manifest in association with many other forms of ILD. Associated pathogenetic mechanisms are complex and incompletely understood but there is evidence of disruption of molecular and genetic pathways, with panvascular histopathologic changes, multiple pathophysiologic sequelae, and profound clinical ramifications. While there are some recognized clinical phenotypes such as combined pulmonary fibrosis and emphysema and some possible phenotypes such as connective tissue disease associated with ILD and PH, the identification of further phenotypes of PH in ILD has thus far proven elusive. This statement reviews the current evidence on the pathogenesis, recognized patterns, and useful diagnostic tools to detect phenotypes of PH in ILD. Distinct phenotypes warrant recognition if they are characterized through either a distinct presentation, clinical course, or treatment response. Furthermore, we propose a set of recommendations for future studies that might enable the recognition of new phenotypes.
Collapse
Affiliation(s)
- Lucilla Piccari
- Department of Pulmonary Medicine Hospital del Mar Barcelona Spain
| | - Brian Allwood
- Department of Medicine, Division of Pulmonology Stellenbosch University & Tygerberg Hospital Cape Town South Africa
| | - Katerina Antoniou
- Department of Thoracic Medicine University of Crete School of Medicine Heraklion Crete Greece
| | - Jonathan H Chung
- Department of Radiology The University of Chicago Medicine Chicago Illinois USA
| | - Paul M Hassoun
- Department of Medicine, Division of Pulmonary and Critical Care Medicine Johns Hopkins University Baltimore Maryland USA
| | | | - Rajan Saggar
- Lung & Heart-Lung Transplant and Pulmonary Hypertension Programs University of California Los Angeles David Geffen School of Medicine Los Angeles California USA
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Health System Falls Church Virginia USA
| | - Patrizio Vitulo
- Department of Pulmonary Medicine IRCCS Mediterranean Institute for Transplantation and Advanced Specialized Therapies Palermo Sicilia Italy
| | - Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Health System Falls Church Virginia USA
| | - Stephen John Wort
- National Pulmonary Hypertension Service at the Royal Brompton Hospital London UK
- National Heart and Lung Institute, Imperial College London UK
| |
Collapse
|
12
|
Gonzales J, Fraidenburg DR. Pharmacology and Emerging Therapies for Group 3 Pulmonary Hypertension Due to Chronic Lung Disease. Pharmaceuticals (Basel) 2023; 16:418. [PMID: 36986517 PMCID: PMC10058846 DOI: 10.3390/ph16030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Pulmonary hypertension (PH) frequently complicates chronic lung disease and is associated with high morbidity and poor outcomes. Individuals with interstitial lung disease and chronic obstructive pulmonary disease develop PH due to structural changes associated with the destruction of lung parenchyma and vasculature with concurrent vasoconstriction and pulmonary vascular remodeling similar to what is observed in idiopathic pulmonary arterial hypertension (PAH). Treatment for PH due to chronic lung disease is largely supportive and therapies specific to PAH have had minimal success in this population with exception of the recently FDA-approved inhaled prostacyclin analogue treprostinil. Given the significant disease burden of PH due to chronic lung diseases and its associated mortality, a great need exists for improved understanding of molecular mechanisms leading to vascular remodeling in this population. This review will discuss the current understanding of pathophysiology and emerging therapeutic targets and potential pharmaceuticals.
Collapse
|
13
|
Swinarew AS, Gabor J, Kusz B, Skoczyński S, Raif P, Skoczylas I, Jonas K, Grabka M, Mizia-Szubryt M, Bula K, Stanula A, Mika B, Tkacz E, Paluch J, Gąsior M, Kopeć G, Mizia-Stec K. Exhaled Air Metabolome Analysis for Pulmonary Arterial Hypertension Fingerprints Identification-The Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:503. [PMID: 36612835 PMCID: PMC9819134 DOI: 10.3390/ijerph20010503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease with a serious prognosis. The aim of this study was to identify biomarkers for PAH in the breath phase and to prepare an automatic classification method to determine the changing metabolome trends and molecular mapping. A group of 37 patients (F/M: 8/29 women, mean age 60.4 ± 10.9 years, BMI 27.6 ± 6.0 kg/m2) with diagnosed PAH were enrolled in the study. The breath phase of all the patients was collected on a highly porous septic material using a special patented holder PL230578, OHIM 002890789-0001. The collected air was then examined with gas chromatography coupled with mass spectrometry (GC/MS). The algorithms of Spectral Clustering, KMeans, DBSCAN, and hierarchical clustering methods were used to perform the cluster analysis. The identification of the changes in the ratio of the whole spectra of biomarkers allowed us to obtain a multidimensional pathway for PAH characteristics and showed the metabolome differences in the four subgroups divided by the cluster analysis. The use of GC/MS, supported with novel porous polymeric materials, for the breath phase analysis seems to be a useful tool in selecting bio-fingerprints in patients with PAH. The four metabolome classes which were obtained constitute novel data in the PAH population.
Collapse
Affiliation(s)
- Andrzej S. Swinarew
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
- Department of Swimming and Water Rescue, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| | - Jadwiga Gabor
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Błażej Kusz
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Szymon Skoczyński
- Department of Pneumonology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Paweł Raif
- Department of Biosensors and Biomedical Signals Processing, Silesian University of Technology, 41-800 Zabrze, Poland
| | - Ilona Skoczylas
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Kamil Jonas
- Pulmonary Circulation Centre, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital in Krakow, 31-349 Kraków, Poland
| | - Marek Grabka
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Magdalena Mizia-Szubryt
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Karolina Bula
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Arkadiusz Stanula
- Department of Swimming and Water Rescue, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| | - Barbara Mika
- Department of Biosensors and Biomedical Signals Processing, Silesian University of Technology, 41-800 Zabrze, Poland
| | - Ewaryst Tkacz
- Department of Biosensors and Biomedical Signals Processing, Silesian University of Technology, 41-800 Zabrze, Poland
| | - Jarosław Paluch
- Department of ENT, Faculty of Medical Sciences in Katowice, Medical University Silesia, 40-055 Katowice, Poland
| | - Mariusz Gąsior
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Grzegorz Kopeć
- Pulmonary Circulation Centre, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital in Krakow, 31-349 Kraków, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
14
|
Jandl K, Marsh LM, Mutgan AC, Crnkovic S, Valzano F, Zabini D, Hoffmann J, Foris V, Gschwandtner E, Klepetko W, Prosch H, Flick H, Brcic L, Kern I, Heinemann A, Olschewski H, Kovacs G, Kwapiszewska G. Impairment of the NKT-STAT1-CXCL9 Axis Contributes to Vessel Fibrosis in Pulmonary Hypertension Caused by Lung Fibrosis. Am J Respir Crit Care Med 2022; 206:981-998. [PMID: 35763380 DOI: 10.1164/rccm.202201-0142oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Pulmonary hypertension (PH) is a common, severe comorbidity in interstitial lung diseases such as pulmonary fibrosis (PF), and it has limited treatment options. Excessive vascular fibrosis and inflammation are often present in PH, but the underlying mechanisms are still not well understood. Objectives: To identify a novel functional link between natural killer T (NKT) cell activation and vascular fibrosis in PF-PH. Methods: Multicolor flow cytometry, secretome, and immunohistological analyses were complemented by pharmacological NKT cell activation in vivo, in vitro, and ex vivo. Measurements and Main Results: In pulmonary vessels of patients with PF-PH, increased collagen deposition was linked to a local NKT cell deficiency and decreased IL-15 concentrations. In a mouse model of PH caused by lung fibrosis, pharmacological NKT cell activation using a synthetic α-galactosylceramide analog (KRN7000) restored local NKT cell numbers and ameliorated vascular remodeling and right ventricular systolic pressure. Supplementation with activated NKT cells reduced collagen deposition in isolated human pulmonary arterial smooth muscle cells (hPASMCs) and in ex vivo precision-cut lung slices of patients with end-stage PF-PH. Coculture with activated NKT cells induced STAT1 signaling in hPASMCs. Secretome analysis of peripheral blood mononuclear cells identified CXCL9 and CXCL10 as indicators of NKT cell activation. Pharmacologically, CXCL9, but not CXCL10, potently inhibited collagen deposition in hPASMCs via the chemokine receptor CXCR3. Conclusions: Our results indicate that the absence of NKT cells impairs the STAT1-CXCL9-CXCR3 axis in PF-PH and that restoration of this axis by NKT cell activation may unravel a novel therapeutic strategy to target vascular fibrosis in interstitial lung disease.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Physiology, Otto Loewi Research Center
| | - Ayse Ceren Mutgan
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Physiology, Otto Loewi Research Center
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Physiology, Otto Loewi Research Center
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Diana Zabini
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Physiology, Otto Loewi Research Center
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Vasile Foris
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, and
| | | | | | - Helmut Prosch
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Holger Flick
- Division of Pulmonology, Department of Internal Medicine, and
| | - Luka Brcic
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Izidor Kern
- Cytology and Pathology Laboratory, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; and
| | | | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, and
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, and
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Physiology, Otto Loewi Research Center
- Institute for Lung Health, Giessen, Germany
| |
Collapse
|
15
|
Liu Y, Shi JZ, Jiang R, Liu SF, He YY, van der Vorst EPC, Weber C, Döring Y, Yan Y. Regulatory T Cell-Related Gene Indicators in Pulmonary Hypertension. Front Pharmacol 2022; 13:908783. [PMID: 35712711 PMCID: PMC9197497 DOI: 10.3389/fphar.2022.908783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Objective: Regulatory T cells (Tregs) are critical immune modulators to maintain immune homeostasis and limit pulmonary hypertension (PH). This study was aimed to identify Treg-related genes (TRGs) in PH. Methods: The gene expression profile from lungs of PH patients was retrieved from the Gene Expression Omnibus (GEO) database. The abundance of Tregs was estimated by the xCell algorithm, the correlation of which with differentially expressed genes (DEGs) was performed. DEGs with a |Pearson correlation coefficient| >0.4 were identified as TRGs. Functional annotation and the protein–protein interaction (PPI) network were analyzed. A gene signature for 25 hub TRGs (TRGscore) was generated by a single sample scoring method to determine its accuracy to distinguish PH from control subjects. TRGs were validated in datasets of transcriptional profiling of PH cohorts and in lung tissues of experimental PH mice. Results: A total of 819 DEGs were identified in lungs of 58 PAH patients compared to that of 25 control subjects of dataset GSE117261. In total, 165 of all these DEGs were correlated with the abundance of Tregs and identified as TRGs, with 90 upregulated genes and 75 downregulated genes compared to that of control subjects. The upregulated TRGs were enriched in negative regulation of multiple pathways, such as cAMP-mediated signaling and I-kappaB kinase/NF-kappaB signaling, and regulated by multiple genes encoding transcriptional factors including HIF1A. Furthermore, 25 hub genes categorized into three clusters out of 165 TRGs were derived, and we identified 27 potential drugs targeting 10 hub TRGs. The TRGscore based on 25 hub TRGs was higher in PH patients and could distinguish PH from control subjects (all AUC >0.7). Among them, 10 genes including NCF2, MNDA/Ifi211, HCK, FGR, CSF3R, AQP9, S100A8, G6PD/G6pdx, PGD, and TXNRD1 were significantly reduced in lungs of severe PH patients of dataset GSE24988 as well as in lungs of hypoxic PH mice compared to corresponding controls. Conclusion: Our finding will shed some light on the Treg-associated therapeutic targets in the progression of PH and emphasize on TRGscore as a novel indicator for PH.
