1
|
Shandra O, Wang Y, Coles LD, Mowrey WB, Li Q, Liu W, Moshé SL, Galanopoulou AS. Efficacy and tolerability of celastrol and edaravone in the multiple-hit rat model of infantile spasms. Epilepsy Behav 2025; 162:110159. [PMID: 39577370 PMCID: PMC11681605 DOI: 10.1016/j.yebeh.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE To test whether anti-inflammatory and antioxidant drugs that inhibit the nuclear factor kappa light chain enhancer of activated B cells (NF-kB), celastrol and edaravone, suppress spasms and improve developmental outcomes in the multiple-hit rat model of refractory infantile spasms (IS) due to structural lesions. METHODS Postnatal day 3 (PN3) Sprague-Dawley rats were treated according to the multiple-hit IS model protocol. Using a randomized, blinded, vehicle-controlled, dose- and time-response study design, we tested the effects of single celastrol [1, 2, or 4 mg/kg intraperitoneally (i.p.), 10-14 rats/group] or edaravone (1, 10 or 30 mg/kg i.p., 14-17 rats/group) injections vs their vehicles on behavioral and electroclinical spasms and developmental milestones. Video-EEG monitoring was done on PN6-7 (n = 11-12 rats/group). Pulse celastrol treatment effects (PN4: 4 mg/kg, PN5-6: 2 mg/kg/day i.p.) were determined on spasms, developmental milestones and Barnes maze. Celastrol and edaravone pharmacokinetics in plasma and neocortex were assessed. Linear mixed model analysis of raw or normalized log-transformed spasm frequencies, considering repeated observations was used. RESULTS Single (2-4 mg/kg i.p) or pulse celastrol, but not edaravone, reduced behavioral and electroclinical spasms frequencies within 5hrs. Pulse celastrol did not affect spasm-freedom, survival, developmental milestones or Barnes maze performance. Celastrol had erratic i.p. absorption with maximum concentrations observed between 2-4 h, when effects on spasms were seen. Edaravone had low blood-to-brain permeability. CONCLUSIONS Celastrol's efficacy on spasms is partially explained by its better brain penetration than edaravone's. NFkB inhibitors may be useful in treating drug-resistant IS but delivery methods with improved bioavailability and brain permeability are needed.
Collapse
Affiliation(s)
- Oleksii Shandra
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA
| | - Yongjun Wang
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA
| | - Lisa D Coles
- University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Wenzhu B Mowrey
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qianyun Li
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA
| | - Wei Liu
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA
| | - Solomon L Moshé
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA; Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristea S Galanopoulou
- Albert Einstein College of Medicine, Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Bronx, NY, USA; Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Yan H, Du M, Ding J, Song D, Ma W, Li Y. Pan-Genome-Wide Investigation and Co-Expression Network Analysis of HSP20 Gene Family in Maize. Int J Mol Sci 2024; 25:11550. [PMID: 39519102 PMCID: PMC11546149 DOI: 10.3390/ijms252111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Heat shock protein 20 (HSP20) is a diverse and functionally important protein family that plays a crucial role in plants' tolerance to various abiotic stresses. In this study, we systematically analyzed the structural and functional characteristics of the HSP20 gene family within the Zea pan-genome. By identifying 56 HSP20 pan-genes, we revealed the variation in the number of these genes across different maize inbreds or relatives. Among those 56 genes, only 31 are present in more than 52 inbreds or relatives. Further phylogenetic analysis classified these genes into four major groups (Class A, B, C, D) and explored their diversity in subcellular localization, physicochemical properties, and the terminal structures of those HSP20s. Through collinearity analysis and Ka/Ks ratio calculations, we found that most HSP20 genes underwent purifying selection during maize domestication, although a few genes showed signs of positive selection pressure. Additionally, expression analysis showed that several HSP20 genes were significantly upregulated under high temperatures, particularly in tassels and leaves. Co-expression network analysis revealed that HSP20 genes were significantly enriched in GO terms related to environmental stress responses, suggesting that HSP20 genes not only play key roles in heat stress but may also be involved in regulating various other biological processes, such as secondary metabolism and developmental processes. These findings expand our understanding of the functions of the maize HSP20 family and provide new insights for further research into maize's response mechanisms to environmental stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Yubin Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266000, China
| |
Collapse
|
3
|
Islam MR, Jony MH, Thufa GK, Akash S, Dhar PS, Rahman MM, Afroz T, Ahmed M, Hemeg HA, Rauf A, Thiruvengadam M, Venkidasamy B. A clinical study and future prospects for bioactive compounds and semi-synthetic molecules in the therapies for Huntington's disease. Mol Neurobiol 2024; 61:1237-1270. [PMID: 37698833 DOI: 10.1007/s12035-023-03604-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Puja Sutra Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Tahmina Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pukhtanukha, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea.
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
4
|
In memoriam: Ian R. Brown (1943-2020). Cell Stress Chaperones 2022. [PMID: 35794444 DOI: 10.1007/s12192-022-01289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Liu D, Zhang Q, Luo P, Gu L, Shen S, Tang H, Zhang Y, Lyu M, Shi Q, Yang C, Wang J. Neuroprotective Effects of Celastrol in Neurodegenerative Diseases-Unscramble Its Major Mechanisms of Action and Targets. Aging Dis 2022; 13:815-836. [PMID: 35656110 PMCID: PMC9116906 DOI: 10.14336/ad.2021.1115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
There are rarely new therapeutic breakthroughs present for neurodegenerative diseases in the last decades. Thus, new effective drugs are urgently needed for millions of patients with neurodegenerative diseases. Celastrol, a pentacyclic triterpenoid compound, is one of the main active ingredients isolated from Tripterygium wilfordii Hook. f. that has multiple biological activities. Recently, amount evidence indicates that celastrol exerts neuroprotective effects and holds therapeutic potential to serve as a novel agent for neurodegenerative diseases. This review focuses on the therapeutic efficacy and major regulatory mechanisms of celastrol to rescue damaged neurons, restore normal cognitive and sensory motor functions in neurodegenerative diseases. Importantly, we highlight recent progress regarding identification of the drug targets of celastrol by using advanced quantitative chemical proteomics technology. Overall, this review provides novel insights into the pharmacological activities and therapeutic potential of celastrol for incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Dandan Liu
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Qian Zhang
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Piao Luo
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Liwei Gu
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengnan Shen
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Tang
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Lyu
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoli Shi
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanbin Yang
- 3Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Jigang Wang
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,3Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, China.,4Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Dietary and nutraceutical-based therapeutic approaches to combat the pathogenesis of Huntington’s disease. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
7
|
Durairajan SSK, Selvarasu K, Bera MR, Rajaram K, Iyaswamy A, Li M. Alzheimer's Disease and other Tauopathies: Exploring Efficacy of Medicinal Plant-derived Compounds in Alleviating Tau-mediated Neurodegeneration. Curr Mol Pharmacol 2022; 15:361-379. [PMID: 34488602 DOI: 10.2174/1874467214666210906125318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/12/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a major form of dementia, has been reported to affect more than 50 million people worldwide. It is characterized by the presence of amyloid-β (Aβ) plaques and hyperphosphorylated Tau-associated neurofibrillary tangles in the brain. Apart from AD, microtubule (MT)-associated protein Tau is also involved in other neurodegenerative diseases called tauopathies, including Pick's disease, frontotemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration. The recent unsuccessful phase III clinical trials related to Aβ- targeted therapeutic drugs have indicated that alternative targets, such as Tau, should be studied to discover more effective and safer drugs. Recent drug discovery approaches to reduce AD-related Tau pathologies are primarily based on blocking Tau aggregation, inhibiting Tau phosphorylation, compensating impaired Tau function with MT-stabilizing agents, and targeting the degradation pathways in neuronal cells to degrade Tau protein aggregates. Owing to several limitations of the currently available Tau-directed drugs, further studies are required to generate further effective and safer Tau-based disease-modifying drugs. Here, we review the studies focused on medicinal plant- derived compounds capable of modulating the Tau protein, which is significantly elevated and hyperphosphorylated in AD and other tauopathies. We have mainly considered the studies focused on Tau protein as a therapeutic target. We have reviewed several pertinent papers retrieved from PubMed and ScienceDirect using relevant keywords, with a primary focus on the Tau-targeting compounds from medicinal plants. These compounds include indolines, phenolics, flavonoids, coumarins, alkaloids, and iridoids, which have been scientifically proven to be Tau-targeting candidates for the treatment of AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Karthikeyan Selvarasu
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Minu Rani Bera
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Kaushik Rajaram
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
8
|
Schiavone S, Morgese MG, Tucci P, Trabace L. The Therapeutic Potential of Celastrol in Central Nervous System Disorders: Highlights from In Vitro and In Vivo Approaches. Molecules 2021; 26:molecules26154700. [PMID: 34361850 PMCID: PMC8347599 DOI: 10.3390/molecules26154700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Celastrol, the most abundant compound derived from the root of Tripterygium wilfordii, largely used in traditional Chinese medicine, has shown preclinical and clinical efficacy for a broad range of disorders, acting via numerous mechanisms, including the induction of the expression of several neuroprotective factors, the inhibition of cellular apoptosis, and the decrease of reactive oxygen species (ROS). Given the crucial implication of these pathways in the pathogenesis of Central Nervous System disorders, both in vitro and in vivo studies have focused their attention on the possible use of this compound in these diseases. However, although most of the available studies have reported significant neuroprotective effects of celastrol in cellular and animal models of these pathological conditions, some of these data could not be replicated. This review aims to discuss current in vitro and in vivo lines of evidence on the therapeutic potential of celastrol in neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis, Huntington’s disease, multiple sclerosis, and cadmium-induced neurodegeneration, as well as in psychiatric disorders, such as psychosis and depression. In vitro and in vivo studies focused on celastrol effects in cerebral ischemia, ischemic stroke, traumatic brain injury, and epilepsy are also described.
