1
|
Clark HL, Lachant D, Light AN, Haight D, Lopia S, Mackman N, White RJ. Angiopoietin-2 and D-dimer add prognostic information to clinical risk in pulmonary arterial hypertension. JHLT OPEN 2025; 7:100178. [PMID: 40144824 PMCID: PMC11935438 DOI: 10.1016/j.jhlto.2024.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Background Thrombosis and endothelial injury are pathologic hallmarks of pulmonary arterial hypertension (PAH). We aimed to evaluate whether markers of endothelial dysfunction and coagulation in the blood would provide insight into disease activity, treatment response, and outcomes in PAH. Methods We prospectively collected baseline and 3-month follow-up blood samples from treatment-naïve patients with PAH (n = 22) and those who had a clinical indication to intensify therapy (n = 19). In addition, we recruited 12 healthy people and clinically stable patients with PAH (n = 45) as controls who had 2 blood samples collected twice within 14 days. We generated platelet-free plasma and measured D-dimer, angiopoietin-2, thrombin time, soluble P-selectin, von Willebrand factor, and vascular endothelial growth factor. We assessed treatment response with Reveal Lite 2 scores (all patients had N-terminal-pro-brain natriuretic peptide, 6-minute walk, and functional class assessment at both visits) and followed clinical outcomes for 3 years. Results Angiopoietin-2 levels were elevated and fell in response to effective therapy (drop in Reveal Lite 2 score). At follow-up, persistently elevated angiopoietin-2 levels predicted clinical events and even identified low-risk participants who subsequently had events. D-dimer levels were also elevated in patients with PAH but did not change in response to therapy. Several other abnormalities in endothelial and platelet activation were identified (including elevated soluble P-selectin, elevated von Willebrand factor, and elevated vascular endothelial growth factor) but these did not change with treatment or predict outcome. Conclusions Angiopoietin-2 and D-dimer are elevated in patients with PAH and may add prognostic information to routine clinical assessment.
Collapse
Affiliation(s)
- Heather L. Clark
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York
| | - Daniel Lachant
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York
| | - Allison N. Light
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York
| | - Deborah Haight
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York
| | - Samia Lopia
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | - Nigel Mackman
- Department of Medicine, UNC Blood Research Center, Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - R. James White
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
2
|
Cox-Flaherty K, Moutchia J, Krowka MJ, Al-Naamani N, Fallon MB, DuBrock H, Forde KA, Krok K, Doyle MF, Kawut SM, Ventetuolo CE. Six-Minute walk distance predicts outcomes in liver transplant candidates. Liver Transpl 2023; 29:521-530. [PMID: 36691988 PMCID: PMC10101910 DOI: 10.1097/lvt.0000000000000071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023]
Abstract
A 6-minute walk test is a simple tool for assessing submaximal exercise capacity. We sought to determine whether a 6-minute walk distance (6MWD) predicts outcomes in patients with cirrhosis. The Pulmonary Vascular Complications of Liver Disease 2 study is a multicenter, prospective cohort study that enrolled adults with portal hypertension during liver transplantation evaluation. We excluded subjects with an incident or prevalent portopulmonary hypertension. The 6-minute walk test was performed using standardized methods. Cox proportional hazards modeling and multivariable linear regression analysis were performed to determine the relationship between baseline 6MWD and outcomes. The study sample included 352 subjects. The mean 6MWD was 391±101 m. For each 50-meter decrease in 6MWD, there was a 25% increase in the risk of death (HR 1.25, 95% CI [1.11, 1.41], p < 0.001) after adjustment for age, gender, body mass index, MELD-Na, and liver transplant as a time-varying covariate. In a multistate model, each 50-meter decrease in 6MWD was associated with an increased risk of death before the liver transplant ( p < 0.001) but not after the transplant. 6MWD was similar to MELD-Na in discriminating mortality. Each 50-meter decrease in 6MWD was associated with an increase in all-cause ( p < 0.001) and transplant-free hospitalizations ( p < 0.001) in multivariable models for time-to-recurrent events. Shorter 6MWD was associated with worse Short Form-36 physical ( p < 0.001) and mental component scores ( p = 0.05). In conclusion, shorter 6MWD is associated with an increased risk of death, hospitalizations, and worse quality of life in patients evaluated for liver transplantation. The 6-minute walk distance may be a useful adjunct for risk assessment in patients undergoing liver transplant evaluation.
Collapse
Affiliation(s)
| | - Jude Moutchia
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nadine Al-Naamani
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Kimberly A. Forde
- Department of Medicine, Lewis Katz School of Medicine at Temple University, PA, USA
| | - Karen Krok
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center
| | | | - Steven M. Kawut
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey E. Ventetuolo
- Departments of Medicine, Brown University, Providence, RI, USA
- Health Services, Policy and Practice, Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Hojda SE, Chis IC, Clichici S. Biomarkers in Pulmonary Arterial Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12123033. [PMID: 36553040 PMCID: PMC9776459 DOI: 10.3390/diagnostics12123033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe medical condition characterized by elevated pulmonary vascular resistance (PVR), right ventricular (RV) failure, and death in the absence of appropriate treatment. The progression and prognosis are strictly related to the etiology, biochemical parameters, and treatment response. The gold-standard test remains right-sided heart catheterization, but dynamic monitoring of systolic pressure in the pulmonary artery is performed using echocardiography. However, simple and easily accessible non-invasive assays are also required in order to monitor this pathology. In addition, research in this area is in continuous development. In recent years, more and more biomarkers have been studied and included in clinical guidelines. These biomarkers can be categorized based on their associations with inflammation, endothelial cell dysfunction, cardiac fibrosis, oxidative stress, and metabolic disorders. Moreover, biomarkers can be easily detected in blood and urine and correlated with disease severity, playing an important role in diagnosis, prognosis, and disease progression.
Collapse
|
4
|
Santos-Gomes J, Gandra I, Adão R, Perros F, Brás-Silva C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front Cardiovasc Med 2022; 9:924873. [PMID: 35911521 PMCID: PMC9333554 DOI: 10.3389/fcvm.2022.924873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), also known as Group 1 Pulmonary Hypertension (PH), is a PH subset characterized by pulmonary vascular remodeling and pulmonary arterial obstruction. PAH has an estimated incidence of 15-50 people per million in the United States and Europe, and is associated with high mortality and morbidity, with patients' survival time after diagnosis being only 2.8 years. According to current guidelines, right heart catheterization is the gold standard for diagnostic and prognostic evaluation of PAH patients. However, this technique is highly invasive, so it is not used in routine clinical practice or patient follow-up. Thereby, it is essential to find new non-invasive strategies for evaluating disease progression. Biomarkers can be an effective solution for determining PAH patient prognosis and response to therapy, and aiding in diagnostic efforts, so long as their detection is non-invasive, easy, and objective. This review aims to clarify and describe some of the potential new candidates as circulating biomarkers of PAH.
Collapse
Affiliation(s)
- Joana Santos-Gomes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Gandra
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
- Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Vang S, Cochran P, Sebastian Domingo J, Krick S, Barnes JW. The Glycobiology of Pulmonary Arterial Hypertension. Metabolites 2022; 12:metabo12040316. [PMID: 35448503 PMCID: PMC9026683 DOI: 10.3390/metabo12040316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disease of complex etiology. Cases of PAH that do not receive therapy after diagnosis have a low survival rate. Multiple reports have shown that idiopathic PAH, or IPAH, is associated with metabolic dysregulation including altered bioavailability of nitric oxide (NO) and dysregulated glucose metabolism. Multiple processes such as increased proliferation of pulmonary vascular cells, angiogenesis, apoptotic resistance, and vasoconstriction may be regulated by the metabolic changes demonstrated in PAH. Recent reports have underscored similarities between metabolic abnormalities in cancer and IPAH. In particular, increased glucose uptake and altered glucose utilization have been documented and have been linked to the aforementioned processes. We were the first to report a link between altered glucose metabolism and changes in glycosylation. Subsequent reports have highlighted similar findings, including a potential role for altered metabolism and aberrant glycosylation in IPAH pathogenesis. This review will detail research findings that demonstrate metabolic dysregulation in PAH with an emphasis on glycobiology. Furthermore, this report will illustrate the similarities in the pathobiology of PAH and cancer and highlight the novel findings that researchers have explored in the field.
Collapse
|
6
|
Sullivan RT, Lo C, Martin E, Kameny RJ, Hopper RK. A Case of Acquired von Willebrand Disease in Severe Pediatric Pulmonary Hypertension Contributing to Bleeding following Reverse Potts Shunt. Pulm Circ 2022; 12:e12042. [PMID: 35506098 PMCID: PMC9052962 DOI: 10.1002/pul2.12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
The reverse Potts shunt is increasingly used as a palliative measure for end‐stage pulmonary arterial hypertension (PAH) as a means to offload the right ventricle and improve functional status. This case report describes a child who developed significant hemothorax after reverse Potts shunt that required surgical exploration, blood product administration, and prolonged intensive care hospitalization. Despite lack of preoperative bleeding symptoms, testing revealed acquired von Willebrand disease (aVWD), with subsequent resolution of bleeding. Alterations in von Willebrand factor, including aVWD, have been reported in children with severe PAH but have not previously been associated with bleeding after reverse Potts shunt procedure. As bleeding is a recognized postoperative morbidity in PAH patients undergoing reverse Potts shunt, we highlight a potential role for preoperative testing for aVWD as perioperative factor replacement therapy may improve postoperative outcomes.