Collapse
Affiliation(s)
- Yan Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Kaifeng, China.,College of Traditional Chinese Medicine, Henan University, Kaifeng, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shao-Fei Liu
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, China.,College of Traditional Chinese Medicine, Henan University, Kaifeng, China
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yi Yan
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
16
|
Abstract
Pulmonary hypertension (PH) because of chronic lung disease is categorized as Group 3 PH in the most recent classification system. Prevalence of these diseases is increasing over time, creating a growing need for effective therapeutic options. Recent approval of the first pulmonary arterial hypertension therapy for the treatment of Group 3 PH related to interstitial lung disease represents an encouraging advancement. This review focuses on molecular mechanisms contributing to pulmonary vasculopathy in chronic hypoxia, the pathology and epidemiology of Group 3 PH, the right ventricular dysfunction observed in this population and clinical trial data that inform the use of pulmonary vasodilators in Group 3 PH.
Collapse
Affiliation(s)
- Navneet Singh
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Germany (P.D.).,German Center for Lung Research (DZL), Giessen, Germany (P.D.)
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA (O.A.S.)
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI.,Department of Health Services, Policy and Practice (C.E.V.), Brown University, Providence, RI
| |
Collapse
|
17
|
Zhu W, Zhang Z, Gui W, Shen Z, Chen Y, Yin X, Liang L, Li L. Identification of the Key Pathways and Genes in Hypoxia Pulmonary Arterial Hypertension Following Intrauterine Growth Retardation. Front Mol Biosci 2022; 9:789736. [PMID: 35433826 PMCID: PMC9008831 DOI: 10.3389/fmolb.2022.789736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
High-throughput sequencing and weighted gene co-expression network analysis (WGCNA) were used to identify susceptibility modules and genes in liver tissue for the hypoxic pulmonary arterial hypertension (PAH) animal model following intrauterine growth retardation (IUGR). A total of 5,000 genes were clustered into eight co-expression modules via WGCNA. Module blue was mostly significantly correlated with the IUGR–hypoxia group. Gene Ontology analysis showed that genes in the module blue were mainly enriched in the fatty acid metabolic process, lipid modification, and fatty acid catabolic process. The Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the genes in module blue were mainly associated with fatty acid metabolism, PPAR signaling pathway, and biosynthesis of unsaturated fatty acids. In addition, the maximal clique centrality method was used to identify the hub genes in the subnetworks, and the obtained results were verified using real-time quantitative PCR. Finally, we identified that four genes including Cyp2f4, Lipc, Acadl, and Hacl1 were significantly associated with IUGR-hypoxia. Our study identified a module and several key genes that acted as essential components in the etiology of the long-term metabolic consequences in hypoxia PAH following IUGR.
Collapse
Affiliation(s)
- Weifen Zhu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziming Zhang
- Department of Neonatology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Gui
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zheng Shen
- Department of Central Laboratory, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yixin Chen
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueyao Yin
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Liang
- Department of Pediatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Lin Li,
| |
Collapse
|
18
|
Jung SM, Park KS, Kim KJ. Integrative analysis of lung molecular signatures reveals key drivers of systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis 2022; 81:108-116. [PMID: 34380701 DOI: 10.1136/annrheumdis-2021-220493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/25/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Interstitial lung disease is a significant comorbidity and the leading cause of mortality in patients with systemic sclerosis. Transcriptomic data of systemic sclerosis-associated interstitial lung disease (SSc-ILD) were analysed to evaluate the salient molecular and cellular signatures in comparison with those in related pulmonary diseases and to identify the key driver genes and target molecules in the disease module. METHODS A transcriptomic dataset of lung tissues from patients with SSc-ILD (n=52), idiopathic pulmonary fibrosis (IPF) (n=549), non-specific interstitial pneumonia (n=49) and pulmonary arterial hypertension (n=81) and from normal healthy controls (n=331) was subjected to filtration of differentially expressed genes, functional enrichment analysis, network-based key driver analysis and kernel-based diffusion scoring. The association of enriched pathways with clinical parameters was evaluated in patients with SSc-ILD. RESULTS SSc-ILD shared key pathogenic pathways with other fibrosing pulmonary diseases but was distinguishable in some pathological processes. SSc-ILD showed general similarity with IPF in molecular and cellular signatures but stronger signals for myofibroblasts, which in SSc-ILD were in a senescent and apoptosis-resistant state. The p53 signalling pathway was the most enriched signature in lung tissues and lung fibroblasts of SSc-ILD, and was significantly correlated with carbon monoxide diffusing capacity of lung, cellular senescence and apoptosis. EEF2, EFF2K, PHKG2, VCAM1, PRKACB, ITGA4, CDK1, CDK2, FN1 and HDAC1 were key regulators with high diffusion scores in the disease module. CONCLUSIONS Integrative transcriptomic analysis of lung tissues revealed key signatures of fibrosis in SSc-ILD. A network-based Bayesian approach provides deep insights into key regulatory genes and molecular targets applicable to treating SSc-ILD.
Collapse
Affiliation(s)
- Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
19
|
Shang Z, Sun J, Hui J, Yu Y, Bian X, Yang B, Deng K, Lin L. Construction of a Support Vector Machine-Based Classifier for Pulmonary Arterial Hypertension Patients. Front Genet 2021; 12:781011. [PMID: 34880909 PMCID: PMC8647811 DOI: 10.3389/fgene.2021.781011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease leading to right heart failure and death due to increased pulmonary arterial tension and vascular resistance. So far, PAH has not been fully understood, and current treatments are much limited. Gene expression profiles of healthy people and PAH patients in GSE33463 dataset were analyzed in this study. Then 110 differentially expressed genes (DEGs) were obtained. Afterward, the PPI network based on DEGs was constructed, followed by the analysis of functional modules, whose results showed that the genes in the major function modules significantly enriched in immune-related functions. Moreover, four optimal feature genes were screened from the DEGs by support vector machine–recursive feature elimination (SVM-RFE) algorithm (EPB42, IFIT2, FOSB, and SNF1LK). The receiver operating characteristic curve showed that the SVM classifier based on optimal feature genes could effectively distinguish healthy people from PAH patients. Last, the expression of optimal feature genes was analyzed in the GSE33463 dataset and clinical samples. It was found that EPB42 and IFIT2 were highly expressed in PAH patients, while FOSB and SNF1LK were lowly expressed. In conclusion, the four optimal feature genes screened here are potential biomarkers for PAH and are expected to be used in early diagnosis for PAH.
Collapse
Affiliation(s)
- Zhenglu Shang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Jiashun Sun
- Department of Hospital, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Jingjiao Hui
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Yanhua Yu
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Xiaoyun Bian
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Bowen Yang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Kewu Deng
- Department of Cardiology, Beijing Tongren Hospital, Beijing, China
| | - Li Lin
- Department of Cardiology, Shanghai Dongfang Hospital, Shanghai, China
| |
Collapse
|
20
|
Ding J, Lugo-Martinez J, Yuan Y, Huang J, Hume AJ, Suder EL, Mühlberger E, Kotton DN, Bar-Joseph Z. Reconstructed signaling and regulatory networks identify potential drugs for SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.06.01.127589. [PMID: 33083801 PMCID: PMC7574259 DOI: 10.1101/2020.06.01.127589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several molecular datasets have been recently compiled to characterize the activity of SARS-CoV-2 within human cells. Here we extend computational methods to integrate several different types of sequence, functional and interaction data to reconstruct networks and pathways activated by the virus in host cells. We identify key proteins in these networks and further intersect them with genes differentially expressed at conditions that are known to impact viral activity. Several of the top ranked genes do not directly interact with virus proteins. We experimentally tested treatments for a number of the predicted targets. We show that blocking one of the predicted indirect targets significantly reduces viral loads in stem cell-derived alveolar epithelial type II cells (iAT2s).