Collapse
|
9
|
Moin ASM, Nandakumar M, Diane A, Dehbi M, Butler AE. The Role of Heat Shock Proteins in Type 1 Diabetes. Front Immunol 2021; 11:612584. [PMID: 33584694 PMCID: PMC7873876 DOI: 10.3389/fimmu.2020.612584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease characterized by recognition of pancreatic β-cell proteins as self-antigens, called autoantigens (AAgs), followed by loss of pancreatic β-cells. (Pre-)proinsulin ([P]PI), glutamic acid decarboxylase (GAD), tyrosine phosphatase IA-2, and the zinc transporter ZnT8 are key molecules in T1D pathogenesis and are recognized by autoantibodies detected in routine clinical laboratory assays. However, generation of new autoantigens (neoantigens) from β-cells has also been reported, against which the autoreactive T cells show activity. Heat shock proteins (HSPs) were originally described as “cellular stress responders” for their role as chaperones that regulate the conformation and function of a large number of cellular proteins to protect the body from stress. HSPs participate in key cellular functions under both physiological and stressful conditions, including suppression of protein aggregation, assisting folding and stability of nascent and damaged proteins, translocation of proteins into cellular compartments and targeting irreversibly damaged proteins for degradation. Low HSP expression impacts many pathological conditions associated with diabetes and could play a role in diabetic complications. HSPs have beneficial effects in preventing insulin resistance and hyperglycemia in type 2 diabetes (T2D). HSPs are, however, additionally involved in antigen presentation, presenting immunogenic peptides to class I and class II major histocompatibility molecules; thus, an opportunity exists for HSPs to be employed as modulators of immunologic responses in T1D and other autoimmune disorders. In this review, we discuss the multifaceted roles of HSPs in the pathogenesis of T1D and in autoantigen-specific immune protection against T1D development.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abdoulaye Diane
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Mohammed Dehbi
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
10
|
Lyu Q, Ludwig IS, Kooten PJS, Sijts AJAM, Rutten VPMG, van Eden W, Broere F. Leucinostatin acts as a co-inducer for heat shock protein 70 in cultured canine retinal pigment epithelial cells. Cell Stress Chaperones 2020; 25:235-243. [PMID: 31940135 PMCID: PMC7058576 DOI: 10.1007/s12192-019-01066-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/08/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of retinal pigment epithelium (RPE) cells is the main cause of a variety of ocular diseases. Potentially heat shock proteins, by preventing molecular and cellular damage and modulating inflammatory disease, may exert a protective role in eye disease. In particular, the inducible form of heat shock protein 70 (Hsp70) is widely upregulated in inflamed tissues, and in vivo upregulation of Hsp70 expression by HSP co-inducing compounds has been shown to be a potential therapeutic strategy for inflammatory diseases. In order to gain further understanding of the potential protective effects of Hsp70 in RPE cells, we developed a method for isolation and culture of canine RPE cells. Identity of RPE cells was confirmed by detection of its specific marker, RPE65, in qPCR, flow cytometry, and immunocytochemistry analysis. The ability of RPE cells to express Hsp70 upon experimental induction of cell stress, by arsenite, was analyzed by flow cytometry. Finally, in search of a potential Hsp70 co-inducer, we investigated whether the compound leucinostatin could enhance Hsp70 expression in stressed RPE cells. Canine RPE cells were isolated and cultured successfully. Purity of cells that strongly expressed RPE65 was over 90%. Arsenite-induced stress led to a time- and dose-dependent increase in Hsp70 expression in canine RPE cells in vitro. In addition, leucinostatin, which enhanced heat shock factor-1-induced transcription from the heat shock promoter in DNAJB1-luc-O23 reporter cell line, also enhanced Hsp70 expression in arsenite-stressed RPE cells, in a dose-dependent fashion. These findings demonstrate that leucinostatin can boost Hsp70 expression in canine RPE cells, most likely by activating heat shock factor-1, suggesting that leucinostatin might be applied as a new co-inducer for Hsp70 expression.
Collapse
Affiliation(s)
- Qingkang Lyu
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, The Netherlands
| | - Irene S. Ludwig
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, The Netherlands
| | - Peter J. S. Kooten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, The Netherlands
| | - Alice J. A. M. Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, The Netherlands
| | - Victor P. M. G. Rutten
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, Pretoria University, Pretoria, South Africa
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, The Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, The Netherlands
| |
Collapse
|
11
|
Liguori L, Monticelli M, Allocca M, Hay Mele B, Lukas J, Cubellis MV, Andreotti G. Pharmacological Chaperones: A Therapeutic Approach for Diseases Caused by Destabilizing Missense Mutations. Int J Mol Sci 2020; 21:ijms21020489. [PMID: 31940970 PMCID: PMC7014102 DOI: 10.3390/ijms21020489] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
The term “pharmacological chaperone” was introduced 20 years ago. Since then the approach with this type of drug has been proposed for several diseases, lysosomal storage disorders representing the most popular targets. The hallmark of a pharmacological chaperone is its ability to bind a protein specifically and stabilize it. This property can be beneficial for curing diseases that are associated with protein mutants that are intrinsically active but unstable. The total activity of the affected proteins in the cell is lower than normal because they are cleared by the quality control system. Although most pharmacological chaperones are reversible competitive inhibitors or antagonists of their target proteins, the inhibitory activity is neither required nor desirable. This issue is well documented by specific examples among which those concerning Fabry disease. Direct specific binding is not the only mechanism by which small molecules can rescue mutant proteins in the cell. These drugs and the properly defined pharmacological chaperones can work together with different and possibly synergistic modes of action to revert a disease phenotype caused by an unstable protein.
Collapse
Affiliation(s)
- Ludovica Liguori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.L.); (M.A.)
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
| | - Maria Monticelli
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy;
| | - Mariateresa Allocca
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.L.); (M.A.)
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
| | - Bruno Hay Mele
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Jan Lukas
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Maria Vittoria Cubellis
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy;
- Correspondence: ; Tel.: +39-081-679118; Fax: +39-081-679233
| | | |
Collapse
|
12
|
Deane CAS, Brown IR. Intracellular Targeting of Heat Shock Proteins in Differentiated Human Neuronal Cells Following Proteotoxic Stress. J Alzheimers Dis 2019; 66:1295-1308. [PMID: 30412487 DOI: 10.3233/jad-180536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
HSPA6 (Hsp70B') is an inducible member of the Hsp70 (HSPA) family of heat shock proteins that is present in the human genome and not found in mouse and rat. Hence it is lacking in current animal models of neurodegenerative diseases. To advance knowledge of the little studied HSPA6, differentiated human neuronal SH-SY5Y cells were treated with the proteotoxic stress-inducing agent MG132. A robust induction of HSPA6 was apparent which localized to the periphery of MG132-induced protein aggregates in the neuronal cytoplasm. Components of the protein disaggregation/refolding machine that co-operate with Hsp70 also targeted the periphery of cytoplasmic protein aggregates, including DNAJB1 (Hsp40-1), HSPH1 (Hsp105α), and HSPB1 (Hsp27). These data suggest that HSPA6 is involved in the response of human neuronal cells to proteotoxic stress that is a feature of neurodegenerative diseases which have been characterized as protein misfolding disorders. Constitutively expressed HSPA8 (Hsc70) also localized tothe periphery of cytoplasmic protein aggregates following the treatment of differentiated human neuronal cells with MG132. HSPA8 could provide a rapid response to proteotoxic stress in neuronal cells, circumventing the time required to upregulate inducible Hsps.