Collapse
Affiliation(s)
- Rachel T Sullivan
- Department of Pediatrics, Division of Pediatric Cardiology Stanford University School of Medicine, Lucile Packard Children's Hospital Stanford Palo Alto CA
| | - Clara Lo
- Department of Pediatrics, Division of Pediatric Hematology/Oncology Stanford University School of Medicine, Lucile Packard Children's Hospital Stanford Palo Alto CA
| | - Elisabeth Martin
- Department of Cardiothoracic Surgery, Division of Pediatric Cardiac Surgery Stanford University School of Medicine, Lucile Packard Children's Hospital Stanford Palo Alto CA
| | - Rebecca J Kameny
- Department of Pediatrics, Division of Pediatric Cardiology Stanford University School of Medicine, Lucile Packard Children's Hospital Stanford Palo Alto CA
| | - Rachel K Hopper
- Department of Pediatrics, Division of Pediatric Cardiology Stanford University School of Medicine, Lucile Packard Children's Hospital Stanford Palo Alto CA
| |
Collapse
|
7
|
Ahmed A, Ahmed S, Rådegran G. Plasma ADAMTS13 and von Willebrand factor in diagnosis and prediction of prognosis in pulmonary arterial hypertension. Pulm Circ 2021; 11:20458940211041500. [PMID: 34616545 PMCID: PMC8488531 DOI: 10.1177/20458940211041500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
To improve outcome in pulmonary arterial hypertension, earlier diagnosis and better prognostic assessments are required. We aimed to investigate the diagnostic and prognostic potential of plasma proteins related to pathways recognized in pulmonary arterial hypertension including coagulation, inflammation, and metabolism. Forty-two proteins were analysed with proximity extension assay from plasma of 20 healthy controls and 150 patients, including (pulmonary arterial hypertension, n = 48, whereof 33 also during early treatment follow-ups); chronic thromboembolic pulmonary hypertension (CTEPH, n = 20); pulmonary hypertension (PH) due to heart failure (HF) with preserved ejection fraction (HFpEF-PH, n = 31); PH due to HF with reduced ejection fraction (HFrEF-PH, n = 36); and HF without PH (Dyspnoea/HF-non-PH, n = 15). Patients' haemodynamics were assessed by right heart catheterization. Plasma ADAMTS13 in incident pulmonary arterial hypertension was lower compared to the healthy controls (p = 0.055), as well as CTEPH (p < 0.0001), HFrEF-PH (p < 0.0001), HFrEF-PH (p < 0.0001), and Dyspnoea/HF-non-PH (p < 0.0001). Adjusted for age and sex, ADAMTS13 discriminated pulmonary arterial hypertension from the other disease groups with an AUC of 0.91 (sensitivity = 87.5%, and specificity = 78.4%). Higher plasma von Willebrand factor was associated with worse survival (log-rank p = 0.0029), and a higher mortality rate (adjusted hazard ratio 1.002, 95% confidence interval 1-1.004; p = 0.041). Adjusted for age, sex, and combined with the ESC/ERS risk score, von Willebrand factor predicted mortality (median follow-up 3.6 years) in pulmonary arterial hypertension with an AUC of 0.94 (sensitivity = 81.3%, and specificity=93.8%). ADAMTS13 may be a promising biomarker for early detection of PAH and von Willebrand factor as a candidate prognostic biomarker. The putative additional value of von Willebrand factor to the European multiparametric risk assessment strategy remains to be elucidated.
Collapse
Affiliation(s)
- Abdulla Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Abdulla Ahmed, Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden.
| | - Salaheldin Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
8
|
Evans CE, Cober ND, Dai Z, Stewart DJ, Zhao YY. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.03957-2020. [PMID: 33509961 DOI: 10.1183/13993003.03957-2020] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease that involves pulmonary vasoconstriction, small vessel obliteration, large vessel thickening and obstruction, and development of plexiform lesions. PAH vasculopathy leads to progressive increases in pulmonary vascular resistance, right heart failure and, ultimately, premature death. Besides other cell types that are known to be involved in PAH pathogenesis (e.g. smooth muscle cells, fibroblasts and leukocytes), recent studies have demonstrated that endothelial cells (ECs) have a crucial role in the initiation and progression of PAH. The EC-specific role in PAH is multi-faceted and affects numerous pathophysiological processes, including vasoconstriction, inflammation, coagulation, metabolism and oxidative/nitrative stress, as well as cell viability, growth and differentiation. In this review, we describe how EC dysfunction and cell signalling regulate the pathogenesis of PAH. We also highlight areas of research that warrant attention in future studies, and discuss potential molecular signalling pathways in ECs that could be targeted therapeutically in the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Colin E Evans
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicholas D Cober
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Dept of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Zhiyu Dai
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Dept of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA .,Dept of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Dept of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Kurakula K, Smolders VFED, Tura-Ceide O, Jukema JW, Quax PHA, Goumans MJ. Endothelial Dysfunction in Pulmonary Hypertension: Cause or Consequence? Biomedicines 2021; 9:biomedicines9010057. [PMID: 33435311 PMCID: PMC7827874 DOI: 10.3390/biomedicines9010057] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare, complex, and progressive disease that is characterized by the abnormal remodeling of the pulmonary arteries that leads to right ventricular failure and death. Although our understanding of the causes for abnormal vascular remodeling in PAH is limited, accumulating evidence indicates that endothelial cell (EC) dysfunction is one of the first triggers initiating this process. EC dysfunction leads to the activation of several cellular signalling pathways in the endothelium, resulting in the uncontrolled proliferation of ECs, pulmonary artery smooth muscle cells, and fibroblasts, and eventually leads to vascular remodelling and the occlusion of the pulmonary blood vessels. Other factors that are related to EC dysfunction in PAH are an increase in endothelial to mesenchymal transition, inflammation, apoptosis, and thrombus formation. In this review, we outline the latest advances on the role of EC dysfunction in PAH and other forms of pulmonary hypertension. We also elaborate on the molecular signals that orchestrate EC dysfunction in PAH. Understanding the role and mechanisms of EC dysfunction will unravel the therapeutic potential of targeting this process in PAH.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Cell and Chemical Biology, Laboratory for CardioVascular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Valérie F. E. D. Smolders
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.F.E.D.S.); (P.H.A.Q.)
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain;
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institut (IDIBGI), 17190 Girona, Catalonia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Paul H. A. Quax
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.F.E.D.S.); (P.H.A.Q.)
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Laboratory for CardioVascular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Correspondence:
| |
Collapse
|
10
|
Ohuchi H, Hayama Y, Miike H, Suzuki D, Nakajima K, Iwasa T, Konagai N, Sakaguchi H, Miyazaki A, Shiraishi I, Kurosaki KI, Nakai M. Prognostic value of von Willebrand factor in adult patients with congenital heart disease. Heart 2020; 106:910-915. [PMID: 32188625 DOI: 10.1136/heartjnl-2019-316007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES von Willebrand factor (vWF) has prognostic value in patients with heart failure (HF) and in those with liver disease. Liver congestion, due to right-sided HF (RHF), is one of the major clinical pathophysiologic manifestations in adults with congenital heart disease (ACHD). The present study's purpose was to clarify the prognostic value of plasma levels of vWF antigen (vWF:Ag) in ACHD. METHODS We measured vWF:Ag (%) in 382 consecutive patients (20 unrepaired cyanotic ACHD, 172 Fontan patients and 190 ACHD after biventricular repair) and compared the results with the clinical profiles and prognosis. RESULTS The plasma vWF:Ag level was 130±53 (normal range: 55%-190%), and 48 patients (13%) showed high levels of vWF:Ag (≥190%). Older age, Fontan circulation, higher central venous pressure, lower arterial oxygen saturation and lower plasma levels of albumin were independently associated with high log (vWF:Ag) (p<0.05-0.0001). During the follow-up of 2.4±1.4 years, 15 patients died. High log (vWF:Ag) predicted the all-cause mortality (HR 1.63 per 0.1, 95% CI 1.40 to 1.96, p<0.0001). Specifically, patients with high vWF:Ag (≥165%) had a substantially higher risk of all-cause mortality (HR 56.4, 95% CI 11.4 to 1020, p<0.0001), and this prognostic value was independent of plasma levels of brain-type natriuretic peptide. CONCLUSIONS High vWF:Ag may reflect RHF severity and related liver dysfunction with a strong prognostic value of all-cause mortality in ACHD. Thus, vWF:Ag might be an excellent biomarker for monitoring ACHD with RHF.
Collapse
Affiliation(s)
- Hideo Ohuchi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yohsuke Hayama
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hikari Miike
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Dai Suzuki
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kimiko Nakajima
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Toru Iwasa
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Nao Konagai
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Heima Sakaguchi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Aya Miyazaki
- Department of Congenital Heart Disease, Division of Transitional Medicine, Shizuoka General Hospital, Shizuoka, Shizuoka, Japan
| | - Isao Shiraishi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Ken-Ichi Kurosaki
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Michikazu Nakai
- Preventive Medicine and Epidemiologic Informatics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
11
|
Davizon‐Castillo P, Allawzi A, Sorrells M, Fisher S, Baltrunaite K, Neeves K, Nozik‐Grayck E, DiPaola J, Delaney C. Platelet activation in experimental murine neonatal pulmonary hypertension. Physiol Rep 2020; 8:e14386. [PMID: 32163236 PMCID: PMC7066872 DOI: 10.14814/phy2.14386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-HT) contributes to the pathogenesis of experimental neonatal pulmonary hypertension (PH) associated with bronchopulmonary dysplasia (BPD). Platelets are the primary source of circulating 5-HT and is released upon platelet activation. Platelet transfusions are associated with neonatal mortality and increased rates of BPD. As BPD is often complicated by PH, we tested the hypothesis that circulating platelets are activated and also increased in the lungs of neonatal mice with bleomycin-induced PH associated with BPD. Newborn wild-type mice received intraperitoneal bleomycin (3 units/kg) three times weekly for 3 weeks. Platelets from mice with experimental PH exhibited increased adhesion to collagen under flow (at 300 s-1 and 1,500 s-1 ) and increased expression of the αIIbβ3 integrin and phosphatidylserine, markers of platelet activation. Platelet-derived factors 5-HT and platelet factor 4 were increased in plasma from mice with experimental PH. Pharmacologic blockade of the 5-HT 2A receptor (5-HT 2A R) prevents bleomycin-induced PH and pulmonary vascular remodeling. Here, platelets from mice with bleomycin-induced PH demonstrate increased 5-HT 2A R expression providing further evidence of both platelet activation and increased 5-HT signaling in this model. In addition, bleomycin treatment increased lung platelet accumulation. In summary, platelets are activated, granule factors are released, and are increased in numbers in the lungs of mice with experimental neonatal PH. These results suggest platelet activation and release of platelet-derived factors may increase vascular tone, promote aberrant angiogenesis, and contribute to the development of neonatal PH.