Collapse
Affiliation(s)
- Jun Ding
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada
| | - Jose Lugo-Martinez
- Department of Computer Science, University of Puerto Rico, San Juan, Puerto Rico, 00925, USA
| | - Ye Yuan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Adam J. Hume
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ellen L. Suder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Elke Mühlberger
- National Emerging Infectious Diseases Laboratory (NEIDL), Boston University, Boston, MA 02118, USA
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
21
|
He YY, Xie XM, Zhang HD, Ye J, Gencer S, van der Vorst EPC, Döring Y, Weber C, Pang XB, Jing ZC, Yan Y, Han ZY. Identification of Hypoxia Induced Metabolism Associated Genes in Pulmonary Hypertension. Front Pharmacol 2021; 12:753727. [PMID: 34803695 PMCID: PMC8602807 DOI: 10.3389/fphar.2021.753727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/11/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: Pulmonary hypertension (PH) associated with hypoxia and lung disease (Group 3) is the second most common form of PH and associated with increased morbidity and mortality. This study was aimed to identify hypoxia induced metabolism associated genes (MAGs) for better understanding of hypoxic PH. Methods: Rat pulmonary arterial smooth muscle cells (PASMCs) were isolated and cultured in normoxic or hypoxic condition for 24 h. Cells were harvested for liquid chromatography-mass spectrometry analysis. Functional annotation of distinguishing metabolites was performed using Metaboanalyst. Top 10 enriched metabolite sets were selected for the identification of metabolism associated genes (MAGs) with a relevance score >8 in Genecards. Transcriptomic data from lungs of hypoxic PH in mice/rats or of PH patients were accessed from Gene Expression Omnibus (GEO) database or open-access online platform. Connectivity Map analysis was performed to identify potential compounds to reverse the metabolism associated gene profile under hypoxia stress. The construction and module analysis of the protein-protein interaction (PPI) network was performed. Hub genes were then identified and used to generate LASSO model to determine its accuracy to predict occurrence of PH. Results: A total of 36 altered metabolites and 1,259 unique MAGs were identified in rat PASMCs under hypoxia. 38 differentially expressed MAGs in mouse lungs of hypoxic PH were revealed, with enrichment in multi-pathways including regulation of glucose metabolic process, which might be reversed by drugs such as blebbistatin. 5 differentially expressed MAGs were displayed in SMCs of Sugen 5416/hypoxia induced PH rats at the single cell resolution. Furthermore, 6 hub genes (Cat, Ephx1, Gpx3, Gstm4, Gstm5, and Gsto1) out of 42 unique hypoxia induced MAGs were identified. Higher Cat, Ephx1 and lower Gsto1 were displayed in mouse lungs under hypoxia (all p < 0.05), in consistent with the alteration in lungs of PH patients. The hub gene-based LASSO model can predict the occurrence of PH (AUC = 0.90). Conclusion: Our findings revealed six hypoxia-induced metabolism associated hub genes, and shed some light on the molecular mechanism and therapeutic targets in hypoxic PH.
Collapse
Affiliation(s)
- Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Kaifeng, China
| | - Hong-Da Zhang
- State Key Laboratory of Cardiovascular Disease and FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jue Ye
- State Key Laboratory of Cardiovascular Disease and FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Selin Gencer
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiao-Bin Pang
- School of Pharmacy, Henan University, Kaifeng, China
| | - Zhi-Cheng Jing
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Zhi-Yan Han
- State Key Laboratory of Cardiovascular Disease and FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Santamaria S, Martin DR, Dong X, Yamamoto K, Apte SS, Ahnström J. Post-translational regulation and proteolytic activity of the metalloproteinase ADAMTS8. J Biol Chem 2021; 297:101323. [PMID: 34687701 PMCID: PMC8577114 DOI: 10.1016/j.jbc.2021.101323] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
A disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs (ADAMTS)8 is a secreted protease, which was recently implicated in pathogenesis of pulmonary arterial hypertension (PAH). However, the substrate repertoire of ADAMTS8 and regulation of its activity are incompletely understood. Although considered a proteoglycanase because of high sequence similarity and close phylogenetic relationship to the proteoglycan-degrading proteases ADAMTS1, 4, 5, and 15, as well as tight genetic linkage with ADAMTS15 on human chromosome 11, its aggrecanase activity was reportedly weak. Several post-translational factors are known to regulate ADAMTS proteases such as autolysis, inhibition by endogenous inhibitors, and receptor-mediated endocytosis, but their impacts on ADAMTS8 are unknown. Here, we show that ADAMTS8 undergoes autolysis at six different sites within its spacer domain. We also found that in contrast to ADAMTS4 and 5, ADAMTS8 levels were not regulated through low-density lipoprotein receptor-related protein 1 (LRP1)-mediated endocytosis. Additionally, ADAMTS8 lacked significant activity against the proteoglycans aggrecan, versican, and biglycan. Instead, we found that ADAMTS8 cleaved osteopontin, a phosphoprotein whose expression is upregulated in PAH. Multiple ADAMTS8 cleavage sites were identified using liquid chromatography–tandem mass spectrometry. Osteopontin cleavage by ADAMTS8 was efficiently inhibited by TIMP-3, an endogenous inhibitor of ADAMTS1, 4, and 5, as well as by TIMP-2, which has no previously reported inhibitory activity against other ADAMTS proteases. These differences in post-translational regulation and substrate repertoire differentiate ADAMTS8 from other family members and may help to elucidate its role in PAH.
Collapse
Affiliation(s)
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Xiangyi Dong
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Josefin Ahnström
- Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
23
|
Fließer E, Birnhuber A, Marsh LM, Gschwandtner E, Klepetko W, Olschewski H, Kwapiszewska G. Dysbalance of ACE2 levels - a possible cause for severe COVID-19 outcome in COPD. J Pathol Clin Res 2021; 7:446-458. [PMID: 33978304 PMCID: PMC8239572 DOI: 10.1002/cjp2.224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to healthcare systems worldwide. Binding of the virus to angiotensin-converting enzyme 2 (ACE2) is an important step in the infection mechanism. However, it is unknown if ACE2 expression in patients with chronic lung diseases (CLDs), such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary arterial hypertension (IPAH), or pulmonary fibrosis (PF), is changed as compared to controls. We used lung samples from patients with COPD (n = 28), IPAH (n = 10), and PF (n = 10) as well as healthy control donor (n = 10) tissue samples to investigate the expression of ACE2 and related cofactors that might influence the course of SARS-CoV-2 infection. Expression levels of the ACE2 receptor, the putative receptor CD147/BSG, and the viral entry cofactors TMPRSS2 (transmembrane serine protease 2), EZR, and FURIN were determined by quantitative PCR and in open-access RNA sequencing datasets. Immunohistochemical and single-cell RNA sequencing (scRNAseq) analyses were used for localization and coexpression, respectively. Soluble ACE2 (sACE2) plasma levels were analyzed by enzyme-linked immunosorbent assay. In COPD as compared to donor, IPAH, and PF lung tissue, gene expression of ACE2, TMPRSS2, and EZR was significantly elevated, but circulating sACE2 levels were significantly reduced in COPD and PF plasma compared to healthy control and IPAH plasma samples. Lung tissue expressions of FURIN and CD147/BSG were downregulated in COPD. None of these changes were associated with changes in pulmonary hemodynamics. Histological analysis revealed coexpression of ACE2, TMPRSS2, and Ezrin in bronchial regions and epithelial cells. This was confirmed by scRNAseq analysis. There were no significant expression changes of the analyzed molecules in the lung tissue of IPAH and idiopathic PF as compared to control. In conclusion, we reveal increased ACE2 and TMPRSS2 expression in lung tissue with a concomitant decrease of protective sACE2 in COPD patients. These changes represent the possible risk factors for an increased susceptibility of COPD patients to SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
| | - Elisabeth Gschwandtner
- Division of Thoracic Surgery, Department of SurgeryMedical University of ViennaViennaAustria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of SurgeryMedical University of ViennaViennaAustria
| | | | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Otto Loewi Research CenterMedical University of GrazGrazAustria
| |
Collapse
|
24
|
Zhu F, Zuo L, Hu R, Wang J, Yang Z, Qi X, Feng L. Effect of Immune Cell Infiltration on Occurrence of Pulmonary Hypertension in Pulmonary Fibrosis Patients Based on Gene Expression Profiles. Front Med (Lausanne) 2021; 8:671617. [PMID: 34307406 PMCID: PMC8292720 DOI: 10.3389/fmed.2021.671617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary hypertension (PH) is a frequent complication in patients with pulmonary fibrosis (PF), whereas the mechanism was not well-understood. This study aimed to explore the influence of immune cell infiltration on PH status based on the genomic expression profiles. Microarray data of GSE24988 were downloaded from the GEO database, including 116 lung tissue samples derived from PF patients with various PH status. Proportion of infiltrated immune cells was evaluated using CIBERSORT, a gene expression-based de-convolution algorithm. A random forest classifier was constructed and out of bag (OOB) cross-validation was carried out for PH prediction. The proportions of immune infiltration cells varied differently in PH samples except T regulatory cells (p-value = 0). Compared with non-PH samples, increased number of naive B cells and plasma cells were identified in PH samples, whereas activated dendritic cells and M2 macrophages were relatively lower (p < 0.05). In the random forest model, these four types of immune cells obtained a higher variable importance score than other cells, including mean decreased accuracy and mean decreased gini evaluation. We ran the OOB cross-validation in each sample of datasets (training set and testing set) and obtained 79 and 69% accuracy, respectively. Abnormal proportions of four types of immune cells were identified in PH samples compared with non-PH samples, suggesting their involvement in PH development. In summary, the immune cell infiltration in PF patients is associated with the PH status of patients, which deserves further investigation in the future.