Collapse
Affiliation(s)
- Catherine A S Deane
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Porto RR, de Oliveira Alvares L. Role of HSP70 in Plasticity and Memory. HEAT SHOCK PROTEINS IN NEUROSCIENCE 2019. [DOI: 10.1007/978-3-030-24285-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Petrović A, Kaur J, Tomljanović I, Nistri A, Mladinic M. Pharmacological induction of Heat Shock Protein 70 by celastrol protects motoneurons from excitotoxicity in rat spinal cord in vitro. Eur J Neurosci 2018; 49:215-231. [PMID: 30362615 DOI: 10.1111/ejn.14218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
The secondary phase of spinal cord injury arising after the primary lesion largely extends the damage severity with delayed negative consequences for sensory-motor pathways. It is, therefore, important to find out if enhancing intrinsic mechanisms of neuroprotection can spare motoneurons that are very vulnerable cells. This issue was investigated with an in vitro model of rat spinal cord excitotoxicity monitored for up to 24 hr after the primary injury evoked by kainate. This study sought to pharmacologically boost the expression of heat shock proteins (HSP) to protect spinal motoneurons using celastrol to investigate if the rat spinal cord can upregulate HSP as neuroprotective mechanism. Despite its narrow range of drug safety in vitro, celastrol was not toxic to the rat spinal cord at 0.75 μM concentration and enhanced the expression of HSP70 by motoneurons. When celastrol was applied either before or after kainate, the number of dead motoneurons was significantly decreased and the nuclear localization of the cell death biomarker AIF strongly inhibited. Nevertheless, electrophysiological recording showed that protection of lumbar motor networks by celastrol was rather limited as reflex activity was impaired and fictive locomotion largely depressed, suggesting that functional deficit persisted, though the networks could express slow rhythmic oscillations. While our data do not exclude further recovery at later times beyond the experimental observations, the present results indicate that the upregulated expression of HSP in the aftermath of acute injury may be an interesting avenue for early protection of spinal motoneurons.
Collapse
Affiliation(s)
- Antonela Petrović
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia.,Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Jaspreet Kaur
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Miranda Mladinic
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
15
|
Readhead B, Hartley BJ, Eastwood BJ, Collier DA, Evans D, Farias R, He C, Hoffman G, Sklar P, Dudley JT, Schadt EE, Savić R, Brennand KJ. Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nat Commun 2018; 9:4412. [PMID: 30356048 PMCID: PMC6200740 DOI: 10.1038/s41467-018-06515-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
A lack of biologically relevant screening models hinders the discovery of better treatments for schizophrenia (SZ) and other neuropsychiatric disorders. Here we compare the transcriptional responses of 8 commonly used cancer cell lines (CCLs) directly with that of human induced pluripotent stem cell (hiPSC)-derived neural progenitor cells (NPCs) from 12 individuals with SZ and 12 controls across 135 drugs, generating 4320 unique drug-response transcriptional signatures. We identify those drugs that reverse post-mortem SZ-associated transcriptomic signatures, several of which also differentially regulate neuropsychiatric disease-associated genes in a cell type (hiPSC NPC vs. CCL) and/or a diagnosis (SZ vs. control)-dependent manner. Overall, we describe a proof-of-concept application of transcriptomic drug screening to hiPSC-based models, demonstrating that the drug-induced gene expression differences observed with patient-derived hiPSC NPCs are enriched for SZ biology, thereby revealing a major advantage of incorporating cell type and patient-specific platforms in drug discovery. Unbiased large scale screening of small molecules for drug discovery in psychiatric disease is technically challenging and financially costly. Here, Readhead and colleagues integrate in silico and in vitro approaches to design and conduct transcriptomic drug screening in schizophrenia patient-derived neural cells, in order to survey novel pathologies and points of intervention.
Collapse
Affiliation(s)
- Benjamin Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Brigham J Hartley
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - David A Collier
- Eli Lilly and Company Ltd, Erl Wood Manor, Surrey, UK.,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - David Evans
- Eli Lilly and Company Ltd, Erl Wood Manor, Surrey, UK
| | - Richard Farias
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ching He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriel Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Sklar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Sema4, a Mount Sinai venture, Stamford, Connecticut, USA.
| | - Radoslav Savić
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Sema4, a Mount Sinai venture, Stamford, Connecticut, USA.
| | - Kristen J Brennand
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
16
|
Cascão R, Fonseca JE, Moita LF. Celastrol: A Spectrum of Treatment Opportunities in Chronic Diseases. Front Med (Lausanne) 2017; 4:69. [PMID: 28664158 PMCID: PMC5471334 DOI: 10.3389/fmed.2017.00069] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/19/2017] [Indexed: 01/02/2023] Open
Abstract
The identification of new bioactive compounds derived from medicinal plants with significant therapeutic properties has attracted considerable interest in recent years. Such is the case of the Tripterygium wilfordii (TW), an herb used in Chinese medicine. Clinical trials performed so far using its root extracts have shown impressive therapeutic properties but also revealed substantial gastrointestinal side effects. The most promising bioactive compound obtained from TW is celastrol. During the last decade, an increasing number of studies were published highlighting the medicinal usefulness of celastrol in diverse clinical areas. Here we systematically review the mechanism of action and the therapeutic properties of celastrol in inflammatory diseases, namely, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel diseases, osteoarthritis and allergy, as well as in cancer, neurodegenerative disorders and other diseases, such as diabetes, obesity, atherosclerosis, and hearing loss. We will also focus in the toxicological profile and limitations of celastrol formulation, namely, solubility, bioavailability, and dosage issues that still limit its further clinical application and usefulness.
Collapse
Affiliation(s)
- Rita Cascão
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João E Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Luis F Moita
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
17
|
Celastrol and Its Role in Controlling Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:267-289. [PMID: 27671821 DOI: 10.1007/978-3-319-41334-1_12] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Celastrol, a triterpenoid derived from traditional Chinese medicinal plants, has anti-inflammatory, antioxidant, and anticancer activities. Celastrol has shown preventive/therapeutic effects in experimental models of several chronic diseases. These include, chronic inflammatory and autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and psoriasis), neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis), atherosclerosis, obesity, Type 2 diabetes, and cancer. Celastrol modulates intricate cellular pathways and networks associated with disease pathology, and it interrupts or redirects the aberrant cellular and molecular events so as to limit disease progression and facilitate recovery, where feasible. The major cell signaling pathways modulated by celastrol include the NF-kB pathway, MAPK pathway, JAK/STAT pathway, PI3K/Akt/mTOR pathway, and antioxidant defense mechanisms. Furthermore, celastrol modulates cell proliferation, apoptosis, proteasome activity, heat-shock protein response, innate and adaptive immune responses, angiogenesis, and bone remodeling. Current understanding of the mechanisms of action of celastrol and information about its disease-modulating activities in experimental models have set the stage for testing celastrol in clinical studies as a therapeutic agent for several chronic human diseases.
Collapse
|
18
|
Deane CAS, Brown IR. Differential Targeting of Hsp70 Heat Shock Proteins HSPA6 and HSPA1A with Components of a Protein Disaggregation/Refolding Machine in Differentiated Human Neuronal Cells following Thermal Stress. Front Neurosci 2017; 11:227. [PMID: 28484369 PMCID: PMC5401876 DOI: 10.3389/fnins.2017.00227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/04/2017] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins (Hsps) co-operate in multi-protein machines that counter protein misfolding and aggregation and involve DNAJ (Hsp40), HSPA (Hsp70), and HSPH (Hsp105α). The HSPA family is a multigene family composed of inducible and constitutively expressed members. Inducible HSPA6 (Hsp70B') is found in the human genome but not in the genomes of mouse and rat. To advance knowledge of this little studied HSPA member, the targeting of HSPA6 to stress-sensitive neuronal sites with components of a disaggregation/refolding machine was investigated following thermal stress. HSPA6 targeted the periphery of nuclear speckles (perispeckles) that have been characterized as sites of transcription. However, HSPA6 did not co-localize at perispeckles with DNAJB1 (Hsp40-1) or HSPH1 (Hsp105α). At 3 h after heat shock, HSPA6 co-localized with these members of the disaggregation/refolding machine at the granular component (GC) of the nucleolus. Inducible HSPA1A (Hsp70-1) and constitutively expressed HSPA8 (Hsc70) co-localized at nuclear speckles with components of the machine immediately after heat shock, and at the GC layer of the nucleolus at 1 h with DNAJA1 and BAG-1. These results suggest that HSPA6 exhibits targeting features that are not apparent for HSPA1A and HSPA8.