Collapse
Affiliation(s)
- Pavel Davizon‐Castillo
- Section of Pediatric Hematology, Oncology, and Bone Marrow TransplantUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Ayed Allawzi
- Section of Pediatric Critical Care and Cardiovascular Pulmonary Research LaboratoryUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Matthew Sorrells
- Department of Chemical and Biological EngineeringColorado School of MinesGoldenCOUSA
| | - Susan Fisher
- Section of NeonatologyDepartment of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Kristina Baltrunaite
- Section of NeonatologyDepartment of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Keith Neeves
- Section of Pediatric Hematology, Oncology, and Bone Marrow TransplantUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of BioengineeringUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Eva Nozik‐Grayck
- Section of Pediatric Critical Care and Cardiovascular Pulmonary Research LaboratoryUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Jorge DiPaola
- Division of Pediatric Hematology OncologyWashington University in St. LouisSt. LouisMOUSA
| | - Cassidy Delaney
- Section of NeonatologyDepartment of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| |
Collapse
|
12
|
Lambert M, Capuano V, Boet A, Tesson L, Bertero T, Nakhleh MK, Remy S, Anegon I, Pechoux C, Hautefort A, Rucker-Martin C, Manoury B, Domergue V, Mercier O, Girerd B, Montani D, Perros F, Humbert M, Antigny F. Characterization of Kcnk3-Mutated Rat, a Novel Model of Pulmonary Hypertension. Circ Res 2019; 125:678-695. [PMID: 31347976 DOI: 10.1161/circresaha.119.314793] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE Pulmonary arterial hypertension is a severe lethal cardiopulmonary disease. Loss of function mutations in KCNK3 (potassium channel subfamily K member 3) gene, which encodes an outward rectifier K+ channel, have been identified in pulmonary arterial hypertension patients. OBJECTIVE We have demonstrated that KCNK3 dysfunction is common to heritable and nonheritable pulmonary arterial hypertension and to experimental pulmonary hypertension (PH). Finally, KCNK3 is not functional in mouse pulmonary vasculature. METHODS AND RESULTS Using CRISPR/Cas9 technology, we generated a 94 bp out of frame deletion in exon 1 of Kcnk3 gene and characterized these rats at the electrophysiological, echocardiographic, hemodynamic, morphological, cellular, and molecular levels to decipher the cellular mechanisms associated with loss of KCNK3. Using patch-clamp technique, we validated our transgenic strategy by demonstrating the absence of KCNK3 current in freshly isolated pulmonary arterial smooth muscle cells from Kcnk3-mutated rats. At 4 months of age, echocardiographic parameters revealed shortening of the pulmonary artery acceleration time associated with elevation of the right ventricular systolic pressure. Kcnk3-mutated rats developed more severe PH than wild-type rats after monocrotaline exposure or chronic hypoxia exposure. Kcnk3-mutation induced a lung distal neomuscularization and perivascular extracellular matrix activation. Lungs of Kcnk3-mutated rats were characterized by overactivation of ERK1/2 (extracellular signal-regulated kinase1-/2), AKT (protein kinase B), SRC, and overexpression of HIF1-α (hypoxia-inducible factor-1 α), survivin, and VWF (Von Willebrand factor). Linked with plasma membrane depolarization, reduced endothelial-NOS expression and desensitization of endothelial-derived hyperpolarizing factor, Kcnk3-mutated rats presented predisposition to vasoconstriction of pulmonary arteries and a severe loss of sildenafil-induced pulmonary arteries relaxation. Moreover, we showed strong alteration of right ventricular cardiomyocyte excitability. Finally, Kcnk3-mutated rats developed age-dependent PH associated with low serum-albumin concentration. CONCLUSIONS We established the first Kcnk3-mutated rat model of PH. Our results confirm that KCNK3 loss of function is a key event in pulmonary arterial hypertension pathogenesis. This model presents new opportunities for understanding the initiating mechanisms of PH and testing biologically relevant therapeutic molecules in the context of PH.
Collapse
Affiliation(s)
- Mélanie Lambert
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Véronique Capuano
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Angèle Boet
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Laurent Tesson
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, France (L.T., S.R., I.A.).,PTransgenic Rat ImmunoPhenomic (TRIP) facility Nantes, Nantes, France (L.T., S.R., I.A.)
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France (T.B.)
| | - Morad K Nakhleh
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, France (L.T., S.R., I.A.).,PTransgenic Rat ImmunoPhenomic (TRIP) facility Nantes, Nantes, France (L.T., S.R., I.A.)
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, France (L.T., S.R., I.A.).,PTransgenic Rat ImmunoPhenomic (TRIP) facility Nantes, Nantes, France (L.T., S.R., I.A.)
| | - Christine Pechoux
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.P.)
| | - Aurélie Hautefort
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Catherine Rucker-Martin
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Boris Manoury
- Signalisation et Physiopathologie Cardiovasculaire - UMR_S 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry, France (B.M.)
| | - Valérie Domergue
- Animal Facility, Institut Paris Saclay d'Innovation Thérapeutique (UMS IPSIT), Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France (V.D.)
| | - Olaf Mercier
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Barbara Girerd
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - David Montani
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Frédéric Perros
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Canada (F.P.)
| | - Marc Humbert
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Fabrice Antigny
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| |
Collapse
|
13
|
Nickel NP, de Jesus Perez VA, Zamanian RT, Fessel JP, Cogan JD, Hamid R, West JD, de Caestecker MP, Yang H, Austin ED. Low-grade albuminuria in pulmonary arterial hypertension. Pulm Circ 2019; 9:2045894018824564. [PMID: 30632900 PMCID: PMC6557031 DOI: 10.1177/2045894018824564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Low-grade albuminuria, determined by the urinary albumin to creatinine ratio, has been linked to systemic vascular dysfunction and is associated with cardiovascular mortality. Pulmonary arterial hypertension is related to mutations in the bone morphogenetic protein receptor type 2, pulmonary vascular dysfunction and is increasingly recognized as a systemic disease. In a total of 283 patients (two independent cohorts) diagnosed with pulmonary arterial hypertension, 18 unaffected BMPR2 mutation carriers and 68 healthy controls, spot urinary albumin to creatinine ratio and its relationship to demographic, functional, hemodynamic and outcome data were analyzed. Pulmonary arterial hypertension patients and unaffected BMPR2 mutation carriers had significantly elevated urinary albumin to creatinine ratios compared with healthy controls ( P < 0.01; P = 0.04). In pulmonary arterial hypertension patients, the urinary albumin to creatinine ratio was associated with older age, lower six-minute walking distance, elevated levels of C-reactive protein and hemoglobin A1c, but there was no correlation between the urinary albumin to creatinine ratio and hemodynamic variables. Pulmonary arterial hypertension patients with a urinary albumin to creatinine ratio above 10 µg/mg had significantly higher rates of poor outcome ( P < 0.001). This study shows that low-grade albuminuria is prevalent in pulmonary arterial hypertension patients and is associated with poor outcome. This study shows that albuminuria in pulmonary arterial hypertension is associated with systemic inflammation and insulin resistance.
Collapse
Affiliation(s)
- Nils P Nickel
- 1 Stanford University School of Medicine, Stanford University, USA.,2 Vanderbilt University Medical Center, USA
| | | | - Roham T Zamanian
- 1 Stanford University School of Medicine, Stanford University, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Huang J, Mathew R. Loss of cavin1 and expression of p-caveolin-1 in pulmonary hypertension: Possible role in neointima formation. World J Hypertens 2019; 9:17-29. [DOI: 10.5494/wjh.v9.i2.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive disease with a high morbidity and mortality rate; and neointima formation leads to the irreversibility of the disease. We have previously reported that in rats, monocrotaline (MCT) injection leads to progressive disruption of endothelial cells (EC), and endothelial caveolin-1 (cav-1) loss, accompanied by the activation of pro-proliferative pathways leading to PH. Four weeks post-MCT, extensive endothelial cav-1 loss is associated with increased cav-1 expression in smooth muscle cells (SMC). Exposing the MCT-treated rats to hypoxia hastens the disease process; and at 4 wk, neointimal lesions and occlusion of the small arteries are observed.
AIM To identify the alterations that occur during the progression of PH that lead to neointima formation.
METHODS Male Sprague-Dawley rats (150-175 g) were divided in 4 groups (n = 6-8 per group): controls (C); MCT (M, a single sc injection 40 mg/kg); Hypoxia (H, hypobaric hypoxia); MCT + hypoxia (M+H, MCT-injected rats subjected to hypobaric hypoxia starting on day1). Four weeks later, right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH), lung histology, and cav-1 localization using immunofluorescence technique were analyzed. In addition, the expression of cav-1, tyrosine 14 phosphorylated cav-1 (p-cav-1), caveolin-2 (cav-2), cavin-1, vascular endothelial cadherin (VE-Cad) and p-ERK1/2 in the lungs were examined, and the results were compared with the controls.