Collapse
Affiliation(s)
- Feng Zhu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Traditional Chinese Medicine, Hebei North University, Zhangjiakou, China.,Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Lili Zuo
- Department of Neonatal, ZiBo Maternal and Child Health Hospital, Zibo, China
| | - Rui Hu
- Center for Drug Monitoring and Evaluation Department, Center for Drug Monitoring and Evaluation in Zhangjiakou, Zhangjiakou, China
| | - Jin Wang
- Department of Cardiovascular Disease, ZiBo Hospital of Traditional Chinese Medicine, Zibo, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Limin Feng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
25
|
Lopez-Crisosto C, Arias-Carrasco R, Sepulveda P, Garrido-Olivares L, Maracaja-Coutinho V, Verdejo HE, Castro PF, Lavandero S. Novel molecular insights and public omics data in pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166200. [PMID: 34144090 DOI: 10.1016/j.bbadis.2021.166200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension is a rare disease with high morbidity and mortality which mainly affects women of reproductive age. Despite recent advances in understanding the pathogenesis of pulmonary hypertension, the high heterogeneity in the presentation of the disease among different patients makes it difficult to make an accurate diagnosis and to apply this knowledge to effective treatments. Therefore, new studies are required to focus on translational and personalized medicine to overcome the lack of specificity and efficacy of current management. Here, we review the majority of public databases storing 'omics' data of pulmonary hypertension studies, from animal models to human patients. Moreover, we review some of the new molecular mechanisms involved in the pathogenesis of pulmonary hypertension, including non-coding RNAs and the application of 'omics' data to understand this pathology, hoping that these new approaches will provide insights to guide the way to personalized diagnosis and treatment.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile
| | - Raul Arias-Carrasco
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile
| | - Pablo Sepulveda
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Garrido-Olivares
- Cardiovascular Surgery, Division of Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380492, Chile; Division of Cardiovascular Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago 8380492, Chile; Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
26
|
Ruffenach G, Hong J, Vaillancourt M, Medzikovic L, Eghbali M. Pulmonary hypertension secondary to pulmonary fibrosis: clinical data, histopathology and molecular insights. Respir Res 2020; 21:303. [PMID: 33208169 PMCID: PMC7677848 DOI: 10.1186/s12931-020-01570-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary hypertension (PH) developing secondarily in pulmonary fibrosis (PF) patients (PF-PH) is a frequent co-morbidity. The high prevalence of PH in PF patients is very concerning since the presence of PH is a strong predictor of mortality in PF patients. Until recently, PH was thought to arise solely from fibrotic destruction of the lung parenchyma, leading to hypoxic vasoconstriction and loss of vascular bed density. Thus, potential cellular and molecular dysregulation of vascular remodeling as a driver of PF-PH has been under-investigated. The recent demonstrations that there is no correlation between the severity of the fibrosis and development of PH, along with the finding that significant vascular histological and molecular differences exist between patients with and without PH have shifted the etiological paradigm of PF-PH. This review aims to provide a comprehensive translational overview of PH in PF patients from clinical diagnosis and outcome to the latest understanding of the histology and molecular pathophysiology of PF-PH.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology and Perioperiative Medicine, David Geffen School of Medicine, University of California, BH-550CHS, Los Angeles, CA, 90095-7115, USA
| | - Jason Hong
- Division of Molecular Medicine, Department of Anesthesiology and Perioperiative Medicine, David Geffen School of Medicine, University of California, BH-550CHS, Los Angeles, CA, 90095-7115, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mylène Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lejla Medzikovic
- Division of Molecular Medicine, Department of Anesthesiology and Perioperiative Medicine, David Geffen School of Medicine, University of California, BH-550CHS, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology and Perioperiative Medicine, David Geffen School of Medicine, University of California, BH-550CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
27
|
Luo J, Li H, Liu Z, Li C, Wang R, Fang J, Lu S, Guo J, Zhu X, Wang X. Integrative analyses of gene expression profile reveal potential crucial roles of mitotic cell cycle and microtubule cytoskeleton in pulmonary artery hypertension. BMC Med Genomics 2020; 13:86. [PMID: 32586319 PMCID: PMC7318763 DOI: 10.1186/s12920-020-00740-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 06/15/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a life-threatening condition. The aim of this study was to explore potential crucial genes and pathways associated with PAH based on integrative analyses of gene expression and to shed light on the identification of biomarker for PAH. METHODS Gene expression profile of pulmonary tissues from 27 PAH patients and 22 normal controls were downloaded from public database (GSE53408 and GSE113439). After the identification of differentially expressed genes (DEGs), hub pathways and genes were identified based on the comprehensive evaluation of protein-protein interaction (PPI) network analysis, modular analysis and cytohubba's analysis, and further validated in another PAH transcriptomic dataset (GSE33463). Potentially associated micro-RNAs (miRNAs) were also predicted. RESULTS A total of 521 DEGs were found between PAH and normal controls, including 432 up-regulated DEGs and 89 down-regulated DEGs. Functional enrichment analysis showed that these DEGs were mainly enriched in mitotic cell cycle process, mitotic cell cycle and microtubule cytoskeleton organization. Moreover, five key genes (CDK1, SMC2, SMC4, KIF23, and CENPE) were identified and then further validated in another transcriptomic dataset associated with special phenotypes of PAH. Furthermore, these hub genes were mainly enriched in promoting mitotic cell cycle process, which may be closely associated with the pathogenesis of PAH. We also found that the predicted miRNAs targeting these hub genes were found to be enriched in TGF-β and Hippo signaling pathway. CONCLUSION These findings are expected to gain a further insight into the development of PAH and provide a promising index for the detection of PAH.
Collapse
Affiliation(s)
- Jing Luo
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Haiyan Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenlu Li
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruochen Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jinxia Fang
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Saisai Lu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jing Guo
- College of psychologic medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaochun Zhu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaobing Wang
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
28
|
King CS, Shlobin OA. The Trouble With Group 3 Pulmonary Hypertension in Interstitial Lung Disease: Dilemmas in Diagnosis and the Conundrum of Treatment. Chest 2020; 158:1651-1664. [PMID: 32387520 DOI: 10.1016/j.chest.2020.04.046] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
Pulmonary hypertension (PH) due to interstitial lung disease (ILD; PH-ILD) can complicate a multitude of ILDs, including idiopathic pulmonary fibrosis, chronic hypersensitivity pneumonitis, and nonspecific interstitial pneumonia. Development of PH-ILD is associated with increased need for supplemental oxygen, reduced mobility, and decreased survival. A high index of suspicion is required to make the diagnosis, given the substantial overlap in symptoms with those of ILD without PH. Severely reduced diffusing capacity or 6-min walk test distance, prominent exertional desaturation, and impaired heart rate recovery after exercise are all suggestive of the development of PH-ILD. Traditional transthoracic echocardiography is the most commonly used screening test for PH-ILD, but it lacks sensitivity and specificity. Newer echocardiographic tools involving 3-dimensional assessment of the right ventricle may have a role in both prognosis and the monitoring of patients with PH-ILD. Right-sided heart catheterization remains the gold standard for confirming a diagnosis of PH-ILD. Although there is little debate about the use of supplemental oxygen and diuretic therapy in the treatment of PH-ILD, treatment with pulmonary vasodilator therapy remains controversial. Although several studies have been terminated prematurely for harm, the recently completed INCREASE trial of inhaled treprostinil appears to validate the concept of treating PH-ILD with pulmonary vasodilators and, we hope, will serve as a foundation from which future studies can be developed.
Collapse
Affiliation(s)
- Christopher S King
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA
| | - Oksana A Shlobin
- Pulmonary Hypertension Program, Inova Fairfax Hospital, Falls Church, VA.
| |
Collapse
|
29
|
Harbaum L, Rhodes CJ, Otero-Núñez P, Wharton J, Wilkins MR. The application of 'omics' to pulmonary arterial hypertension. Br J Pharmacol 2020; 178:108-120. [PMID: 32201940 DOI: 10.1111/bph.15056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/03/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Recent genome-wide analyses of rare and common sequence variations have brought greater clarity to the genetic architecture of pulmonary arterial hypertension and implicated novel genes in disease development. Transcriptional signatures have been reported in whole lung tissue, pulmonary vascular cells and peripheral circulating cells. High-throughput platforms for plasma proteomics and metabolomics have identified novel biomarkers associated with clinical outcomes and provided molecular instruments for risk assessment. There are methodological challenges to integrating these datasets, coupled to statistical power limitations inherent to the study of a rare disease, but the expectation is that this approach will reveal novel druggable targets and biomarkers that will open the way to personalized medicine. Here, we review the current state-of-the-art and future promise of 'omics' in the field of translational medicine in pulmonary arterial hypertension. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Lars Harbaum
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Pablo Otero-Núñez
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
30
|
Elia D, Caminati A, Zompatori M, Cassandro R, Lonati C, Luisi F, Pelosi G, Provencher S, Harari S. Pulmonary hypertension and chronic lung disease: where are we headed? Eur Respir Rev 2019; 28:28/153/190065. [DOI: 10.1183/16000617.0065-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/22/2019] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension related to chronic lung disease, mainly represented by COPD and idiopathic pulmonary fibrosis, is associated with a worse outcome when compared with patients only affected by parenchymal lung disease. At present, no therapies are available to reverse or slow down the pathological process of this condition and most of the clinical trials conducted to date have had no clinically significant impact. Nevertheless, the importance of chronic lung diseases is always more widely recognised and, along with its increasing incidence, associated pulmonary hypertension is also expected to be growing in frequency and as a health burden worldwide. Therefore, it is desirable to develop useful and reliable tools to obtain an early diagnosis and to monitor and follow-up this condition, while new insights in the therapeutic approach are explored.