Collapse
Affiliation(s)
- Catherine A S Deane
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto ScarboroughToronto, ON, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto ScarboroughToronto, ON, Canada
| |
Collapse
|
19
|
Shorbagi S, Brown IR. Dynamics of the association of heat shock protein HSPA6 (Hsp70B') and HSPA1A (Hsp70-1) with stress-sensitive cytoplasmic and nuclear structures in differentiated human neuronal cells. Cell Stress Chaperones 2016; 21:993-1003. [PMID: 27527722 PMCID: PMC5083669 DOI: 10.1007/s12192-016-0724-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/11/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022] Open
Abstract
Heat shock proteins (Hsps) are cellular repair agents that counter the effects of protein misfolding that is a characteristic feature of neurodegenerative diseases. HSPA1A (Hsp70-1) is a widely studied member of the HSPA (Hsp70) family. The little-studied HSPA6 (Hsp70B') is present in the human genome and absent in mouse and rat; hence, it is missing in current animal models of neurodegenerative diseases. Differentiated human neuronal SH-SY5Y cells were employed to compare the dynamics of the association of YFP-tagged HSPA6 and HSPA1A with stress-sensitive cytoplasmic and nuclear structures. Following thermal stress, live-imaging confocal microscopy and Fluorescence Recovery After Photobleaching (FRAP) demonstrated that HSPA6 displayed a prolonged and more dynamic association, compared to HSPA1A, with centrioles that play critical roles in neuronal polarity and migration. HSPA6 and HSPA1A also targeted nuclear speckles, rich in RNA splicing factors, and the granular component of the nucleolus that is involved in rRNA processing and ribosomal subunit assembly. HSPA6 and HSPA1A displayed similar FRAP kinetics in their interaction with nuclear speckles and the nucleolus. Subsequently, during the recovery from neuronal stress, HSPA6, but not HSPA1A, localized with the periphery of nuclear speckles (perispeckles) that have been characterized as transcription sites. The stress-induced association of HSPA6 with perispeckles displayed the greatest dynamism compared to the interaction of HSPA6 or HSPA1A with other stress-sensitive cytoplasmic and nuclear structures. This suggests involvement of HSPA6 in transcriptional recovery of human neurons from cellular stress that is not apparent for HSPA1A.
Collapse
Affiliation(s)
- Sadek Shorbagi
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
20
|
Becirovic L, Brown IR. Targeting of Heat Shock Protein HSPA6 (HSP70B') to the Periphery of Nuclear Speckles is Disrupted by a Transcription Inhibitor Following Thermal Stress in Human Neuronal Cells. Neurochem Res 2016; 42:406-414. [PMID: 27743288 DOI: 10.1007/s11064-016-2084-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. The intracellular localization of inducible members of the HSPA (HSP70) family can be used as an index to identify stress-sensitive sites in differentiated human neuronal cells. Following thermal stress, the little studied HSPA6 (HSP70B') was targeted to the periphery of nuclear speckles (perispeckles) that are sites of transcription factories. Triptolide, a fast-acting transcription inhibitor, knocked down levels of the large subunit of RNA polymerase II, RPB1, during the time-frame when HSPA6 associated with perispeckles. Administration of triptolide to heat shocked human neuronal SH-SY5Y cells, disrupted HSPA6 localization to perispeckles, suggesting the involvement of HSPA6 in transcriptional recovery after stress. The HSPA6 gene is present in the human genome but is not found in the genomes of the mouse and rat. Hence current animal models of neurodegenerative diseases lack a member of the HSPA family that exhibits the feature of stress-induced targeting to perispeckles.
Collapse
Affiliation(s)
- Larissa Becirovic
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
21
|
Deane CAS, Brown IR. Induction of heat shock proteins in differentiated human neuronal cells following co-application of celastrol and arimoclomol. Cell Stress Chaperones 2016; 21:837-48. [PMID: 27273088 PMCID: PMC5003800 DOI: 10.1007/s12192-016-0708-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 01/19/2023] Open
Abstract
Few effective therapies exist for the treatment of neurodegenerative diseases that have been characterized as protein misfolding disorders. Upregulation of heat shock proteins (Hsps) mitigates against the accumulation of misfolded, aggregation-prone proteins and synaptic dysfunction, which is recognized as an early event in neurodegenerative diseases. Enhanced induction of a set of Hsps in differentiated human SH-SY5Y neuronal cells was observed following co-application of celastrol and arimoclomol, compared to their individual application. The dosages employed did not affect cell viability or neuronal process morphology. The induced Hsps included the little studied HSPA6 (Hsp70B'), a potentially neuroprotective protein that is present in the human genome but not in rat and mouse and hence is missing in current animal models of neurodegenerative disease. Enhanced induction of HSPA1A (Hsp70-1), DNAJB1 (Hsp40), HO-1 (Hsp32), and HSPB1 (Hsp27) was also observed. Celastrol activates heat shock transcription factor 1 (HSF1), the master regulator of Hsp gene transcription, and also exhibits potent anti-inflammatory and anti-oxidant activities. Arimoclomol is a co-activator that prolongs the binding of activated HSF1 to heat shock elements (HSEs) in the promoter regions of inducible Hsp genes. Elevated Hsp levels peaked at 10 to 12 h for HSPA6, HSPA1A, DNAJB1, and HO-1 and at 24 h for HSPB1. Co-application of celastrol and arimoclomol induced higher Hsp levels compared to heat shock paired with arimoclomol. The co-application strategy of celastrol and arimoclomol targets multiple neurodegenerative disease-associated pathologies including protein misfolding and protein aggregation, inflammatory and oxidative stress, and synaptic dysfunction.
Collapse
Affiliation(s)
- Catherine A S Deane
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
22
|
|
23
|
Khalouei S, Chow AM, Brown IR. Localization of heat shock protein HSPA6 (HSP70B') to sites of transcription in cultured differentiated human neuronal cells following thermal stress. J Neurochem 2014; 131:743-54. [DOI: 10.1111/jnc.12970] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Sam Khalouei
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| | - Ari M. Chow
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| | - Ian R. Brown
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| |
Collapse
|
24
|
Chow AM, Tang DWF, Hanif A, Brown IR. Localization of heat shock proteins in cerebral cortical cultures following induction by celastrol. Cell Stress Chaperones 2014; 19:845-51. [PMID: 24700193 PMCID: PMC4389844 DOI: 10.1007/s12192-014-0508-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022] Open
Abstract
Hsp70, Hsp32, and Hsp27 were induced by celastrol in rat cerebral cortical cultures at dosages that did not affect cell viability. Pronounced differences were observed in the cellular localization of these heat shock proteins in cell types of cerebral cortical cultures. Celastrol-induced Hsp70 localized to the cell body and cellular processes of neurons that were identified by neuron-specific βIII-tubulin. Hsp70 was not detected in adjacent GFAP-positive glial cells that demonstrated a strong signal for Hsp27 and Hsp32 in both glial cell bodies and cellular processes. Cells in the cerebral cortex region of the brain are selectively impacted during the progression of Alzheimer's disease which is a "protein misfolding disorder." Heat shock proteins provide a line of defense against misfolded, aggregation-prone proteins. Celastrol is a potential agent to counter this neurodegenerative disorder as recent evidence indicates that in vivo administration of celastrol in a transgenic model of Alzheimer's reduces an important neuropathological hallmark of this disease, namely, amyloid beta pathology that involves protein aggregation.