RESULTS Significant PH and right ventricular hypertrophy were present in M and H groups [RVSP, mmHg, M 54±5*, H 45±2*, vs C 20±1, P < 0.05; RVH, RV/LV ratio M 0.57±0.02*, H 0.50±0.03*, vs C 0.23±0.007, P < 0.05]; with a further increase in M+H group [RVSP 69±9 mmHg, RV/LV 0.59±0.01 P < 0.05 vs M and H]. All experimental groups revealed medial hypertrophy; but only M+H group exhibited small occluded arteries and neointimal lesions. Immunofluorescence studies revealed endothelial cav-1 loss and increased cav-1 expression in SMC in M group; however, the total cav-1 level in the lungs remained low. In the M+H group, significant endothelial cav-1 loss was associated with increasing expression of cav-1 in SMC; resulting in near normalization of cav-1 levels in the lungs [cav-1, expressed as % control, C 100±0, M 22±4*, H 96±7, M+H 77±6, * = P < 0.05 vs C]. The expression of p-cav-1 was observed in M and M+H groups [M 314±4%, M+H 255±22% P < 0.05 vs C]. Significant loss of cav-2 [% control, C 100±0, M 15±1.4*, H 97±7, M+H 15±2*; M and M+H vs C, * = P < 0.05], cavin-1 [% control, C 100±0, M 20±3*, H 117±7, M+H 20±4*; M and M+H vs C, P < 0.05] and VE-Cad [% control, C 100±0, M 17±4*, H 96±9, M+H 8±3*; M and M+H vs C, P < 0.05] was present in M and M+H groups, confirming extensive disruption of EC. Hypoxia alone did not alter the expression of cav-1 or cav-1 related proteins. Expression of p-ERK1/2 was increased in all 3 PH groups [%control, C 100±0, M 284±23*, H 254±25*, M+H 270±17*; * = P < 0.05 vs C].
CONCLUSION Both cavin-1 loss and p-cav-1 expression are known to facilitate cell migration; thus, these alterations may in part play a role in neointima formation in PH.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, United States
| | - Rajamma Mathew
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, United States
- Department of Physiology, New York Medical College, Valhalla, NY 10595, United States
| |
Collapse
|
15
|
Risk stratification strategy and assessment of disease progression in patients with pulmonary arterial hypertension: Updated Recommendations from the Cologne Consensus Conference 2018. Int J Cardiol 2018; 272S:20-29. [PMID: 30266353 DOI: 10.1016/j.ijcard.2018.08.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 11/22/2022]
Abstract
In the summer of 2016, delegates from the German Respiratory Society, the German Society of Cardiology and the German Society of Pediatric Cardiology met in Cologne, Germany, to define consensus-based practice recommendations for the management of patients with pulmonary arterial hypertension (PAH). These recommendations were built on the 2015 European Pulmonary Hypertension guidelines and included new evidence, where available, and were last updated in the spring of 2018. This article focusses on the proposed risk stratification and assessment of disease progression in patients with pulmonary arterial hypertension (PAH), covering 3 parts: In part 1, methods and markers that are recommended to assess severity and progression of PAH are discussed and commented. These updated comments incorporate most recent data as well as challenges arising from the variability of phenotypes of PAH patients with increasing cardiopulmonary comorbidities. In part 2, the proposed ESC/ERS risk stratification strategy is discussed, together with a review of the recent validation studies from different European registries. Finally, in part 3, the working group of the Cologne Consensus Conference provides recommendations on how risk assessment may be implemented in routine clinical practice and may serve clinical decision making.
Collapse
|
16
|
The role of platelets in the development and progression of pulmonary arterial hypertension. Adv Med Sci 2018; 63:312-316. [PMID: 29885631 DOI: 10.1016/j.advms.2018.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/19/2022]
Abstract
Pulmonary arterial hypertension is a multifactorial disease characterized by vasoconstriction, vascular remodeling, inflammation and thrombosis. Although an increasing number of research confirmed that pulmonary artery endothelial cells, pulmonary artery smooth muscle cells as well as platelets have a role in the pulmonary arterial hypertension pathogenesis, it is still unclear what integrates these factors. In this paper, we review the evidence that platelets through releasing a large variety of chemokines could actively impact the pulmonary arterial hypertension pathogenesis and development. A recent publication revealed that not only an excess of platelet derived cytokines, but also a deficiency may be associated with pulmonary arterial hypertension development and progression. Hence, a simple platelet blockade may not be a correct action to treat pulmonary arterial hypertension. Our review aims to analyse the interactions between the platelets and different types of cells involved in pulmonary arterial hypertension pathogenesis. This knowledge could help to find novel therapeutic options and improve prognosis in this devastating disease.
Collapse
|
17
|
Marra AM, Bossone E, Salzano A, D’Assante R, Monaco F, Ferrara F, Arcopinto M, Vriz O, Suzuki T, Cittadini A. Biomarkers in Pulmonary Hypertension. Heart Fail Clin 2018; 14:393-402. [DOI: 10.1016/j.hfc.2018.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
The Use of Phage Display and Yeast Based Expression System for the Development of a Von Willebrand Factor Propeptide Assay: Development of a Von Willebrand Factor Propeptide Assay. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6232091. [PMID: 29992156 PMCID: PMC5994315 DOI: 10.1155/2018/6232091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/12/2018] [Accepted: 03/25/2018] [Indexed: 11/18/2022]
Abstract
Background The diagnosis of von Willebrand disease is complex due to the heterogeneity of the disease. About eighty percent of von Willebrand disease patients are diagnosed with a quantitative defect of von Willebrand factor (VWF) where fifty percent is due to an increased clearance of von Willebrand factor. These patients do not respond well to the treatment of choice, Desmopressin (DDAVP) due to decreased efficacy. The ratio between the VWF propeptide and the mature VWF antigen is used to diagnose these patients. Commercial VWF propeptide assays are too expensive for use in developing countries. In this study, we developed a cost-effective ELISA assay. Methods We first displayed VWF propeptide on yeast. Antibody fragments were selected against the displayed VWF propeptide by using phage display technology. The antibodies were used to develop a cost-effective VWF propeptide assay and compared to a commercial VWF propeptide assay. Results Two of these antibody fragments bound specific to the VWF propeptide and not to the yeast used for the expression of the propeptides. These purified antibody fragments were able to detect VWF propeptide in normal plasma. Conclusion Our assay performed well when compared to a commercial kit. It also showed a higher binding affinity for VWF propeptide in plasma at especially lower plasma concentrations.
Collapse
|
19
|
Maron BA, Gladwin MT, Simon MA. Update in Pulmonary Vascular Disease 2015. Am J Respir Crit Care Med 2017; 193:1337-44. [PMID: 27304242 DOI: 10.1164/rccm.201601-0143up] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Bradley A Maron
- 1 Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,2 Department of Cardiology, Boston Veterans Affairs Healthcare System, Boston, Massachusetts; and
| | - Mark T Gladwin
- 3 Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Marc A Simon
- 4 Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Clavé MM, Maeda NY, Castro CRP, Bydlowski SP, Lopes AA. Factors influencing outcomes in patients with Eisenmenger syndrome: a nine-year follow-up study. Pulm Circ 2017; 7:635-642. [PMID: 28704136 PMCID: PMC5841908 DOI: 10.1177/2045893217721928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In patients with Eisenmenger syndrome, life expectancy is usually longer than in patients with other forms of pulmonary arterial hypertension (PAH). We conducted a cohort study in which patients were followed over a long period of time in an attempt to identify potential predictors of clinical outcomes. Sixty-seven treatment-naïve patients were enrolled (age range = 12-60 years; median age = 33 years). Baseline demographic, diagnostic, and functional parameters, plasma levels of endothelial dysfunction markers, and treatment-related data were tested for possible correlations with event-free survival. Patients were started on oral PAH drugs at the beginning of follow-up (n = 23), during follow-up (n = 33), or remained untreated (n = 11). The duration of follow-up was 0.54-9.89 years (median = 7.13 years), with an overall survival rate of 82% and an event-free survival rate of 70%. The estimated mean for event-free survival time was 7.71 years (95% confidence interval [CI] = 6.86-8.55 years). Of the 16 variables that were analyzed, the duration of exposure to PAH drugs was identified as an independent protective factor (hazard ratio [HR] = 0.25 for quartiles, 95% CI = 0.14-0.47, P < 0.001). The initial functional class (HR = 3.07; 95% CI = 1.01-9.34; P = 0.048), the severity of right ventricular dysfunction (HR = 2.51 [mild, moderate or severe dysfunction]; 95% CI = 1.22-5.19; P = 0.013) and plasma von Willebrand factor concentration (HR = 1.74 for quartiles; 95% CI = 1.07-2.83; P = 0.026) were identified as risk factors. The length of exposure to oral PAH therapies influences survival favorably in Eisenmenger patients. This may be of interest for communities where access to medications is restricted.
Collapse
Affiliation(s)
- Mariana M Clavé
- 1 Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Claudia R P Castro
- 1 Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Antonio A Lopes
- 1 Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
21
|
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is a rare progressive disease of the pulmonary vasculature that is characterized by endothelial dysfunction, inflammation, and right ventricular dysfunction. OBJECTIVES The main objective was to determine whether endothelial, inflammatory, and cardiac biomarkers would be associated with the World Health Organization functional assessment and survival in patients with PAH. METHODS We performed a retrospective cohort study of patients with PAH enrolled in the Randomized Clinical Trial of Aspirin and Simvastatin for Pulmonary Arterial Hypertension (ASA-STAT). Biomarkers (N-terminal fragment of pro-BNP [NT-pro-BNP], von Willebrand factor [vWF], soluble P selectin, C-reactive protein, total and high-density lipoprotein cholesterol, triglycerides, tumor necrosis factor, IL-6, β-thromboglobulin, and thromboxane B2) were measured at baseline. Patients from the study were followed until lung transplantation, death, or August 1, 2013. Ordinal logistic regression and Cox regression analyses were performed. MEASUREMENTS AND MAIN RESULTS Sixty-five patients with PAH were enrolled. The mean age was 51 years, and 86% were women. Higher vWF activity, lower high-density lipoprotein cholesterol, and higher thromboxane B2 levels were associated with worse World Health Organization functional class after adjustment for age, sex, and etiology of PAH. Higher NT-pro-BNP levels, lower vWF activity, and lower total cholesterol were associated with an increased risk of death or lung transplant after adjustment for age, sex, etiology of PAH, and 6-minute-walk distance. CONCLUSIONS In patients with PAH, lower vWF activity and cholesterol levels and higher NT-pro-BNP levels at baseline were associated with an increased risk of death or transplantation. Clinical trial registered with www.clinicaltrials.gov (NCT00384865).