Collapse
|
31
|
Ruffenach G, Umar S, Vaillancourt M, Hong J, Cao N, Sarji S, Moazeni S, Cunningham CM, Ardehali A, Reddy ST, Saggar R, Fishbein G, Eghbali M. Histological hallmarks and role of Slug/PIP axis in pulmonary hypertension secondary to pulmonary fibrosis. EMBO Mol Med 2019; 11:e10061. [PMID: 31468711 PMCID: PMC6728601 DOI: 10.15252/emmm.201810061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/02/2023] Open
Abstract
Pulmonary hypertension secondary to pulmonary fibrosis (PF-PH) is one of the most common causes of PH, and there is no approved therapy. The molecular signature of PF-PH and underlying mechanism of why pulmonary hypertension (PH) develops in PF patients remains understudied and poorly understood. We observed significantly increased vascular wall thickness in both fibrotic and non-fibrotic areas of PF-PH patient lungs compared to PF patients. The increased vascular wall thickness in PF-PH patients is concomitant with a significantly increased expression of the transcription factor Slug within the macrophages and its target prolactin-induced protein (PIP), an extracellular matrix protein that induces pulmonary arterial smooth muscle cell proliferation. We developed a novel translational rat model of combined PF-PH that is reproducible and shares similar histological features (fibrosis, pulmonary vascular remodeling) and molecular features (Slug and PIP upregulation) with human PF-PH. We found Slug inhibition decreases PH severity in our animal model of PF-PH. Our study highlights the role of Slug/PIP axis in PF-PH.
Collapse
Affiliation(s)
- Gregoire Ruffenach
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Soban Umar
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Mylene Vaillancourt
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Jason Hong
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
- Division of Pulmonary and Critical CareDepartment of MedicineUCLALos AngelesCAUSA
| | - Nancy Cao
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Shervin Sarji
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Shayan Moazeni
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Christine M Cunningham
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| | - Abbas Ardehali
- Division of Cardiothoracic SurgeryDepartment of SurgeryUCLALos AngelesCAUSA
| | - Srinivasa T Reddy
- Division of Molecular & Medical PharmacologyDepartment of MedicineUCLALos AngelesCAUSA
| | - Rajan Saggar
- Division of Pulmonary and Critical CareDepartment of MedicineUCLALos AngelesCAUSA
| | | | - Mansoureh Eghbali
- Division of Molecular MedicineDepartment of Anesthesiology & Perioperative MedicineUCLALos AngelesCAUSA
| |
Collapse
|
32
|
Cui S, Wu Q, West J, Bai J. Machine learning-based microarray analyses indicate low-expression genes might collectively influence PAH disease. PLoS Comput Biol 2019; 15:e1007264. [PMID: 31404060 PMCID: PMC6705875 DOI: 10.1371/journal.pcbi.1007264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/22/2019] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Abstract
Accurately predicting and testing the types of Pulmonary arterial hypertension (PAH) of each patient using cost-effective microarray-based expression data and machine learning algorithms could greatly help either identifying the most targeting medicine or adopting other therapeutic measures that could correct/restore defective genetic signaling at the early stage. Furthermore, the prediction model construction processes can also help identifying highly informative genes controlling PAH, leading to enhanced understanding of the disease etiology and molecular pathways. In this study, we used several different gene filtering methods based on microarray expression data obtained from a high-quality patient PAH dataset. Following that, we proposed a novel feature selection and refinement algorithm in conjunction with well-known machine learning methods to identify a small set of highly informative genes. Results indicated that clusters of small-expression genes could be extremely informative at predicting and differentiating different forms of PAH. Additionally, our proposed novel feature refinement algorithm could lead to significant enhancement in model performance. To summarize, integrated with state-of-the-art machine learning and novel feature refining algorithms, the most accurate models could provide near-perfect classification accuracies using very few (close to ten) low-expression genes. Pulmonary arterial hypertension (PAH) is a serious and progressive disease, with only a roughly 50% of 5-year survival rate even with best available therapies. Accurately detecting/differentiating different forms of PAH and developing drugs that could directly target at genes involved in PAH pathogenesis are essential. We proposed a computational approach using low-cost microarray data collected from a clinical trial and had accurately predicted each PAH group. In particular, we considered the fact that there might exist some low-expression genes that were usually discarded by researchers but might function collectively and significantly controlling the disease in each case. Therefore, we had developed different filtering algorithms that intentionally selected those low-expression genes for constructing prediction model. Using a few highly informative low-expression genes that had never been extensively investigated before, our systematic approach had produced models that could offer prefect accuracy in predicting PAH. Additionally, our analysis also found that the composition of gene factors controlling the PAH etiology under each form are quite different from each other.
Collapse
Affiliation(s)
- Song Cui
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
- School of Agriculture, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Qiang Wu
- Department of Mathematics, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - James West
- Department of Medicine, Pulmonary Vascular Research Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jiangping Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
- * E-mail:
| |
Collapse
|
33
|
Mura M, Cecchini MJ, Joseph M, Granton JT. Osteopontin lung gene expression is a marker of disease severity in pulmonary arterial hypertension. Respirology 2019; 24:1104-1110. [PMID: 30963672 DOI: 10.1111/resp.13557] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/25/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Osteopontin (OPN) is a pleiotropic cytokine involved in the proliferation of pulmonary artery smooth muscle cells (PA-SMC). OPN is upregulated in the lungs of patients with pulmonary hypertension (PH) associated with pulmonary fibrosis, suggesting that the lung is a source of OPN. We hypothesized that OPN lung expression is elevated in Group I pulmonary arterial hypertension (PAH) and is correlated to haemodynamics. METHODS Microarray analysis (Affymetrix) was performed after RNA was extracted from explanted lungs in 15 patients with Group I PAH who underwent lung transplantation (LTx) and 11 normal controls. PA pressure levels were recorded intraoperatively, immediately before starting LTx. Serum OPN levels were measured in subjects with PAH, Group II PH and normal controls on the day of right heart catheterization. RESULTS OPN was among the top five upregulated genes in PAH compared to normal controls, which was confirmed by reverse transcription polymerase chain reaction (RT-PCR). OPN expression was similar and equally elevated in different subtypes of PAH. A strong significant correlation was observed between mean pulmonary arterial pressure and OPN gene expression. Ingenuity pathway analysis showed the involvement of OPN in functions and networks relevant to angiogenesis, cell death and proliferation of PA-SMC. OPN serum levels did not differ in subjects with Group I PAH and Group II PH. CONCLUSION In the lungs of patients with severe PAH, OPN is highly expressed and the level of expression is significantly correlated to disease severity. OPN may play an important role in the vascular remodelling process of PAH.
Collapse
Affiliation(s)
- Marco Mura
- Division of Respirology, Western University, London, ON, Canada.,Toronto Lung Transplant Program, University of Toronto, Toronto, ON, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Mariamma Joseph
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - John T Granton
- Toronto Lung Transplant Program, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Nathan SD, Barbera JA, Gaine SP, Harari S, Martinez FJ, Olschewski H, Olsson KM, Peacock AJ, Pepke-Zaba J, Provencher S, Weissmann N, Seeger W. Pulmonary hypertension in chronic lung disease and hypoxia. Eur Respir J 2019; 53:13993003.01914-2018. [PMID: 30545980 PMCID: PMC6351338 DOI: 10.1183/13993003.01914-2018] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension (PH) frequently complicates the course of patients with various forms of chronic lung disease (CLD). CLD-associated PH (CLD-PH) is invariably associated with reduced functional ability, impaired quality of life, greater oxygen requirements and an increased risk of mortality. The aetiology of CLD-PH is complex and multifactorial, with differences in the pathogenic sequelae between the diverse forms of CLD. Haemodynamic evaluation of PH severity should be contextualised within the extent of the underlying lung disease, which is best gauged through a combination of physiological and imaging assessment. Who, when, if and how to screen for PH will be addressed in this article, as will the current state of knowledge with regard to the role of treatment with pulmonary vasoactive agents. Although such therapy cannot be endorsed given the current state of findings, future studies in this area are strongly encouraged. State of the art and research perspectives in pulmonary hypertension in chronic lung disease and hypoxiahttp://ow.ly/XcW730meWxy
Collapse
Affiliation(s)
| | - Joan A Barbera
- Dept of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases, Madrid, Spain
| | - Sean P Gaine
- Respiratory Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sergio Harari
- U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica IRCCS, Milan, Italy
| | | | - Horst Olschewski
- Division of Pulmonology, Medizinische Universitat Graz, Graz, Austria
| | - Karen M Olsson
- Dept of Respiratory Medicine, Hannover Medical School and Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Andrew J Peacock
- Scottish Pulmonary Vascular Unit, Regional Lung and Heart Centre, Glasgow, UK
| | | | - Steeve Provencher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Quebec City, QC, Canada
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University Giessen and Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- University of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University Giessen and Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
35
|
Transcriptomic evidence of immune activation in macroscopically normal-appearing and scarred lung tissues in idiopathic pulmonary fibrosis. Cell Immunol 2018; 325:1-13. [PMID: 29329637 DOI: 10.1016/j.cellimm.2018.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease manifested by overtly scarred peripheral and basilar regions and more normal-appearing central lung areas. Lung tissues from macroscopically normal-appearing (IPFn) and scarred (IPFs) areas of explanted IPF lungs were analyzed by RNASeq and compared with healthy control (HC) lung tissues. There were profound transcriptomic changes in IPFn compared with HC tissues, which included elevated expression of numerous immune-, inflammation-, and extracellular matrix-related mRNAs, and these changes were similar to those observed with IPFs compared to HC. Comparing IPFn directly to IPFs, elevated expression of epithelial mucociliary mRNAs was observed in the IPFs tissues. Thus, despite the known geographic tissue heterogeneity in IPF, the entire lung is actively involved in the disease process, and demonstrates pronounced elevated expression of numerous immune-related genes. Differences between normal-appearing and scarred tissues may thus be driven by deranged epithelial homeostasis or possibly non-transcriptomic factors.