Collapse
Affiliation(s)
- Ari M. Chow
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| | - Derek W. F. Tang
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| | - Asad Hanif
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| | - Ian R. Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| |
Collapse
|
25
|
Konieczny J, Jantas D, Lenda T, Domin H, Czarnecka A, Kuter K, Śmiałowska M, Lasoń W, Lorenc-Koci E. Lack of neuroprotective effect of celastrol under conditions of proteasome inhibition by lactacystin in in vitro and in vivo studies: implications for Parkinson's disease. Neurotox Res 2014; 26:255-73. [PMID: 24842651 PMCID: PMC4143605 DOI: 10.1007/s12640-014-9477-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 04/11/2014] [Accepted: 05/03/2014] [Indexed: 01/23/2023]
Abstract
A number of studies suggest that the ubiquitin-proteasome system (UPS) impairment may underlie neuronal death in Parkinson's disease. Celastrol is a neuroprotective agent with anti-inflammatory and antioxidant properties. The aim of this study was to determine whether celastrol may exert neuroprotective effects both in vitro and in vivo under conditions of the lactacystin-induced UPS inhibition. In the in vitro study, mouse primary cortical neurons and neuroblastoma SH-SY5Y cells were incubated with lactacystin for 48 h (2.5 and 10 μg/ml, respectively). The animal study was performed on male Wistar rats injected unilaterally with lactacystin (5 μg/2 μl) into the substantia nigra (SN) pars compacta. In the in vitro study, we did not found any protective effects of celastrol, given either in the pre- or co-treatment mode. Moreover, in the higher concentrations, celastrol itself reduced cell viability, and enhanced the lactacystin-induced cell death in both types of cells. In the in vivo study, none of the celastrol doses (0.3-3 mg/kg) attenuated the lactacystin-induced decrease in the level of dopamine (DA) and its metabolites or protected nigral dopaminergic neurons against the lactacystin-induced degeneration. The highest celastrol dose potentiated the lactacystin-induced decrease in the level of DA and its metabolites in the lesioned striatum, and accelerated the lactacystin-induced increase in the oxidative and total metabolism of DA. Moreover, when given alone, this dose of celastrol bilaterally decreased the number and/or density of dopaminergic neurons in the SN. Our results demonstrate that celastrol does not induce neuroprotective effects under conditions of UPS inhibition.
Collapse
Affiliation(s)
- Jolanta Konieczny
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 St., 31-343, Kraków, Poland,
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen J. Heme oxygenase in neuroprotection: from mechanisms to therapeutic implications. Rev Neurosci 2014; 25:269-80. [PMID: 24501157 DOI: 10.1515/revneuro-2013-0046] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/26/2013] [Indexed: 11/15/2022]
Abstract
Heme oxygenase (HO) was regarded as an enzyme to degrade heme in aging red blood cells; recent studies suggested HO might have other functions such as neuroprotection. HO degrades heme to produce carbon monoxide (CO), iron (Fe²⁺) and biliverdin, which is rapidly converted to bilirubin (BR). Three isoforms of HO were identified in the brain: inducible form (HO-1) and constitutive forms (HO-2 and HO-3). HO-1 and HO-2 may have different mechanisms to protect neurons from oxidative stress. HO-1 is normally barely detectable in the brain. HO-1 can be induced mainly in microglia and astrocytes by oxidative stimulus rapidly. HO-1 might function as an emerging molecule to protect neurons against acute insults mediated by facilitating iron efflux from cells under stress conditions. Up-regulation of HO-1 was also found in brain glial cells in the aging and neurodegenerative diseases. This may lead to iron deposition and oxidative mitochondrial injury. HO-1 may confer neuroprotection or neurotoxic effect because of the balance between beneficial and toxic effects of heme and heme products. Pharmacological modulation of HO-1 induction represents a therapeutic strategy for several nervous system disorders. HO-2 predominantly expressed in neurons. Bilirubin has been demonstrated to protect neurons from oxidative stress in vivo and in vitro. Bilirubin can be oxidized to biliverdin by scavenging peroxyl radicals. HO-2 could protect neurons through bilirubin pathway. HO-2 might also promote neuronal survival through the CO-cGMP-MAPK pathway. Biliverdin/bilirubin may be possible therapeutic candidates to treat nervous system disease related with oxidative damage.
Collapse
|
27
|
Fribley AM, Miller JR, Brownell AL, Garshott DM, Zeng Q, Reist TE, Narula N, Cai P, Xi Y, Callaghan MU, Kodali V, Kaufman RJ. Celastrol induces unfolded protein response-dependent cell death in head and neck cancer. Exp Cell Res 2014; 330:412-422. [PMID: 25139619 DOI: 10.1016/j.yexcr.2014.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/06/2014] [Accepted: 08/09/2014] [Indexed: 11/29/2022]
Abstract
The survival rate for patients with oral squamous cell carcinoma (OSCC) has not seen marked improvement in recent decades despite enhanced efforts in prevention and the introduction of novel therapies. We have reported that pharmacological exacerbation of the unfolded protein response (UPR) is an effective approach to killing OSCC cells. The UPR is executed via distinct signaling cascades whereby an initial attempt to restore folding homeostasis in the endoplasmic reticulum during stress is complemented by an apoptotic response if the defect cannot be resolved. To identify novel small molecules able to overwhelm the adaptive capacity of the UPR in OSCC cells, we engineered a complementary cell-based assay to screen a broad spectrum of chemical matter. Stably transfected CHO-K1 cells that individually report (luciferase) on the PERK/eIF2α/ATF4/CHOP (apoptotic) or the IRE1/XBP1 (adaptive) UPR pathways, were engineered [1]. The triterpenoids dihydrocelastrol and celastrol were identified as potent inducers of UPR signaling and cell death in a primary screen and confirmed in a panel of OSCC cells and other cancer cell lines. Biochemical and genetic assays using OSCC cells and modified murine embryonic fibroblasts demonstrated that intact PERK-eIF2-ATF4-CHOP signaling is required for pro-apoptotic UPR and OSCC death following celastrol treatment.
Collapse
Affiliation(s)
- Andrew M Fribley
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA; Wayne State University School of Medicine, Detroit, MI, USA.
| | - Justin R Miller
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Wayne State University School of Medicine, Detroit, MI, USA
| | - Amy L Brownell
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Wayne State University School of Medicine, Detroit, MI, USA
| | - Danielle M Garshott
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Qinghua Zeng
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA; Wayne State University School of Medicine, Detroit, MI, USA
| | - Tyler E Reist
- The Undergraduate Research Opportunities Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Neha Narula
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter Cai
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Yue Xi
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael U Callaghan
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Wayne State University School of Medicine, Detroit, MI, USA
| | - Vamsi Kodali
- Degenerative Disease Research Center, Sanford
- Burnham Medical Research Institute La Jolla, CA 92037, USA
| | - Randal J Kaufman
- Degenerative Disease Research Center, Sanford
- Burnham Medical Research Institute La Jolla, CA 92037, USA
| |
Collapse
|
28
|
The systemic amyloid precursor transthyretin (TTR) behaves as a neuronal stress protein regulated by HSF1 in SH-SY5Y human neuroblastoma cells and APP23 Alzheimer's disease model mice. J Neurosci 2014; 34:7253-65. [PMID: 24849358 DOI: 10.1523/jneurosci.4936-13.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increased neuronal synthesis of transthyretin (TTR) may favorably impact on Alzheimer's disease (AD) because TTR has been shown to inhibit Aβ aggregation and detoxify cell-damaging conformers. The mechanism whereby hippocampal and cortical neurons from AD patients and APP23 AD model mice produce more TTR is unknown. We now show that TTR expression in SH-SY5Y human neuroblastoma cells, primary hippocampal neurons and the hippocampus of APP23 mice, is significantly enhanced by heat shock factor 1 (HSF1). Chromatin immunoprecipitation (ChIP) assays demonstrated occupation of TTR promoter heat shock elements by HSF1 in APP23 hippocampi, primary murine hippocampal neurons, and SH-SY5Y cells, but not in mouse liver, cultured human hepatoma (HepG2) cells, or AC16 cultured human cardiomyocytes. Treating SH-SY5Y human neuroblastoma cells with heat shock or the HSF1 stimulator celastrol increased TTR transcription in parallel with that of HSP40, HSP70, and HSP90. With both treatments, ChIP showed increased occupancy of heat shock elements in the TTR promoter by HSF1. In vivo celastrol increased the HSF1 ChIP signal in hippocampus but not in liver. Transfection of a human HSF1 construct into SH-SY5Y cells increased TTR transcription and protein production, which could be blocked by shHSF1 antisense. The effect is neuron specific. In cultured HepG2 cells, HSF1 was either suppressive or had no effect on TTR expression confirming the differential effects of HSF1 on TTR transcription in different cell types.