Collapse
|
22
|
Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2015; 46:903-75. [DOI: 10.1183/13993003.01032-2015] [Citation(s) in RCA: 2137] [Impact Index Per Article: 213.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Guidelines summarize and evaluate all available evidence on a particular issue at the time of the writing process, with the aim of assisting health professionals in selecting the best management strategies for an individual patient with a given condition, taking into account the impact on outcome, as well as the risk–benefit ratio of particular diagnostic or therapeutic means. Guidelines and recommendations should help health professionals to make decisions in their daily practice. However, the final decisions concerning an individual patient must be made by the responsible health professional(s) in consultation with the patient and caregiver as appropriate.
Collapse
|
23
|
Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2015; 37:67-119. [DOI: 10.1093/eurheartj/ehv317] [Citation(s) in RCA: 3916] [Impact Index Per Article: 391.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Liu H, Yang E, Lu X, Zuo C, He Y, Jia D, Zhu Q, Yu Y, Lv A. Serum levels of tumor necrosis factor-related apoptosis-inducing ligand correlate with the severity of pulmonary hypertension. Pulm Pharmacol Ther 2015; 33:39-46. [PMID: 26086178 DOI: 10.1016/j.pupt.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023]
Abstract
Pulmonary hypertension (PH) is a rapidly progressive disease that eventually leads to right heart failure and death. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors (TRAIL-Rs) play an important role in the survival, migration, and proliferation of vascular smooth muscle cells. However, the association between serum TRAIL levels and PH is unknown. In this study, we assayed the serum soluble TRAIL (sTRAIL) levels in 78 patients with PH and 80 controls. The sTRAIL concentrations were elevated in the PH patients compared with the controls (138.76 ± 6.60 pg/mL vs. 80.14 ± 3.38 pg/mL, p < 0.0001). The presence of sTRAIL levels of >103 pg/mL could discriminate PH patients from healthy individuals, with a sensitivity of 75.6% and specificity of 81.2%. Moreover, elevated sTRAIL concentrations were associated with eventual pathological complications; this is consistent with the finding that sTRAIL levels decreased in patients who responded to treatment. In a hypoxia-induced PH mouse model, sTRAIL levels were significantly higher compared with those in normoxia mice, and clearly decreased when the mice were treated with treprostinil. The sTRAIL levels were positively correlated with right ventricular systolic pressure and the index of right ventricular hypertrophy. In conclusion, serum sTRAIL could be a biomarker for diagnosis and effective therapy for PH patients.
Collapse
Affiliation(s)
- Huan Liu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Erli Yang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xiaolan Lu
- Department of Obstetrics and Genecology, Armed Police Hospital of Shanghai, Shanghai 201103, China
| | - Caojian Zuo
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuhu He
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daile Jia
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Qian Zhu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Yu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ankang Lv
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
25
|
Circulating biomarkers in pulmonary arterial hypertension: Update and future direction. J Heart Lung Transplant 2015; 34:282-305. [DOI: 10.1016/j.healun.2014.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022] Open
|
26
|
[Pulmonary hypertension associated with congenital heart disease and Eisenmenger syndrome]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2015; 85:32-49. [PMID: 25650280 DOI: 10.1016/j.acmx.2014.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 11/24/2022] Open
Abstract
Pulmonary arterial hypertension is a common complication of congenital heart disease (CHD). Congenital cardiopathies are the most frequent congenital malformations. The prevalence in our country remains unknown, based on birthrate, it is calculated that 12,000 to 16,000 infants in our country have some cardiac malformation. In patients with an uncorrected left-to-right shunt, increased pulmonary pressure leads to vascular remodeling and endothelial dysfunction secondary to an imbalance in vasoactive mediators which promotes vasoconstriction, inflammation, thrombosis, cell proliferation, impaired apotosis and fibrosis. The progressive rise in pulmonary vascular resistance and increased pressures in the right heart provocated reversal of the shunt may arise with the development of Eisenmenger' syndrome the most advanced form de Pulmonary arterial hypertension associated with congenital heart disease. The prevalence of Pulmonary arterial hypertension associated with CHD has fallen in developed countries in recent years that is not yet achieved in developing countries therefore diagnosed late as lack of hospital infrastructure and human resources for the care of patients with CHD. With the development of targeted medical treatments for pulmonary arterial hypertension, the concept of a combined medical and interventional/surgical approach for patients with Pulmonary arterial hypertension associated with CHD is a reality. We need to know the pathophysiological factors involved as well as a careful evaluation to determine the best therapeutic strategy.
Collapse
|
27
|
Lopes AA, Flores PC, Diaz GF, Mesquita SMF. Congenital heart disease and pulmonary arterial hypertension in South America (2013 Grover Conference series). Pulm Circ 2015; 4:370-7. [PMID: 25621150 DOI: 10.1086/676747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/10/2014] [Indexed: 11/03/2022] Open
Abstract
South America is a territory of 17,819,100 km(2), where ∼388 million people live in 13 countries. In the region, access to medical assistance (e.g., for treatment of cardiovascular disorders) is relatively easy in metropolitan areas but difficult in remote places such as the Andes and the Amazon. Altitudes up to ∼6,700 m influence the prevalence of congenital heart disease (CHD) and pulmonary arterial hypertension (PAH). In tertiary centers, CHD is now treated earlier in life but remains an important etiology of PAH. In adolescents and adults with PAH assisted at institutions devoted to treatment of cardiovascular disorders, the relative frequency of PAH-CHD (∼50%-60%) is even higher than that of idiopathic PAH. In one big tertiary center in São Paulo, Brazil, the prevalence of advanced PAH in children and adults with CHD is 1.2% and 4.2%, respectively. In young patients with cardiac septal defects (aged up to 2 years), pulmonary vascular abnormalities are a matter of concern in the decision about operability in 4.9% of cases. Access to specific PAH drugs is not uniform in South America, being unrealistic in remote places. In big cities, there are real possibilities for management of complex CHD, neonatal disorders, and even cardiac transplantation. Research activities have been implemented at clinical, translational, and basic levels. However, because of social and economic inequalities and political issues, access to best standards of medical care remains a problem in the region as a whole.
Collapse
Affiliation(s)
- Antonio Augusto Lopes
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | - Sonia M F Mesquita
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
28
|
Minai OA. Saudi Guidelines on the Diagnosis and Treatment of Pulmonary Hypertension: Biomarkers in pulmonary arterial hypertension. Ann Thorac Med 2014; 9:S92-7. [PMID: 25077003 PMCID: PMC4114275 DOI: 10.4103/1817-1737.134047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 04/05/2014] [Indexed: 12/22/2022] Open
Abstract
The biomarker is an indicaror of a biological or pathological process. Clinical observations, measures or environmental events, or measured laboratory values can all be biomarkers in the appropriate setting. An ideal biomarker reflects the underlying biological process, predicts clinical events, is easily obtainable, is reproducible and is not prohibitively expensive. This typically requires validation in longitudinal cohort studies. Biomarkers may help understand the pathological mechanisms responsible for the disease, help as screening tools, predict disease worsening or decline, and determine adequacy of response to therapeutic interventions.
Collapse
Affiliation(s)
- Omar A Minai
- Associate Professor of Medicine, Respiratory Institute, Cleveland Clinic, Ohio, USA
| |
Collapse
|
29
|
Lannan KL, Phipps RP, White RJ. Thrombosis, platelets, microparticles and PAH: more than a clot. Drug Discov Today 2014; 19:1230-5. [PMID: 24747560 DOI: 10.1016/j.drudis.2014.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 12/19/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease that involves pathological remodeling, vasoconstriction and thrombosis. Alterations in hemostasis, coagulation and platelet activation are consistently observed in PAH patients. Microparticles derived from platelets, inflammatory cells and the endothelium are an increasingly well-recognized signal in a variety of cardiovascular diseases, including PAH. This review will focus on the roles of coagulation, thrombosis, platelet activation and microparticles in the pathology and progression of PAH.
Collapse
Affiliation(s)
- Katie L Lannan
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA; Department of Pathology and Laboratory Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA; Department of Environmental Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - R James White
- Aab Cardiovascular Research Institute and Division of Pulmonary and Critical Care Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA.
| |
Collapse
|
30
|
Myers PO, Tissot C, Beghetti M. Assessment of operability of patients with pulmonary arterial hypertension associated with congenital heart disease. Circ J 2013; 78:4-11. [PMID: 24225339 DOI: 10.1253/circj.cj-13-1263] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a common complication of congenital heart disease, and is now predominantly among patients with uncorrected left-to-right shunts. A growing population is characterized by persistent or recurrent PAH after surgical or interventional correction of left-to-right shunts; the latter having a worse prognosis than other forms of PAH associated with congenital heart disease. New treatments for PAH have been shown to be effective in improving PAH exercise capacity and hemodynamics, raising the hope for making previously inoperable congenital heart defects operable and shifting the framework for the assessment of operability. This review focuses on current methods for assessing operability in PAH associated with congenital heart disease, and the possibility of "treat-and-repair" vs. "repair-and-treat" strategies for patients with inoperable or borderline PAH.