Collapse
|
36
|
Zhou T, Tang H, Han Y, Fraidenburg D, Kim YW, Lee D, Choi J, Bang H, Ko JH. Expression profile of mitochondrial voltage-dependent anion channel-1 (VDAC1) influenced genes is associated with pulmonary hypertension. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:353-360. [PMID: 28461778 PMCID: PMC5409118 DOI: 10.4196/kjpp.2017.21.3.353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 11/22/2022]
Abstract
Several human diseases have been associated with mitochondrial voltage-dependent anion channel-1 (VDAC1) due to its role in calcium ion transportation and apoptosis. Recent studies suggest that VDAC1 may interact with endothelium-dependent nitric oxide synthase (eNOS). Decreased VDAC1 expression may limit the physical interaction between VDAC1 and eNOS and thus impair nitric oxide production, leading to cardiovascular diseases, including pulmonary arterial hypertension (PAH). In this report, we conducted meta-analysis of genome-wide expression data to identify VDAC1 influenced genes implicated in PAH pathobiology. First, we identified the genes differentially expressed between wild-type and Vdac1 knockout mouse embryonic fibroblasts in hypoxic conditions. These genes were deemed to be influenced by VDAC1 deficiency. Gene ontology analysis indicates that the VDAC1 influenced genes are significantly associated with PAH pathobiology. Second, a molecular signature derived from the VDAC1 influenced genes was developed. We suggest that, VDAC1 has a protective role in PAH and the gene expression signature of VDAC1 influenced genes can be used to i) predict severity of pulmonary hypertension secondary to pulmonary diseases, ii) differentiate idiopathic pulmonary artery hypertension (IPAH) patients from controls, and iii) differentiate IPAH from connective tissue disease associated PAH.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Haiyang Tang
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Ying Han
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dustin Fraidenburg
- Section of Pulmonary, Critical Care, Sleep & Allergy, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Young-Won Kim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Donghee Lee
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Jeongyoon Choi
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
37
|
Kapur A, Marwah K, Alterovitz G. Gene expression prediction using low-rank matrix completion. BMC Bioinformatics 2016; 17:243. [PMID: 27317252 PMCID: PMC4912738 DOI: 10.1186/s12859-016-1106-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/28/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND An exponential growth of high-throughput biological information and data has occurred in the past decade, supported by technologies, such as microarrays and RNA-Seq. Most data generated using such methods are used to encode large amounts of rich information, and determine diagnostic and prognostic biomarkers. Although data storage costs have reduced, process of capturing data using aforementioned technologies is still expensive. Moreover, the time required for the assay, from sample preparation to raw value measurement is excessive (in the order of days). There is an opportunity to reduce both the cost and time for generating such expression datasets. RESULTS We propose a framework in which complete gene expression values can be reliably predicted in-silico from partial measurements. This is achieved by modelling expression data as a low-rank matrix and then applying recently discovered techniques of matrix completion by using nonlinear convex optimisation. We evaluated prediction of gene expression data based on 133 studies, sourced from a combined total of 10,921 samples. It is shown that such datasets can be constructed with a low relative error even at high missing value rates (>50 %), and that such predicted datasets can be reliably used as surrogates for further analysis. CONCLUSION This method has potentially far-reaching applications including how bio-medical data is sourced and generated, and transcriptomic prediction by optimisation. We show that gene expression data can be computationally constructed, thereby potentially reducing the costs of gene expression profiling. In conclusion, this method shows great promise of opening new avenues in research on low-rank matrix completion in biological sciences.
Collapse
Affiliation(s)
- Arnav Kapur
- />Biomedical Cybernetics Laboratory, Harvard Medical School, Boston, 02115 MA USA
| | - Kshitij Marwah
- />Biomedical Cybernetics Laboratory, Harvard Medical School, Boston, 02115 MA USA
| | - Gil Alterovitz
- />Biomedical Cybernetics Laboratory, Harvard Medical School, Boston, 02115 MA USA
- />Department of Health Science and Technology, Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, 02139 MA USA
| |
Collapse
|
38
|
Sasagawa S, Nishimura Y, Sawada H, Zhang E, Okabe S, Murakami S, Ashikawa Y, Yuge M, Kawaguchi K, Kawase R, Mitani Y, Maruyama K, Tanaka T. Comparative Transcriptome Analysis Identifies CCDC80 as a Novel Gene Associated with Pulmonary Arterial Hypertension. Front Pharmacol 2016; 7:142. [PMID: 27375481 PMCID: PMC4894905 DOI: 10.3389/fphar.2016.00142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a heterogeneous disorder associated with a progressive increase in pulmonary artery resistance and pressure. Although various therapies have been developed, the 5-year survival rate of PAH patients remains low. There is thus an important need to identify novel genes that are commonly dysregulated in PAH of various etiologies and could be used as biomarkers and/or therapeutic targets. In this study, we performed comparative transcriptome analysis of five mammalian PAH datasets downloaded from a public database. We identified 228 differentially expressed genes (DEGs) from a rat PAH model caused by inhibition of vascular endothelial growth factor receptor under hypoxic conditions, 379 DEGs from a mouse PAH model associated with systemic sclerosis, 850 DEGs from a mouse PAH model associated with schistosomiasis, 1598 DEGs from one cohort of human PAH patients, and 4260 DEGs from a second cohort of human PAH patients. Gene-by-gene comparison identified four genes that were differentially upregulated or downregulated in parallel in all five sets of DEGs. Expression of coiled-coil domain containing 80 (CCDC80) and anterior gradient two genes was significantly increased in the five datasets, whereas expression of SMAD family member six and granzyme A was significantly decreased. Weighted gene co-expression network analysis revealed a connection between CCDC80 and collagen type I alpha 1 (COL1A1) expression. To validate the function of CCDC80 in vivo, we knocked out ccdc80 in zebrafish using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. In vivo imaging of zebrafish expressing a fluorescent protein in endothelial cells showed that ccdc80 deletion significantly increased the diameter of the ventral artery, a vessel supplying blood to the gills. We also demonstrated that expression of col1a1 and endothelin-1 mRNA was significantly decreased in the ccdc80-knockout zebrafish. Finally, we examined Ccdc80 immunoreactivity in a rat PAHmodel and found increased expression in the hypertrophied media and adventitia of the pre-acinar pulmonary arteries (PAs) and in the thickened intima, media, and adventitia of the obstructed intra-acinar PAs. These results suggest that increased expression of CCDC80 may be involved in the pathogenesis of PAH, potentially by modulating the expression of endothelin-1 and COL1A1.
Collapse
Affiliation(s)
- Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, TsuJapan; Mie University Medical Zebrafish Research Center, TsuJapan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, TsuJapan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, TsuJapan; Department of Bioinformatics, Mie University Life Science Research Center, TsuJapan
| | - Hirofumi Sawada
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu Japan
| | - Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu Japan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, TsuJapan; Mie University Medical Zebrafish Research Center, TsuJapan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, TsuJapan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, TsuJapan; Department of Bioinformatics, Mie University Life Science Research Center, TsuJapan
| |
Collapse
|
39
|
Hoffmann J, Wilhelm J, Olschewski A, Kwapiszewska G. Microarray analysis in pulmonary hypertension. Eur Respir J 2016; 48:229-41. [PMID: 27076594 PMCID: PMC5009873 DOI: 10.1183/13993003.02030-2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance. Comprehensive overview of compartment-specific microarray studies of material from pulmonary hypertension patientshttp://ow.ly/YEFO2
Collapse
Affiliation(s)
- Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Jochen Wilhelm
- Dept of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria Dept of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria Dept of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
40
|
Hayes D, Black SM, Tobias JD, Kirkby S, Mansour HM, Whitson BA. Influence of Pulmonary Hypertension on Patients With Idiopathic Pulmonary Fibrosis Awaiting Lung Transplantation. Ann Thorac Surg 2015; 101:246-52. [PMID: 26319484 DOI: 10.1016/j.athoracsur.2015.06.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND The influence of varying levels of pulmonary hypertension (PH) on survival in idiopathic pulmonary fibrosis is not well defined. METHODS The United Network for Organ Sharing database was queried from 2005 to 2013 to identify first-time lung transplant candidates listed for lung transplantation who were tracked from waitlist entry date until death or censoring to determine the influence of PH on patients with advanced lung disease. Using data for right heart catheterization measurements, mild PH was defined as mean pulmonary artery pressure of 25 mm Hg or more, and severe as 35 mm Hg or more. RESULTS Of 6,657 idiopathic pulmonary fibrosis patients, 6,651 were used for univariate analysis, 6,126 for Kaplan-Meier survival function, 6,013 for multivariate Cox models, and 5,186 (mild PH) and 2,014 (severe PH) for propensity score matching, respectively. Univariate Cox proportional hazards analysis found significant differences in survival for mild PH (hazard ratio [HR] 1.689, 95% confidence interval [CI]: 1.434 to 1.988, p < 0.001) and severe PH (HR 2.068, 95% CI: 1.715 to 2.493, p < 0.001). Further assessment by multivariate Cox models identified significant risk for death for mild PH (HR 1.433, 95% CI: 1.203 to 1.706, p < 0.001) and severe PH (HR 1.597, 95% CI: 1.308 to 1.949, p < 0.001). Propensity score matching confirmed the risk for death for mild PH (HR 1.530, 95% CI: 1.189 to 1.969, p = 0.001) and severe PH (HR 2.103, 95% CI: 1.436 to 3.078, p < 0.001). CONCLUSIONS The manifestation of PH, even with mild severity, is associated with significantly increased risk for death among patients with idiopathic pulmonary fibrosis awaiting lung transplantation, so referral should be considered early in the disease course.