Collapse
|
29
|
Celastrol targets proteostasis and acts synergistically with a heat-shock protein 90 inhibitor to kill human glioblastoma cells. Cell Death Dis 2014; 5:e1216. [PMID: 24810052 PMCID: PMC4047902 DOI: 10.1038/cddis.2014.182] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/06/2014] [Accepted: 03/24/2014] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme is a devastating disease of the central nervous system and, at present, no effective therapeutic interventions have been identified. Celastrol, a natural occurring triterpene, exhibits potent anti-tumor activity against gliomas in xenograft mouse models. In this study, we describe the cell death mechanism employed by celastrol and identify secondary targets for effective combination therapy against glioblastoma cell survival. In contrast to the previously proposed reactive oxygen species (ROS)-dependent mechanism, cell death in human glioblastoma cells is shown here to be mediated by alternate signal transduction pathways involving, but not fully dependent on, poly(ADP-ribose) polymerase-1 and caspase-3. Our studies indicate that celastrol promotes proteotoxic stress, supported by two feedback mechanisms: (i) impairment of protein quality control as revealed by accumulation of polyubiquitinated aggregates and the canonical autophagy substrate, p62, and (ii) the induction of heat-shock proteins, HSP72 and HSP90. The Michael adduct of celastrol and N-acetylcysteine, 6-N-acetylcysteinyldihydrocelastrol, had no effect on p62, nor on HSP72 expression, confirming a thiol-dependent mechanism. Restriction of protein folding stress with cycloheximide was protective, while combination with autophagy inhibitors did not sensitize cells to celastrol-mediated cytotoxicity. Collectively, these findings imply that celastrol targets proteostasis by disrupting sulfyhydryl homeostasis, independently of ROS, in human glioblastoma cells. This study further emphasizes that targeting proteotoxic stress responses by inhibiting HSP90 with 17-N-Allylamino-17-demethoxygeldanamycin sensitizes human glioblastoma to celastrol treatment, thereby serving as a novel synergism to overcome drug resistance.
Collapse
|
30
|
Khalouei S, Chow AM, Brown IR. Stress-induced localization of HSPA6 (HSP70B') and HSPA1A (HSP70-1) proteins to centrioles in human neuronal cells. Cell Stress Chaperones 2014; 19:321-7. [PMID: 24061851 PMCID: PMC3982026 DOI: 10.1007/s12192-013-0459-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/21/2022] Open
Abstract
The localization of yellow fluorescent protein (YFP)-tagged HSP70 proteins was employed to identify stress-sensitive sites in human neurons following temperature elevation. Stable lines of human SH-SY5Y neuronal cells were established that expressed YFP-tagged protein products of the human inducible HSP70 genes HSPA6 (HSP70B') and HSPA1A (HSP70-1). Following a brief period of thermal stress, YFP-tagged HSPA6 and HSPA1A rapidly appeared at centrioles in the cytoplasm of human neuronal cells, with HSPA6 demonstrating a more prolonged signal compared to HSPA1A. Each centriole is composed of a distal end and a proximal end, the latter linking the centriole doublet. The YFP-tagged HSP70 proteins targeted the proximal end of centrioles (identified by γ-tubulin marker) rather than the distal end (centrin marker). Centrioles play key roles in cellular polarity and migration during neuronal differentiation. The proximal end of the centriole, which is involved in centriole stabilization, may be stress-sensitive in post-mitotic, differentiating human neurons.
Collapse
Affiliation(s)
- Sam Khalouei
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4 ON Canada
| | - Ari M. Chow
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4 ON Canada
| | - Ian R. Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4 ON Canada
| |
Collapse
|
31
|
The role of heat shock proteins in Amyotrophic Lateral Sclerosis: The therapeutic potential of Arimoclomol. Pharmacol Ther 2014; 141:40-54. [DOI: 10.1016/j.pharmthera.2013.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
|
32
|
Choi BS, Kim H, Lee HJ, Sapkota K, Park SE, Kim S, Kim SJ. Celastrol from 'Thunder God Vine' protects SH-SY5Y cells through the preservation of mitochondrial function and inhibition of p38 MAPK in a rotenone model of Parkinson's disease. Neurochem Res 2013; 39:84-96. [PMID: 24214023 DOI: 10.1007/s11064-013-1193-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/22/2013] [Accepted: 10/30/2013] [Indexed: 12/21/2022]
Abstract
Celastrol, a potent natural triterpene and one of the most promising medicinal molecules, is known to possess a broad range of biological activity. Rotenone, a pesticide and complex I inhibitor, is commonly used to produce experimental models of Parkinson's disease both in vivo and in vitro. The present study was designed to examine the effects of celastrol on cell injury induced by rotenone in the human dopaminergic cells and to elucidate the possible mechanistic clues in its neuroprotective action. We demonstrate that celastrol protects SH-SY5Y cells from rotenone-induced cellular injury and apoptotic cell death. Celastrol also prevented the increased generation of reactive oxygen species and mitochondrial membrane potential (ΔΨm) loss induced by rotenone. Similarly, celastrol treatment inhibited cytochrome c release, Bax/Bcl-2 ratio changes, and caspase-9/3 activation. Celastrol specifically inhibited rotenone-evoked p38 mitogen-activated protein kinase activation in SH-SY5Y cells. These data suggest that celastrol may serve as a potent agent for prevention of neurotoxin-induced neurodegeneration through multiple mechanisms and thus has therapeutic potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Bong-Suk Choi
- Department of Biotechnology, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju, 501-759, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Mutant γPKC that causes spinocerebellar ataxia type 14 upregulates Hsp70, which protects cells from the mutant's cytotoxicity. Biochem Biophys Res Commun 2013; 440:25-30. [PMID: 24021284 DOI: 10.1016/j.bbrc.2013.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/02/2013] [Indexed: 11/24/2022]
Abstract
Several missense mutations in the protein kinase Cγ (γPKC) gene have been found to cause spinocerebellar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. We previously demonstrated that the mutant γPKC found in SCA14 is misfolded, susceptible to aggregation and cytotoxic. Molecular chaperones assist the refolding and degradation of misfolded proteins and prevention of the proteins' aggregation. In the present study, we found that the expression of mutant γPKC-GFP increased the levels of heat-shock protein 70 (Hsp70) in SH-SY5Y cells. To elucidate the role of this elevation, we investigated the effect of siRNA-mediated knockdown of Hsp70 on the aggregation and cytotoxicity of mutant γPKC. Knockdown of Hsp70 exacerbated the aggregation and cytotoxicity of mutant γPKC-GFP by inhibiting this mutant's degradation. These findings suggest that mutant γPKC increases the level of Hsp70, which protects cells from the mutant's cytotoxicity by enhancing its degradation.
Collapse
|
34
|
Veloso AJ, Chow AM, Dhar D, Tang DWF, Ganesh HV, Mikhaylichenko S, Brown IR, Kerman K. Biological activity of sym-triazines with acetylcholine-like substitutions as multitarget modulators of Alzheimer's disease. ACS Chem Neurosci 2013; 4:924-9. [PMID: 23472585 DOI: 10.1021/cn400028w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The bioactivities of two novel compounds (TAE-1 and TAE-2) that contain a sym-triazine scaffold with acetylcholine-like substitutions are examined as promising candidate agents against Alzheimer's disease. Inhibition of amyloid-β fibril formation in the presence of Aβ1-42, evaluated by Thioflavin T fluorescence, demonstrated comparable or improved activity to a previously reported pentapeptide-based fibrillogenesis inhibitor, iAβ5p. Destabilization of Aβ1-42 assemblies by TAE-1 and TAE-2 was confirmed by scanning electron microscopy imaging. sym-Triazine inhibition of acetylcholinesterase (AChE) activity was observed in cytosol extracted from differentiated human SH-SY5Y neuronal cells and also using human erythrocyte AChE. The sym-triazine derivatives were well tolerated by these cells and promoted beneficial effects on human neurons, upregulating expression of synaptophysin, a synaptic marker protein, and MAP2, a neuronal differentiation marker.