Collapse
Affiliation(s)
- Patrick O Myers
- Division of Cardiovascular Surgery, Geneva University Hospitals & School of Medicine
| | | | | |
Collapse
|
31
|
Mathew R. Pathogenesis of pulmonary hypertension: a case for caveolin-1 and cell membrane integrity. Am J Physiol Heart Circ Physiol 2013; 306:H15-25. [PMID: 24163076 DOI: 10.1152/ajpheart.00266.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension (PH) is a progressive disease with a high morbidity and mortality rate. Despite important advances in the field, the precise mechanisms leading to PH are not yet understood. Main features of PH are loss of vasodilatory response, the activation of proliferative and antiapoptotic pathways leading to pulmonary vascular remodeling and obstruction, elevated pressure and right ventricular hypertrophy, resulting in right ventricular failure and death. Experimental studies suggest that endothelial dysfunction may be the key underlying feature in PH. Caveolin-1, a major protein constituent of caveolae, interacts with several signaling molecules including the ones implicated in PH and modulates them. Disruption and progressive loss of endothelial caveolin-1 with reciprocal activation of proliferative pathways occur before the onset of PH, and the rescue of caveolin-1 inhibits proliferative pathways and attenuates PH. Extensive endothelial damage/loss occurs during the progression of the disease with subsequent enhanced expression of caveolin-1 in smooth muscle cells. This caveolin-1 in smooth muscle cells switches from being an antiproliferative factor to a proproliferative one and participates in cell proliferation and cell migration, possibly leading to irreversible PH. In contrast, the disruption of endothelial caveolin-1 is not observed in the hypoxia-induced PH, a reversible form of PH. However, proliferative pathways are activated in this model, indicating caveolin-1 dysfunction. Thus disruption or dysfunction of endothelial caveolin-1 leads to PH, and the status of caveolin-1 may determine the reversibility versus irreversibility of PH. This article reviews the role of caveolin-1 and cell membrane integrity in the pathogenesis and progression of PH.
Collapse
Affiliation(s)
- Rajamma Mathew
- Section of Pediatric Cardiology and Department of Physiology, Maria Fareri Children's Hospital/New York Medical College, Valhalla, New York
| |
Collapse
|
32
|
Hassoun PM, Nikkho S, Rosenzweig EB, Moreschi G, Lawrence J, Teeter J, Meier C, Ghofrani AH, Minai O, Rinaldi P, Michelakis E, Oudiz RJ. Updating clinical endpoint definitions. Pulm Circ 2013; 3:206-16. [PMID: 23662199 PMCID: PMC3641732 DOI: 10.4103/2045-8932.109920] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The 6-Minute Walk Distance (6-MWD) has been the most utilized endpoint for judging the efficacy of pulmonary arterial hypertension (PAH) therapy in clinical trials conducted over the past two decades. Despite its simplicity, widespread use in recent trials and overall prognostic value, the 6-MWD has often been criticized over the past several years and pleas from several PAH experts have emerged from the literature to find alternative endpoints that would be more reliable in reflecting the pulmonary vascular resistance as well as cardiac status in PAH and their response to therapy. A meeting of PAH experts and representatives from regulatory agencies and pharmaceutical companies was convened in early 2012 to discuss the validity of current as well as emerging valuable endpoints. The current work represents the proceedings of the conference.
Collapse
|
33
|
Mojiri A, Nakhaii-Nejad M, Phan WL, Kulak S, Radziwon-Balicka A, Jurasz P, Michelakis E, Jahroudi N. Hypoxia results in upregulation and de novo activation of von Willebrand factor expression in lung endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33:1329-38. [PMID: 23580145 DOI: 10.1161/atvbaha.113.301359] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Increased von Willebrand factor (VWF) levels in lungs are associated with diseases such as pulmonary hypertension. The objective of our study was to determine the mechanism of increased VWF levels in conditions, such as hypoxia, which contribute to pulmonary hypertension. APPROACH AND RESULTS We have previously reported generation of transgenic mice that express LacZ transgene under the regulation of lung- and brain-specific transcriptional regulatory elements of the VWF gene. Hypoxia exposure of these transgenic mice resulted in increased VWF and LacZ mRNA levels as well as redistribution of their expression from primarily larger vessels in the lungs to microvessels. Exposure of cultured lung microvascular endothelial cells to hypoxia demonstrated that VWF upregulation was accompanied by increased platelet binding. Transcription upregulation was mediated through inhibition of the repressor nuclear factor-IB association with the VWF promoter, and increased nuclear translocation of the transcription factor YY1 and association with its cognate binding site on the VWF gene. Knockdown of YY1 expression abolished the hypoxia-induced upregulation and reduced basal level of VWF. CONCLUSIONS These analyses demonstrate that hypoxia induces a phenotypic shift, accompanied by modulation of nuclear factor-IB and YY1 activities, in microvascular endothelial cells of the lungs to support VWF promoter activation.
Collapse
Affiliation(s)
- Anahita Mojiri
- Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dibble CT, Shimbo D, Barr RG, Bagiella E, Chahal H, Ventetuolo CE, Herrington DM, Lima JAC, Bluemke DA, Kawut SM. Brachial artery diameter and the right ventricle: the Multi-Ethnic Study of Atherosclerosis-right ventricle study. Chest 2013; 142:1399-1405. [PMID: 22661452 DOI: 10.1378/chest.12-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Endothelial dysfunction is associated with left ventricular morphology and long-term cardiovascular outcomes. The purpose of this study was to assess the relationship between both baseline brachial artery diameter and peripheral endothelial function (assessed by brachial artery ultrasonography) and right ventricular (RV) mass, RV end-diastolic volume (RVEDV), and RV ejection fraction (RVEF). METHODS The Multi-Ethnic Study of Atherosclerosis (MESA) performed cardiac MRI and brachial artery ultrasonography on participants without clinical cardiovascular disease. Baseline brachial artery diameter and flow-mediated dilation were assessed. RESULTS The mean age was 60.9 years, and 49.4% of subjects were men (n = 2,425). In adjusted models, larger brachial artery diameter was strongly associated with greater RV mass (β = 0.55 g, P < .001), larger RVEDV (β = 3.99 mL, P < .001), and decreased RVEF (β = -0.46%, P = .03). These relationships persisted after further adjustment for the respective left ventricular parameters. Flow-mediated dilation was not associated with RV mass or RVEF and was only weakly associated with RVEDV. CONCLUSIONS Brachial artery diameter is associated with greater RV mass and RVEDV, as well as lower RVEF. Changes in the systemic arterial circulation may have pathophysiologic links to pulmonary vascular dysfunction or abnormalities in RV perfusion.
Collapse
Affiliation(s)
- Christopher T Dibble
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daichi Shimbo
- Department of Medicine, Mailman School of Public Health, Columbia University, New York, NY
| | - R Graham Barr
- Department of Medicine, Mailman School of Public Health, Columbia University, New York, NY; College of Physicians and Surgeons, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Emilia Bagiella
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Harjit Chahal
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Corey E Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI
| | - David M Herrington
- Department of Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
| | - Joao A C Lima
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - David A Bluemke
- Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD
| | - Steven M Kawut
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
35
|
Associated inflammation or increased flow-mediated shear stress, but not pressure alone, disrupts endothelial caveolin-1 in infants with pulmonary hypertension. Pulm Circ 2013. [PMID: 23372934 DOI: 10.4103/2045-8932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endothelial caveolin-1 loss is an important feature of pulmonary hypertension (PH); the rescue of caveolin-1 abrogates experimental PH. Recent studies in human PH suggest that the endothelial caveolin-1 loss is followed by an enhanced expression of caveolin-1 in smooth muscle cells (SMC) with subsequent neointima formation. In order to evaluate caveolin-1 expression in infants with PH, we examined the available clinical histories, hemodynamic data, and the expression of caveolin-1, PECAM-1, vWF, and smooth muscle α-actin in the lung biopsy/autopsy specimens obtained from infants with congenital heart disease (CHD, n = 8) and lung disease (n = 9). In CHD group, PH associated with increased pulmonary blood flow exhibited loss of endothelial caveolin-1 and PECAM-1 in pulmonary arteries; additional vWF loss was associated with enhanced expression of caveolin-1 in SMC. In the absence of PH, increased or decreased pulmonary blood flow did not disrupt endothelial caveolin-1, PECAM-1, or vWF; nor was there any enhanced expression of caveolin-1 in SMC. In Lung Disease + PH group, caveolin-1, PECAM-1, and vWF were well preserved in seven infants, and importantly, SMC in these arteries did not exhibit enhanced caveolin-1 expression. Two infants with associated inflammatory disease exhibited loss of endothelial caveolin-1 and PECAM-1; additional loss of vWF was accompanied by enhanced expression of caveolin-1 in SMC. Thus, associated flow-induced shear stress or inflammation, but not elevated pulmonary artery pressure alone, disrupts endothelial caveolin-1. Subsequent vWF loss, indicative of extensive endothelial damage is associated with enhanced expression of caveolin-1 in SMC, which may worsen the disease.
Collapse
|
36
|
Dereddy N, Huang J, Erb M, Guzel S, Wolk JH, Sett SS, Gewitz MH, Mathew R. Associated inflammation or increased flow-mediated shear stress, but not pressure alone, disrupts endothelial caveolin-1 in infants with pulmonary hypertension. Pulm Circ 2013; 2:492-500. [PMID: 23372934 PMCID: PMC3555420 DOI: 10.4103/2045-8932.105038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endothelial caveolin-1 loss is an important feature of pulmonary hypertension (PH); the rescue of caveolin-1 abrogates experimental PH. Recent studies in human PH suggest that the endothelial caveolin-1 loss is followed by an enhanced expression of caveolin-1 in smooth muscle cells (SMC) with subsequent neointima formation. In order to evaluate caveolin-1 expression in infants with PH, we examined the available clinical histories, hemodynamic data, and the expression of caveolin-1, PECAM-1, vWF, and smooth muscle α-actin in the lung biopsy/autopsy specimens obtained from infants with congenital heart disease (CHD, n = 8) and lung disease (n = 9). In CHD group, PH associated with increased pulmonary blood flow exhibited loss of endothelial caveolin-1 and PECAM-1 in pulmonary arteries; additional vWF loss was associated with enhanced expression of caveolin-1 in SMC. In the absence of PH, increased or decreased pulmonary blood flow did not disrupt endothelial caveolin-1, PECAM-1, or vWF; nor was there any enhanced expression of caveolin-1 in SMC. In Lung Disease + PH group, caveolin-1, PECAM-1, and vWF were well preserved in seven infants, and importantly, SMC in these arteries did not exhibit enhanced caveolin-1 expression. Two infants with associated inflammatory disease exhibited loss of endothelial caveolin-1 and PECAM-1; additional loss of vWF was accompanied by enhanced expression of caveolin-1 in SMC. Thus, associated flow-induced shear stress or inflammation, but not elevated pulmonary artery pressure alone, disrupts endothelial caveolin-1. Subsequent vWF loss, indicative of extensive endothelial damage is associated with enhanced expression of caveolin-1 in SMC, which may worsen the disease.