Collapse
Affiliation(s)
- Don Hayes
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio; Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio; Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio.
| | - Sylvester M Black
- Department of Surgery, Ohio State University College of Medicine, Columbus, Ohio
| | - Joseph D Tobias
- Department of Anesthesiology, Ohio State University College of Medicine, Columbus, Ohio; Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Stephen Kirkby
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio; Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio; Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, University of Arizona College of Pharmacy, Tucson, Arizona
| | - Bryan A Whitson
- Department of Surgery, Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
41
|
DePianto DJ, Chandriani S, Abbas AR, Jia G, N'Diaye EN, Caplazi P, Kauder SE, Biswas S, Karnik SK, Ha C, Modrusan Z, Matthay MA, Kukreja J, Collard HR, Egen JG, Wolters PJ, Arron JR. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax 2014; 70:48-56. [PMID: 25217476 DOI: 10.1136/thoraxjnl-2013-204596] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND There is microscopic spatial and temporal heterogeneity of pathological changes in idiopathic pulmonary fibrosis (IPF) lung tissue, which may relate to heterogeneity in pathophysiological mediators of disease and clinical progression. We assessed relationships between gene expression patterns, pathological features, and systemic biomarkers to identify biomarkers that reflect the aggregate disease burden in patients with IPF. METHODS Gene expression microarrays (N=40 IPF; 8 controls) and immunohistochemical analyses (N=22 IPF; 8 controls) of lung biopsies. Clinical characterisation and blood biomarker levels of MMP3 and CXCL13 in a separate cohort of patients with IPF (N=80). RESULTS 2940 genes were significantly differentially expressed between IPF and control samples (|fold change| >1.5, p<0.05). Two clusters of co-regulated genes related to bronchiolar epithelium or lymphoid aggregates exhibited substantial heterogeneity within the IPF population. Gene expression in bronchiolar and lymphoid clusters corresponded to the extent of bronchiolisation and lymphoid aggregates determined by immunohistochemistry in adjacent tissue sections. Elevated serum levels of MMP3, encoded in the bronchiolar cluster, and CXCL13, encoded in the lymphoid cluster, corresponded to disease severity and shortened survival time (p<10(-7) for MMP3 and p<10(-5) for CXCL13; Cox proportional hazards model). CONCLUSIONS Microscopic pathological heterogeneity in IPF lung tissue corresponds to specific gene expression patterns related to bronchiolisation and lymphoid aggregates. MMP3 and CXCL13 are systemic biomarkers that reflect the aggregate burden of these pathological features across total lung tissue. These biomarkers may have clinical utility as prognostic and/or surrogate biomarkers of disease activity in interventional studies in IPF.
Collapse
Affiliation(s)
- Daryle J DePianto
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Sanjay Chandriani
- Genentech Research and Early Development, South San Francisco, California, USA Novartis Institutes for Biomedical Research, Emeryville, California, USA
| | - Alexander R Abbas
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Guiquan Jia
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Elsa N N'Diaye
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Patrick Caplazi
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Steven E Kauder
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Sabyasachi Biswas
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Satyajit K Karnik
- Genentech Research and Early Development, South San Francisco, California, USA Gilead Sciences, Foster City, California, USA
| | - Connie Ha
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Zora Modrusan
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Michael A Matthay
- Department of Medicine, University of California, San Francisco, California, USA
| | - Jasleen Kukreja
- Department of Surgery, University of California, San Francisco, California, USA
| | - Harold R Collard
- Department of Medicine, University of California, San Francisco, California, USA
| | - Jackson G Egen
- Genentech Research and Early Development, South San Francisco, California, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, California, USA
| | - Joseph R Arron
- Genentech Research and Early Development, South San Francisco, California, USA
| |
Collapse
|
42
|
Hoffmann J, Wilhelm J, Marsh LM, Ghanim B, Klepetko W, Kovacs G, Olschewski H, Olschewski A, Kwapiszewska G. Distinct differences in gene expression patterns in pulmonary arteries of patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis with pulmonary hypertension. Am J Respir Crit Care Med 2014; 190:98-111. [PMID: 24918967 DOI: 10.1164/rccm.201401-0037oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE The development of pulmonary hypertension (PH) in patients with idiopathic pulmonary fibrosis (IPF) or chronic obstructive pulmonary disease (COPD) is associated with increased morbidity. OBJECTIVES To elucidate whether vascular remodeling in a well-characterized PH-COPD and PH-IPF patient cohort results from similar or divergent molecular changes. METHODS Vascular remodeling of donor, PH-COPD, and PH-IPF pulmonary arteries was assessed. Laser capture microdissected pulmonary artery profiles in combination with whole genome microarrays were performed. MEASUREMENTS AND MAIN RESULTS Pulmonary arteries from patients with COPD and IPF with PH exhibited remodeling of vascular layers and reduction of lumen area. Pathway analyses comparing normalized gene expression profiles obtained from patients with PH-IPF or PH-COPD revealed the retinol and extracellular matrix (ECM) receptor interaction to be the most perturbed processes. Within the ECM-receptor pathway, differential regulation of 5 out of the top 10 results (collagen, type III, α-1; tenascin C; collagen, type VI, α-3; thrombospondin 2; and von Willebrand factor) were verified by real-time polymerase chain reaction and immunohistochemical staining. CONCLUSIONS Despite clinical and histologic vascular remodeling in all patients with PH-COPD and PH-IPF, differential gene expression pattern was present in pulmonary artery profiles. Several genes involved in retinol metabolism and ECM receptor interaction enable discrimination of vascular remodeling in PH-IPF or PH-COPD. This suggests that pulmonary arterial remodeling in PH-COPD and PH-IPF is caused by different molecular mechanisms and may require specific therapeutic options.
Collapse
Affiliation(s)
- Julia Hoffmann
- 1 Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Renzoni E, Srihari V, Sestini P. Pathogenesis of idiopathic pulmonary fibrosis: review of recent findings. F1000PRIME REPORTS 2014; 6:69. [PMID: 25165568 PMCID: PMC4126534 DOI: 10.12703/p6-69] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is likely to result from the interaction between environmental exposures, including cigarette smoke, and genetic predisposition. This review focuses on clues provided by recent genetic association studies and other selected data and hypotheses. In IPF, association with surfactant mutations has highlighted the importance of type II epithelial cells, while shortened telomeres in some patients suggest that accelerated aging may play a role in the pathogenesis of lung fibrosis, possibly by affecting the renewal/differentiation potential of epithelial cells. The finding that a common variant in mucin 5B predisposes individuals to both familial and sporadic IPF suggests a hitherto under-investigated role of bronchiolar cells and mucins. Although the pathogenetic link between mucins and lung fibrosis is not known, it is possible that MUC5B overexpression interferes with physiological mucosal host defense, with reduced clearance of micro-organisms or inorganic noxious agents, or induction of endoplasmic reticulum stress. Other components of innate and adaptive immunity are likely to be involved in IPF pathogenesis/progression. Finally, the importance of the clotting cascade in IPF pathogenesis has been confirmed by a recent epidemiological study, in which patients with IPF were almost five times more likely than general population controls to have at least one inherited or acquired clotting defect.
Collapse
Affiliation(s)
- Elisabetta Renzoni
- Interstitial Lung Disease Unit, Royal Brompton Hospital and National Heart and Lung InstituteImperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LRUK
| | - Veeraraghavan Srihari
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University1365 Clifton Rd NE Rm A 4319, Atlanta, GA 30322USA
| | - Piersante Sestini
- Respiratory Medicine Department, Ospedale “Le Scotte”, University of Siena, viale Bracci53100 SienaItaly
| |
Collapse
|
44
|
Pathak RR, Davé V. Integrating omics technologies to study pulmonary physiology and pathology at the systems level. Cell Physiol Biochem 2014; 33:1239-60. [PMID: 24802001 PMCID: PMC4396816 DOI: 10.1159/000358693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 12/13/2022] Open
Abstract
Assimilation and integration of "omics" technologies, including genomics, epigenomics, proteomics, and metabolomics has readily altered the landscape of medical research in the last decade. The vast and complex nature of omics data can only be interpreted by linking molecular information at the organismic level, forming the foundation of systems biology. Research in pulmonary biology/medicine has necessitated integration of omics, network, systems and computational biology data to differentially diagnose, interpret, and prognosticate pulmonary diseases, facilitating improvement in therapy and treatment modalities. This review describes how to leverage this emerging technology in understanding pulmonary diseases at the systems level -called a "systomic" approach. Considering the operational wholeness of cellular and organ systems, diseased genome, proteome, and the metabolome needs to be conceptualized at the systems level to understand disease pathogenesis and progression. Currently available omics technology and resources require a certain degree of training and proficiency in addition to dedicated hardware and applications, making them relatively less user friendly for the pulmonary biologist and clinicians. Herein, we discuss the various strategies, computational tools and approaches required to study pulmonary diseases at the systems level for biomedical scientists and clinical researchers.