Collapse
Affiliation(s)
- Anthony J. Veloso
- Department of Physical and Environmental Sciences and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, ON M1C 1A4, Canada
| | - Ari M. Chow
- Department of Physical and Environmental Sciences and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, ON M1C 1A4, Canada
| | - Devjani Dhar
- Department of Physical and Environmental Sciences and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, ON M1C 1A4, Canada
| | - Derek W. F. Tang
- Department of Physical and Environmental Sciences and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, ON M1C 1A4, Canada
| | - Hashwin V.S. Ganesh
- Department of Physical and Environmental Sciences and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, ON M1C 1A4, Canada
| | - Svetlana Mikhaylichenko
- Department of Physical and Environmental Sciences and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, ON M1C 1A4, Canada
| | - Ian R. Brown
- Department of Physical and Environmental Sciences and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, ON M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, ON M1C 1A4, Canada
| |
Collapse
|
35
|
Stankova K, Ivanova K, Nikolov V, Aneva N, Georgieva R, Boteva R. Proteasome inhibition protects human peripheral blood mononuclear cells from radiation-induced oxidative stress. Int J Radiat Biol 2013; 89:493-500. [DOI: 10.3109/09553002.2013.782451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Chow AM, Tang DWF, Hanif A, Brown IR. Induction of heat shock proteins in cerebral cortical cultures by celastrol. Cell Stress Chaperones 2013; 18:155-60. [PMID: 22865541 PMCID: PMC3581628 DOI: 10.1007/s12192-012-0364-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS) are 'protein misfolding disorders' of the mature nervous system that are characterized by the accumulation of protein aggregates and selective cell loss. Different brain regions are impacted, with Alzheimer's affecting cells in the cerebral cortex, Parkinson's targeting dopaminergic cells in the substantia nigra and ALS causing degeneration of cells in the spinal cord. These diseases differ widely in frequency in the human population. Alzheimer's is more frequent than Parkinson's and ALS. Heat shock proteins (Hsps) are 'protein repair agents' that provide a line of defense against misfolded, aggregation-prone proteins. We have suggested that differing levels of constitutively expressed Hsps (Hsc70 and Hsp27) in neural cell populations confer a variable buffering capacity against 'protein misfolding disorders' that correlates with the relative frequencies of these neurodegenerative diseases. The high relative frequency of Alzheimer's may due to low levels of Hsc70 and Hsp27 in affected cell populations that results in a reduced defense capacity against protein misfolding. Here, we demonstrate that celastrol, but not classical heat shock treatment, is effective in inducing a set of neuroprotective Hsps in cultures derived from cerebral cortices, including Hsp70, Hsp27 and Hsp32. This set of Hsps is induced by celastrol at 'days in vitro' (DIV) 13 when cultured cortical cells reached maturity. The inducibility of a set of neuroprotective Hsps in mature cortical cultures at DIV13 suggests that celastrol is a potential agent to counter Alzheimer's disease, a neurodegenerative 'protein misfolding disorder' of the adult brain that targets cells in the cerebral cortex.
Collapse
Affiliation(s)
- Ari M. Chow
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| | - Derek W. F. Tang
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| | - Asad Hanif
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| | - Ian R. Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| |
Collapse
|
37
|
Veloso AJ, Dhar D, Chow AM, Zhang B, Tang DWF, Ganesh HVS, Mikhaylichenko S, Brown IR, Kerman K. sym-Triazines for directed multitarget modulation of cholinesterases and amyloid-β in Alzheimer's disease. ACS Chem Neurosci 2013; 4:339-49. [PMID: 23421685 DOI: 10.1021/cn300171c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder marked by numerous causative factors of disease progression, termed pathologies. We report here the synthesis of a small library of novel sym-triazine compounds designed for targeted modulation of multiple pathologies related to AD, specifically human acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and Aβ aggregation. Rational targeting of AChE was achieved by the incorporation of acetylcholine substrate analogues into a sym-triazine core in either a mono-, di-, or trisubstituted regime. A subset of these derivatives demonstrated improved activity compared to several commercially available cholinesterase inhibitors. High AChE/BuChE selectivity was characteristic of all derivatives, and AChE steady-state kinetics indicated a mixed-type inhibition mechanism. Further integration of multiple hydrophobic phenyl units allowed for improved β-sheet intercalation into amyloid aggregates. Several highly effective structures exhibited fibril inhibition greater than the previously reported β-sheet-disrupting penta-peptide, iAβ5p, evaluated by thioflavin T fluorescence spectroscopy and transmission electron microscopy. Highly effective sym-triazines were shown to be well tolerated by differentiated human neuronal cells, as demonstrated by the absence of adverse effects on cellular viability at a wide range of concentrations. Parallel targeting of multiple pathologies using sym-triazines is presented here as an effective strategy to address the complex, multifactorial nature of AD progression.
Collapse
Affiliation(s)
- Anthony J. Veloso
- Department
of Physical and Environmental Sciences, and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, Ontario M1C 1A4, Canada
| | - Devjani Dhar
- Department
of Physical and Environmental Sciences, and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, Ontario M1C 1A4, Canada
| | - Ari M. Chow
- Department
of Physical and Environmental Sciences, and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, Ontario M1C 1A4, Canada
| | - Biao Zhang
- Department
of Physical and Environmental Sciences, and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, Ontario M1C 1A4, Canada
| | - Derek W. F. Tang
- Department
of Physical and Environmental Sciences, and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, Ontario M1C 1A4, Canada
| | - Hashwin V. S. Ganesh
- Department
of Physical and Environmental Sciences, and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, Ontario M1C 1A4, Canada
| | - Svetlana Mikhaylichenko
- Department
of Physical and Environmental Sciences, and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, Ontario M1C 1A4, Canada
| | - Ian R. Brown
- Department
of Physical and Environmental Sciences, and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, Ontario M1C 1A4, Canada
| | - Kagan Kerman
- Department
of Physical and Environmental Sciences, and ‡Centre for the Neurobiology of
Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail,
Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
38
|
Jantas D, Roman A, Kuśmierczyk J, Lorenc-Koci E, Konieczny J, Lenda T, Lasoń W. The extent of neurodegeneration and neuroprotection in two chemical in vitro models related to Parkinson's disease is critically dependent on cell culture conditions. Neurotox Res 2013; 24:41-54. [PMID: 23307753 DOI: 10.1007/s12640-012-9374-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 01/21/2023]
Abstract
The proteasome inhibition and mitochondrial dysfunction are involved in pathomechanism of Parkinson's disease. The main aim of this study was to assess how particular culture conditions of human dopaminergic neuroblastoma SH-SY5Y cells could affect the extent of neurodegeneration induced by proteasome inhibitor-lactacystin (LC) and mitochondrial toxin-rotenone (Rot). This study revealed that induction of neuronal differentiation of SH-SY5Y cells with retinoic acid (RA-SH-SY5Y) caused a higher resistance of these cells to LC-evoked cell death when compared to undifferentiated cells (UN-SH-SY5Y). In contrast, RA-SH-SY5Y cells were more vulnerable than the UN-SH-SY5Y to Rot-induced cell damage. Furthermore, we found that a prolonged incubation of the cells under low serum condition (PLSC) significantly increased the LC toxicity in both differentiated and undifferentiated cells. Next, the effects of combined treatment with LC and Rot on cell viability were studied in RA-SH-SY5Y cells under PLSC and normal low serum condition (NLSC). At a low concentration, Rot (0.001-1 μM) attenuated the LC-evoked cell death in RA-SH-SY5Y cells exposed to NLSC. In contrast, under PLSC low concentrations of Rot lacked neuroprotective action while its higher levels (10 μM) enhanced the LC toxicity. Further, we showed that low concentrations of celastrol (Cel; 0.001 μM), a putative neuroprotective agent with antioxidant and anti-inflammatory properties, were able to partially attenuate the Rot-evoked toxicity under both PLSC and NLSC. On the other hand, Cel (0.001 and 0.01 μM) attenuated the LC-induced cell damage only under PLSC. Interestingly, higher concentrations of Cel (>1 μM) reduced cell viability in both UN- and RA-SH-SY5Y but only in UN-SH-SY5Y cells the effect was enhanced under PLSC. The obtained data indicate that toxicity of LC and Rot in SH-SY5Y cell line depends on the stage of cell differentiation and is enhanced in cells cultured for a longer time in low serum medium. Moreover, the neuroprotective properties of Rot and Cel against the LC-induced cell damage can be observed only under particular low serum conditions.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
39
|
Brown IR. CSSI workshop in Brazil highlights "Stress Responses in the Nervous System" in relation to neurodegenerative diseases and neuroprotection. Cell Stress Chaperones 2012; 17:657-60. [PMID: 22886590 PMCID: PMC3468679 DOI: 10.1007/s12192-012-0366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 11/28/2022] Open
Abstract
A review is provided of the two neuroscience sessions entitled "Stress Responses in the Nervous System" that were presented at the ninth Cell Stress Society International Workshop on the "Molecular Biology of the Stress Response" held in Port Alegre, Brazil, May 27-30, 2012. The sessions were organized and chaired by Ian R. Brown (Toronto, Canada) and Maria Estela Andrés (Santiago, Chile).