Collapse
Affiliation(s)
- Narendra Dereddy
- Section of Pediatric Cardiology, Maria Fareri Children's Hospital, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Leary PJ, Barr RG, Bluemke DA, Bristow MR, Hough CL, Kronmal RA, Lima JA, McClelland RL, Tracy RP, Kawut SM. Von Willebrand factor and the right ventricle (the MESA-Right Ventricle Study). Am J Cardiol 2012; 110:1846-51. [PMID: 22995970 DOI: 10.1016/j.amjcard.2012.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 01/05/2023]
Abstract
Elevation in plasma activity of von Willebrand factor (vWF) reflects endothelial dysfunction and predicts death in pulmonary arterial hypertension. Higher vWF activity is also associated with a lower right ventricular (RV) ejection fraction in pulmonary arterial hypertension. Little is known about the relation between vWF and RV structure and function in adults without cardiovascular disease. The present investigation included 1,976 participants with magnetic resonance imaging assessment of RV structure and function and measurement of vWF activity from the Multi-Ethnic Study of Atherosclerosis. Multivariable linear regression was used to estimate the associations between vWF activity and measures of RV structure and function after adjusting for demographics, anthropometrics, smoking, diabetes mellitus, hypertension, and the corresponding left ventricular parameter. The average vWF activity was 140.7 ± 57.2%. Elevated vWF activity was independently associated with lower RV mass, RV end-diastolic volume, and RV stroke volume in models with and without adjustment for the corresponding left ventricular parameter (all p values <0.05). There was no association observed between vWF activity and the RV ejection fraction. In conclusion, higher vWF activity is associated with lower RV mass, RV end-diastolic volume, and RV stroke volume. These associations are independent of common cardiovascular risk factors and left ventricular morphologic changes.
Collapse
Affiliation(s)
- Peter J Leary
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Effective management of patients with pulmonary arterial hypertension (PAH) requires comprehensive prognostic evaluation in order to determine optimal management strategies. Although a number of clinical and hemodynamic parameters linked to PAH prognosis have been identified, some are associated with significant limitations (eg, invasive techniques, subjective measures). There is a need for noninvasive and objective measures to be established that function as biomarkers for the diagnosis and assessment of disease prognosis, and that determine response to therapy in patients with PAH. Reflecting the highly complex etiology of the disease, a large number of potential biomarkers have been, and continue to be, investigated in PAH, including those reflecting right heart function, endothelial dysfunction, and markers of inflammation and second organ failure. However, it has become clear that scientifically interesting biomarkers may not necessarily be clinically useful. Of the range of biomarkers investigated in PAH to date, only brain natriuretic peptide and its N-terminal cleavage product have been included as prognostic parameters in treatment guidelines. It is unlikely that any single biomarker will provide all the relevant information required for an individual patient, and the potential for combining markers is currently of considerable interest. Future studies are required to determine the optimal combination of existing and emerging biomarkers in the clinical setting.
Collapse
Affiliation(s)
- Jean-Luc Cracowski
- Clinical Pharmacology Unit, Inserm CIC03, Grenoble University Hospital, Grenoble, France
| | | |
Collapse
|
39
|
Barrier M, Meloche J, Jacob MH, Courboulin A, Provencher S, Bonnet S. Today's and tomorrow's imaging and circulating biomarkers for pulmonary arterial hypertension. Cell Mol Life Sci 2012; 69:2805-31. [PMID: 22446747 PMCID: PMC11115077 DOI: 10.1007/s00018-012-0950-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 01/04/2023]
Abstract
The pathobiology of pulmonary arterial hypertension (PAH) involves a remodeling process in distal pulmonary arteries, as well as vasoconstriction and in situ thrombosis, leading to an increase in pulmonary vascular resistance, right heart failure and death. Its etiology may be idiopathic, but PAH is also frequently associated with underlying conditions such as connective tissue diseases. During the past decade, more than welcome novel therapies have been developed and are in development, including those increasingly targeting the remodeling process. These therapeutic options modestly increase the patients' long-term survival, now approaching 60% at 5 years. However, non-invasive tools for confirming PAH diagnosis, and assessing disease severity and response to therapy, are tragically lacking and would help to select the best treatment. After exclusion of other causes of pulmonary hypertension, a final diagnosis still relies on right heart catheterization, an invasive technique which cannot be repeated as often as an optimal follow-up might require. Similarly, other techniques and biomarkers used for assessing disease severity and response to treatment generally lack specificity and have significant limitations. In this review, imaging as well as current and future circulating biomarkers for diagnosis, prognosis, and follow-up are discussed.
Collapse
Affiliation(s)
- Marjorie Barrier
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC G1V 4G5 Canada
| | - Jolyane Meloche
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC G1V 4G5 Canada
| | - Maria Helena Jacob
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC G1V 4G5 Canada
| | - Audrey Courboulin
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC G1V 4G5 Canada
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC G1V 4G5 Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC G1V 4G5 Canada
| |
Collapse
|
40
|
Huang J, Wolk JH, Gewitz MH, Mathew R. Caveolin-1 expression during the progression of pulmonary hypertension. Exp Biol Med (Maywood) 2012; 237:956-65. [PMID: 22890027 DOI: 10.1258/ebm.2012.011382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Caveolin-1 plays a pivotal role in maintaining vascular health. Progressive loss of endothelial caveolin-1 and activation of proliferative and anti-apoptotic pathways occur before the onset of monocrotaline (MCT)-induced pulmonary hypertension (PH), and the rescue of endothelial caveolin-1 attenuates PH. Recently, we reported endothelial caveolin-1 loss associated with enhanced expression of caveolin-1 in smooth muscle cells (SMC) with subsequent neointima formation in human PH. To examine whether the loss of endothelial caveolin-1 followed by an enhanced expression in SMC is a sequential event in the progression of PH, we studied rats at two and four weeks post-MCT. Right ventricular (RV) systolic pressure, RV hypertrophy, pulmonary vascular histology, and the expression of caveolin-1 and endothelial membrane proteins (platelet/endothelial cell adhesion molecule-1 [PECAM-1], both α and β subunits of soluble guanylate cyclase [sGC]), von Willebrand factor (vWF), smooth muscle α-actin, proliferative and anti-apoptotic factors (PY-STAT3 and Bcl-xL) and matrix metalloproteinase (MMP) 2 in the lungs were examined. PH was accompanied by a progressive loss of endothelial caveolin-1, activation of PY-STAT3, increased Bcl-xL expression and vascular remodeling at two and four weeks post-MCT. Loss of PECAM-1 and sGC (both subunits) paralleled that of caveolin-1, whereas vWF was well preserved at two weeks post-MCT. At four weeks post-MCT, 29% of the arteries showed a loss of vWF in addition to endothelial caveolin-1, and 70% of these arteries exhibited enhanced expression of caveolin-1 in SMC; and there was increased expression and activity of MMP2. In conclusion, MCT-induced endothelial injury disrupts endothelial cell membrane with a progressive loss of endothelial caveolin-1, and the activation of proliferative and antiapoptotic pathways leading to PH. Subsequent extensive endothelial cell damage results in enhanced expression of caveolin-1 in SMC. In addition, there is a progressive increase in MMP2 expression and activity. These alterations may further facilitate cell proliferation, matrix degradation and cell migration, thus contributing to the progression of the disease.
Collapse
Affiliation(s)
- Jing Huang
- Section of Pediatric Cardiology, Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
41
|
|
42
|
Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension. Blood 2012; 120:1218-27. [PMID: 22745307 DOI: 10.1182/blood-2012-03-419275] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic myeloid progenitors released into the circulation are able to promote vascular remodeling through endothelium activation and injury. Endothelial injury is central to the development of pulmonary arterial hypertension (PAH), a proliferative vasculopathy of the pulmonary circulation, but the origin of vascular injury is unknown. In the present study, mice transplanted with BM-derived CD133(+) progenitor cells from patients with PAH, but not from healthy controls, exhibited morbidity and/or death due to features of PAH: in situ thrombi and endothelial injury, angioproliferative remodeling, and right ventricular hypertrophy and failure. Myeloid progenitors from patients with heritable and/or idiopathic PAH all produced disease in xenografted mice. Analyses of hematopoietic transcription factors and colony formation revealed underlying abnormalities of progenitors that skewed differentiation toward the myeloid-erythroid lineage. The results of the present study suggest a causal role for hematopoietic stem cell abnormalities in vascular injury, right ventricular hypertrophy, and morbidity associated with PAH.