Collapse
Affiliation(s)
- Ravi Ramesh Pathak
- Morsani College of Medicine, Department of Pathology and Cell Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Vrushank Davé
- Morsani College of Medicine, Department of Pathology and Cell Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| |
Collapse
|
45
|
Zimmermann GS, von Wulffen W, Huppmann P, Meis T, Ihle F, Geiseler J, Leuchte HH, Tufman A, Behr J, Neurohr C. Haemodynamic changes in pulmonary hypertension in patients with interstitial lung disease treated with PDE-5 inhibitors. Respirology 2014; 19:700-6. [DOI: 10.1111/resp.12294] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 12/11/2013] [Accepted: 01/29/2014] [Indexed: 01/30/2023]
Affiliation(s)
- Gregor S. Zimmermann
- Department of Internal Medicine V; Comprehensive Pneumology Center; Member of the German Center for Lung Research; University of Munich
| | - Werner von Wulffen
- Department of Internal Medicine V; Comprehensive Pneumology Center; Member of the German Center for Lung Research; University of Munich
| | - Patrick Huppmann
- Department of Internal Medicine V; Comprehensive Pneumology Center; Member of the German Center for Lung Research; University of Munich
| | - Tobias Meis
- Department of Internal Medicine V; Comprehensive Pneumology Center; Member of the German Center for Lung Research; University of Munich
| | - Franziska Ihle
- Department of Internal Medicine V; Comprehensive Pneumology Center; Member of the German Center for Lung Research; University of Munich
| | | | - Hanno H. Leuchte
- Department of Internal Medicine II; Neuwittelsbach Hospital; Munich
| | - Amanda Tufman
- Department of Internal Medicine V; Comprehensive Pneumology Center; Member of the German Center for Lung Research; University of Munich
| | - Juergen Behr
- Department of Internal Medicine V; Comprehensive Pneumology Center; Member of the German Center for Lung Research; University of Munich
- AsklepiosKlinik; Gauting Germany
| | - Claus Neurohr
- Department of Internal Medicine V; Comprehensive Pneumology Center; Member of the German Center for Lung Research; University of Munich
| |
Collapse
|
46
|
Soubrier F, Chung WK, Machado R, Grünig E, Aldred M, Geraci M, Loyd JE, Elliott CG, Trembath RC, Newman JH, Humbert M. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 2014; 62:D13-21. [PMID: 24355637 DOI: 10.1016/j.jacc.2013.10.035] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 12/24/2022]
Abstract
Major discoveries have been obtained within the last decade in the field of hereditary predisposition to pulmonary arterial hypertension (PAH). Among them, the identification of bone morphogenetic protein receptor type 2 (BMPR2) as the major predisposing gene and activin A receptor type II-like kinase-1 (ACVRL1, also known as ALK1) as the major gene when PAH is associated with hereditary hemorrhagic telangiectasia. The mutation detection rate for the known genes is approximately 75% in familial PAH, but the mutation shortfall remains unexplained even after careful molecular investigation of these genes. To identify additional genetic variants predisposing to PAH, investigators harnessed the power of next-generation sequencing to successfully identify additional genes that will be described in this report. Furthermore, common genetic predisposing factors for PAH can be identified by genome-wide association studies and are detailed in this paper. The careful study of families and routine genetic diagnosis facilitated natural history studies based on large registries of PAH patients to be set up in different countries. These longitudinal or cross-sectional studies permitted the clinical characterization of PAH in mutation carriers to be accurately described. The availability of molecular genetic diagnosis has opened up a new field for patient care, including genetic counseling for a severe disease, taking into account that the major predisposing gene has a highly variable penetrance between families. Molecular information can be drawn from the genomic study of affected tissues in PAH, in particular, pulmonary vascular tissues and cells, to gain insight into the mechanisms leading to the development of the disease. High-throughput genomic techniques, on the basis of next-generation sequencing, now allow the accurate quantification and analysis of ribonucleic acid, species, including micro-ribonucleic acids, and allow for a genome-wide investigation of epigenetic or regulatory mechanisms, which include deoxyribonucleic acid methylation, histone methylation, and acetylation, or transcription factor binding.
Collapse
Affiliation(s)
- Florent Soubrier
- Genetics Department, Hospital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris (APHP), Unité Mixte de Recherche en Sante (UMRS) 956 Institut National de la Sante et de la Recherche Medicale INSERM, Université Pierre et Marie Curie Paris 06 (UPMC), and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York
| | - Rajiv Machado
- University of Lincoln, School of Life Sciences, Lincoln, United Kingdom
| | - Ekkehard Grünig
- Centre for Pulmonary Hypertension at University Hospital Heidelberg, Heidelberg, Germany
| | - Micheala Aldred
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mark Geraci
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - James E Loyd
- Pulmonary Hypertension Center, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center North, Nashville, Tennessee
| | - C Gregory Elliott
- Departments of Medicine at Intermountain Medical Center and the University of Utah, Salt Lake City, Utah
| | - Richard C Trembath
- Division of Genetics and Molecular Medicine, Kings College, London, United Kingdom
| | - John H Newman
- Pulmonary Hypertension Center, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center North, Nashville, Tennessee
| | - Marc Humbert
- Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie, Hôpital de Bicêtre, APHP, Le Kremlin Bicêtre, Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre; Département Hospitalo-Universitaire (DHU) thorax Innovation, AP-HP, Le Kremlin Bicêtre; UMR_S 999, INSERM and Université Paris-Sud, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
47
|
Patel NM, Kawut SM, Jelic S, Arcasoy SM, Lederer DJ, Borczuk AC. Pulmonary arteriole gene expression signature in idiopathic pulmonary fibrosis. Eur Respir J 2013; 41:1324-30. [PMID: 23728404 PMCID: PMC4720265 DOI: 10.1183/09031936.00084112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A third of patients with idiopathic pulmonary fibrosis (IPF) develop pulmonary hypertension (PH-IPF), which is associated with increased mortality. Whether an altered gene expression profile in the pulmonary vasculature precedes the clinical onset of PH-IPF is unknown. We compared gene expression in the pulmonary vasculature of IPF patients with and without PH with controls. Pulmonary arterioles were isolated using laser capture microdissection from 16 IPF patients: eight with PH (PH-IPF) and eight with no PH (NPH-IPF), and seven controls. Probe was prepared from extracted RNA, and hybridised to Affymetrix Hu133 2.0 Plus genechips. Biometric Research Branch array tools and Ingenuity Pathway Analysis software were used for analysis of the microarray data. Univariate analysis revealed 255 genes that distinguished IPF arterioles from controls (p<0.001). Mediators of vascular smooth muscle and endothelial cell proliferation, Wnt signalling and apoptosis were differentially expressed in IPF arterioles. Unsupervised and supervised clustering analyses revealed similar gene expression in PH-IPF and NPH-IPF arterioles. The pulmonary arteriolar gene expression profile is similar in IPF patients with and without coexistent PH. Pathways involved in vascular proliferation and aberrant apoptosis, which may contribute to pulmonary vascular remodelling, are activated in IPF patients.
Collapse
Affiliation(s)
- Nina M. Patel
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University, New York, NY, USA,Interstitial Lung Disease Program, New York Presbyterian Hospital, New York, NY, USA
| | - Steven M. Kawut
- Dept of Medicine and the Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanja Jelic
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University, New York, NY, USA
| | - Selim M. Arcasoy
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University, New York, NY, USA,Interstitial Lung Disease Program, New York Presbyterian Hospital, New York, NY, USA,Lung Transplantation Program, New York Presbyterian Hospital, New York, NY, USA
| | - David J. Lederer
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University, New York, NY, USA,Interstitial Lung Disease Program, New York Presbyterian Hospital, New York, NY, USA,Lung Transplantation Program, New York Presbyterian Hospital, New York, NY, USA
| | - Alain C. Borczuk
- Dept of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
48
|
Abstract
Pulmonary hypertension (PH) is the remarkable hemodynamic consequence of widespread structural and functional changes within the pulmonary circulation. Elevated pulmonary vascular resistance leads to increased mean pulmonary arterial pressure and, ultimately, right ventricular dysfunction. PH carries a poor prognosis and warrants timely and accurate diagnosis for appropriate intervention. The 2008 Dana Point classification system provides the categorical framework currently guiding therapy and surveillance. Radiologic imaging is an essential tool in the detection and diagnostic evaluation of patients with PH. Echocardiography, ventilation-perfusion scintigraphy, multidetector computed tomography, and cardiac magnetic resonance imaging provide insights into vascular morphology, pulmonary parenchymal status, cardiac function, and underlying etiology of the disorder. Emerging techniques of functional pulmonary and cardiac imaging hold great promise for the assessment and monitoring of these patients in the future.
Collapse
Affiliation(s)
- Aletta Ann Frazier
- Department of Diagnostic Radiology, University of Maryland Medical System, Baltimore, MD 21201, USA.
| | | |
Collapse
|
49
|
Abstract
There is incredible potential to advance our understanding of disease pathogenesis, enhance our diagnostic capability, and revolutionize our treatment modalities with the advent of advanced systems approaches to genetic, genomic, and epigenetic discoveries. Investigation using these technologies is beginning to impact our understanding of pulmonary arterial hypertension (PAH). The following review details work to date on single gene mutations in PAH, and expression array analysis in the disease. The wider use of DNA-based arrays for genome wide association studies (GWAS) and copy number alterations is examined. The impact of epigenomic modulation in the pathobiology of PAH and its therapeutic implications is investigated. Finally, a summary of the capabilities and promises for next-generation sequencing is discussed. A framework for studies of the future is proposed.
Collapse
Affiliation(s)
- Mark W Geraci
- University of Colorado School of Medicine, Denver, Colorado, USA
| |
Collapse
|
50
|
Sherner J, Collen J, King CS, Nathan SD. Pulmonary hypertension in idiopathic pulmonary fibrosis: epidemiology, diagnosis and therapeutic implications. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13665-012-0027-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|