Collapse
|
43
|
Aytekin M, Aulak KS, Haserodt S, Chakravarti R, Cody J, Minai OA, Dweik RA. Abnormal platelet aggregation in idiopathic pulmonary arterial hypertension: role of nitric oxide. Am J Physiol Lung Cell Mol Physiol 2012; 302:L512-20. [PMID: 22246002 PMCID: PMC3311529 DOI: 10.1152/ajplung.00289.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/04/2012] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a rare and progressive disease. Several processes are believed to lead to the fatal progressive pulmonary arterial narrowing seen in IPAH including vasoconstriction, cellular proliferation inflammation, vascular remodeling, abnormalities in the lung matrix, and in situ thrombosis. Nitric oxide (NO) produced by NO synthases (NOS) is a potent vasodilator and plays important roles in many other processes including platelet function. Reduced NO levels in patients with IPAH are known to contribute to the development of pulmonary hypertension and its complications. Platelet defects have been implied in IPAH, but original research supporting this hypothesis has been limited. Normal platelets are known to have NOS activity, but little is known about NOS expression and NO production by platelets in patients with IPAH. Here we characterized the phenotype of the platelets in IPAH and show a defect in their ability to be activated in vitro by thrombin receptor activating protein but not adenosine diphosphate. We also show that endothelial NOS (eNOS) levels in these platelets are reduced and demonstrate that NO is an important regulator of platelet function. Thus reduced levels of eNOS in platelets could impact their ability to regulate their own function appropriately.
Collapse
Affiliation(s)
- Metin Aytekin
- Department of Pathobiology/Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Lopes AA, Barreto AC, Maeda NY, Cícero C, Soares RPS, Bydlowski SP, Rich S. Plasma von Willebrand factor as a predictor of survival in pulmonary arterial hypertension associated with congenital heart disease. Braz J Med Biol Res 2011; 44:1269-75. [PMID: 22068906 DOI: 10.1590/s0100-879x2011007500149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 10/18/2011] [Indexed: 11/22/2022] Open
Abstract
Biomarkers have been identified for pulmonary arterial hypertension, but are less well defined for specific etiologies such as congenital heart disease-associated pulmonary arterial hypertension (CHDPAH). We measured plasma levels of eight microvascular dysfunction markers in CHDPAH, and tested for associations with survival. A cohort of 46 inoperable CHDPAH patients (age 15.0 to 60.2 years, median 33.5 years, female:male 29:17) was prospectively followed for 0.7 to 4.0 years (median 3.6 years). Plasma levels of von Willebrand factor antigen (VWF:Ag), tissue plasminogen activator (t-PA) and its inhibitor (PAI-1), P-selectin, reactive C-protein, tumor necrosis factor alpha, and interleukin-6 and -10 were measured at baseline, and at 30, 90, and 180 days in all subjects. Levels of six of the eight proteins were significantly increased in patients versus controls (13 to 106% increase, P < 0.003). Interleukin-10 level was 2.06 times normal (P = 0.0003; Th2 cytokine response). Increased levels of four proteins (t-PA, PAI-1, P-selectin, and interleukin-6) correlated with disease severity indices (P < 0.05). Seven patients died during follow-up. An average VWF:Ag (mean of four determinations) above the level corresponding to the 95th percentile of controls (139 U/dL) was independently associated with a high risk of death (hazard ratio = 6.56, 95%CI = 1.46 to 29.4, P = 0.014). Thus, in CHDPAH, microvascular dysfunction appears to involve Th2 inflammatory response. Of the biomarkers studied, plasma vWF:Ag was independently associated with survival.
Collapse
Affiliation(s)
- A A Lopes
- Instituto do Coração, Universidade de São Paulo, SP, Brasil.
| | | | | | | | | | | | | |
Collapse
|
45
|
Cell-specific dual role of caveolin-1 in pulmonary hypertension. Pulm Med 2011; 2011:573432. [PMID: 21660237 PMCID: PMC3109422 DOI: 10.1155/2011/573432] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 03/10/2011] [Indexed: 12/15/2022] Open
Abstract
A wide variety of cardiopulmonary and systemic diseases are known to lead to pulmonary hypertension (PH). A number of signaling pathways have been implicated in PH; however, the precise mechanism/s leading to PH is not yet clearly understood. Caveolin-1, a membrane scaffolding protein found in a number of cells including endothelial and smooth muscle cells, has been implicated in PH. Loss of endothelial caveolin-1 is reported in clinical and experimental forms of PH. Caveolin-1, also known as a tumor-suppressor factor, interacts with a number of transducing molecules that reside in or are recruited to caveolae, and it inhibits cell proliferative pathways. Not surprisingly, the rescue of endothelial caveolin-1 has been found not only to inhibit the activation of proliferative pathways but also to attenuate PH. Recently, it has emerged that during the progression of PH, enhanced expression of caveolin-1 occurs in smooth muscle cells, where it facilitates cell proliferation, thus contributing to worsening of the disease. This paper summarizes the cell-specific dual role of caveolin-1 in PH.
Collapse
|
46
|
Abstract
The characteristics of pulmonary arterial hypertension (PAH), including pathology, symptoms, diagnosis and treatment are reviewed in children and adults. The histopathology seen in adults is also observed in children, although children have more medial hypertrophy at presentation. Both populations have vascular and endothelial dysfunction. Several unique disease states are present in children, as lung growth abnormalities contribute to pulmonary hypertension. Although both children and adults present at diagnosis with elevations in pulmonary vascular resistance and pulmonary artery pressure, children have less heart failure. Dyspnoea on exertion is the most frequent symptom in children and adults with PAH, but heart failure with oedema occurs more frequently in adults. However, in idiopathic PAH, syncope is more common in children. Haemodynamic assessment remains the gold standard for diagnosis, but the definition of vasoreactivity in adults may not apply to young children. Targeted PAH therapies approved for adults are associated with clinically meaningful effects in paediatric observational studies; children now survive as long as adults with current treatment guidelines. In conclusion, there are more similarities than differences in the characteristics of PAH in children and adults, resulting in guidelines recommending similar diagnostic and therapeutic algorithms in children (based on expert opinion) and adults (evidence-based).
Collapse
Affiliation(s)
- R J Barst
- Division of Paediatric Cardiology, Columbia University College of Physicians and Surgeons, 31 Murray Hill Road, Scarsdale, New York, NY 10583, USA.
| | | | | | | |
Collapse
|
47
|
Swiston JR, Johnson SR, Granton JT. Factors that prognosticate mortality in idiopathic pulmonary arterial hypertension: A systematic review of the literature. Respir Med 2010; 104:1588-607. [DOI: 10.1016/j.rmed.2010.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/28/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
|
48
|
Heresi GA, Aytekin M, Newman J, Dweik RA. CXC-chemokine ligand 10 in idiopathic pulmonary arterial hypertension: marker of improved survival. Lung 2010; 188:191-7. [PMID: 20186422 PMCID: PMC2886668 DOI: 10.1007/s00408-010-9232-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/08/2010] [Indexed: 12/14/2022]
Abstract
CXC-chemokine ligand 10 (CXCL10) inhibits angiogenesis and attracts activated T lymphocytes. Abnormal angiogenesis and lymphocytic infiltration participate in the pathobiology of pulmonary arterial hypertension (PAH). We hypothesized that serum CXCL10 is elevated in idiopathic PAH and that it is associated with clinical outcomes. This was a cohort study that included 40 idiopathic PAH patients (age = 44 +/- 14 years, 37 females) and 22 healthy controls (age = 35 +/- 6 years, 18 females). It took place at the Pulmonary Vascular Program at the Cleveland Clinic. Serum CXCL10 levels were measured by an enzyme-linked immunosorbent assay. A cutoff value of CXCL10 for best distinguishing alive and dead patients was obtained from a receiver operating characteristic curve (ROC). Survival and time to clinical worsening curves according to the appropriate CXCL10 level were derived by the Kaplan-Meier method and compared by means of the log-rank test. The prognostic value of CXCL10 and of other variables of interest was tested by Cox proportional hazards regression analysis. Serum CXCL10 levels were elevated in PAH subjects compared to controls [CXCL10 pg/ml (mean +/- SEM) for PAH: 306 +/- 73, and for controls: 92 +/- 10; p < 0.0001]. CXCL10 levels higher than 111 pg/ml discriminated survivors from nonsurvivors with a sensitivity of 81% and a specificity of 75% (area under the ROC curve = 0.74). After a mean follow-up of 23.5 +/- 13.5 months since the day of venous sampling, higher CXCL10 levels were associated with improved survival (hazard ratio for mortality = 0.10, 95% confidence interval = 0.01-0.97; p = 0.01). Serum CXCL10 is elevated in PAH and this is associated with improved survival.
Collapse
Affiliation(s)
- Gustavo A. Heresi
- Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A90, Cleveland, OH 44195, USA
| | - Metin Aytekin
- Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jennie Newman
- Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A90, Cleveland, OH 44195, USA
| | - Raed A. Dweik
- Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A90, Cleveland, OH 44195, USA
| |
Collapse
|
49
|
Abstract
Despite recent advances in medical treatment, pulmonary arterial hypertension (PAH) continues to be associated with high morbidity and mortality. While the diagnosis is established via a right heart catheterisation, current non-invasive measures of disease severity and response to treatment used in clinical practice are the 6-min walk distance and the World Health Organization functional class. Although both parameters correlate with disease severity and prognosis, they have significant limitations. A major shortcoming in assessing PAH is lack of standardised, non-invasive, objective parameters that function as biomarkers to help assess the severity and prognosis of disease and to follow patients' response to treatment. In this article, we will review current knowledge on potential biomarkers associated with diagnosis, prognosis and response to treatment of PAH. Most biomarkers are either being evaluated for potential use in clinical practice, or being used as research tools.
Collapse
Affiliation(s)
- S Rafeq
- Pulmonary, Critical Care and Sleep Division, Tufts University School of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | | | | |
Collapse
|
50
|
Exercise improvement and plasma biomarker changes with intravenous treprostinil therapy for pulmonary arterial hypertension: A placebo-controlled trial. J Heart Lung Transplant 2010; 29:137-49. [DOI: 10.1016/j.healun.2009.09.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/04/2009] [Accepted: 09/05/2009] [Indexed: 02/04/2023] Open
|