Collapse
Affiliation(s)
- Ian R Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto-Scarborough, 1265 Military Trail, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Kagias K, Nehammer C, Pocock R. Neuronal responses to physiological stress. Front Genet 2012; 3:222. [PMID: 23112806 PMCID: PMC3481051 DOI: 10.3389/fgene.2012.00222] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/05/2012] [Indexed: 12/15/2022] Open
Abstract
Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level.
Collapse
Affiliation(s)
- Konstantinos Kagias
- Biotech Research and Innovation Centre, University of Copenhagen Copenhagen, Denmark
| | | | | |
Collapse
|
41
|
Boridy S, Soliman GM, Maysinger D. Modulation of inflammatory signaling and cytokine release from microglia by celastrol incorporated into dendrimer nanocarriers. Nanomedicine (Lond) 2012; 7:1149-65. [DOI: 10.2217/nnm.12.16] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: This study investigates the capacity of a potent anti-inflammatory nanomedicine, celastrol, incorporated into poly(amidoamine) dendrimers, to inhibit endotoxin-mediated signaling in microglia. Materials & methods: Celastrol was incorporated into amino (Cel/G4-NH2) and hydroxyl (Cel/G4-OH) terminus poly(amidoamine) (G4) dendrimers. Cell viability, release of nitric oxide, IL-6, TNF-α and activation of MAPK (e.g., p38 and JNK) and NF-κB were assessed in endotoxin (i.e., lipopolysaccharide) stimulated microglial cells. Results: G4-OH and G4-NH2 increased celastrol aqueous solubility by seven- and 12-fold, respectively. G4-OH and Cel/G4-OH suppressed lipopolysaccharide-mediated release of proinflammatory mediators, such as nitric oxide and IL-6, but not TNF-α, without reducing microglial cell viability, while Cel/G4-NH2 potentiated cytotoxicity and cytokine release. Blockade of proinflammatory signaling was accompanied by attenuation of p38 MAPK activation. Conclusion: This study supports the potential use of poly(amidoamine) dendrimers for effective anti-inflammatory therapy in the chronically inflamed CNS. Original submitted 22 July 2011; Revised submitted 8 December 2011; Published online 4 April 2012
Collapse
Affiliation(s)
- Sebastien Boridy
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, H3G 1Y6, Canada
| | - Ghareb M Soliman
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
42
|
Brunt JJ, Khan S, Heikkila JJ. Sodium arsenite and cadmium chloride induction of proteasomal inhibition and HSP accumulation in Xenopus laevis A6 kidney epithelial cells. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:307-17. [PMID: 21983225 DOI: 10.1016/j.cbpc.2011.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/21/2011] [Accepted: 09/25/2011] [Indexed: 01/03/2023]
Abstract
Sodium arsenite (NA) and cadmium chloride (CdCl(2)) are relatively abundant environmental toxicants that have multiple toxic effects including carcinogenesis, dysfunction of gene regulation and DNA and protein damage. In the present study, treatment of Xenopus laevis A6 kidney epithelial cells with concentrations of NA (20-30 μM) or CdCl(2) (100-200 μM) that induced HSP30 and HSP70 accumulation also produced an increase in the relative levels of ubiquitinated protein. Actin protein levels were unchanged in these experiments. In time course experiments, the levels of ubiquitinated protein and HSPs increased over a 24h exposure to NA or CdCl(2). Furthermore, treatment of cells with NA or CdCl(2) reduced the relative levels of proteasome chymotrypsin (CT)-like activity compared to control. Interestingly, pretreatment of cells with the HSP accumulation inhibitor, KNK437, prior to NA or CdCl(2) exposure decreased the relative levels of ubiquitinated protein as well as HSP30 and HSP70. A similar finding was made with ubiquitinated protein induced by proteasomal inhibitors, MG132 and celastrol, known to induce HSP accumulation in A6 cells. However, the NA- or CdCl(2)-induced decrease in proteasome CT-like activity was not altered by KNK437 pretreatment. This study has shown for the first time in poikilothermic vertebrates that NA and CdCl(2) can inhibit proteasomal activity and that there is a possible association between HSP accumulation and the mechanism of protein ubiquitination.
Collapse
Affiliation(s)
- Jara J Brunt
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | | | | |
Collapse
|
43
|
Hansen J, Palmfeldt J, Vang S, Corydon TJ, Gregersen N, Bross P. Quantitative proteomics reveals cellular targets of celastrol. PLoS One 2011; 6:e26634. [PMID: 22046318 PMCID: PMC3202559 DOI: 10.1371/journal.pone.0026634] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/30/2011] [Indexed: 12/29/2022] Open
Abstract
Celastrol, a natural substance isolated from plant extracts used in traditional Chinese medicine, has been extensively investigated as a possible drug for treatment of cancer, autoimmune diseases, and protein misfolding disorders. Although studies focusing on celastrol's effects in specific cellular pathways have revealed a considerable number of targets in a diverse array of in vitro models there is an essential need for investigations that can provide a global view of its effects. To assess cellular effects of celastrol and to identify target proteins as biomarkers for monitoring treatment regimes, we performed large-scale quantitative proteomics in cultured human lymphoblastoid cells, a cell type that can be readily prepared from human blood samples. Celastrol substantially modified the proteome composition and 158 of the close to 1800 proteins with robust quantitation showed at least a 1.5 fold change in protein levels. Up-regulated proteins play key roles in cytoprotection with a prominent group involved in quality control and processing of proteins traversing the endoplasmic reticulum. Increased levels of proteins essential for the cellular protection against oxidative stress including heme oxygenase 1, several peroxiredoxins and thioredoxins as well as proteins involved in the control of iron homeostasis were also observed. Specific analysis of the mitochondrial proteome strongly indicated that the mitochondrial association of certain antioxidant defense and apoptosis-regulating proteins increased in cells exposed to celastrol. Analysis of selected mRNA transcripts showed that celastrol activated several different stress response pathways and dose response studies furthermore showed that continuous exposure to sub-micromolar concentrations of celastrol is associated with reduced cellular viability and proliferation. The extensive catalog of regulated proteins presented here identifies numerous cellular effects of celastrol and constitutes a valuable biomarker tool for the development and monitoration of disease treatment strategies.
Collapse
Affiliation(s)
- Jakob Hansen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
44
|
Chen G, Zhang X, Zhao M, Wang Y, Cheng X, Wang D, Xu Y, Du Z, Yu X. Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells. BMC Cancer 2011; 11:170. [PMID: 21569548 PMCID: PMC3112161 DOI: 10.1186/1471-2407-11-170] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 05/14/2011] [Indexed: 12/26/2022] Open
Abstract
Background Celastrol is an active ingredient of the traditional Chinese medicinal plant Tripterygium Wilfordii, which exhibits significant antitumor activity in different cancer models in vitro and in vivo; however, the lack of information on the target and mechanism of action of this compound have impeded its clinical application. In this study, we sought to determine the mode of action of celastrol by focusing on the processes that mediate its anticancer activity. Methods The downregulation of heat shock protein 90 (HSP90) client proteins, phosphorylation of c-Jun NH2-terminal kinase (JNK), and cleavage of PARP, caspase 9 and caspase 3 were detected by western blotting. The accumulation of reactive oxygen species (ROS) was analyzed by flow cytometry and fluorescence microscopy. Cell cycle progression, mitochondrial membrane potential (MMP) and apoptosis were determined by flow cytometry. Absorption spectroscopy was used to determine the activity of mitochondrial respiratory chain (MRC) complexes. Results Celastrol induced ROS accumulation, G2-M phase blockage, apoptosis and necrosis in H1299 and HepG2 cells in a dose-dependent manner. N-acetylcysteine (NAC), an antioxidative agent, inhibited celastrol-induced ROS accumulation and cytotoxicity. JNK phosphorylation induced by celastrol was suppressed by NAC and JNK inhibitor SP600125 (SP). Moreover, SP significantly inhibited celastrol-induced loss of MMP, cleavage of PARP, caspase 9 and caspase 3, mitochondrial translocation of Bad, cytoplasmic release of cytochrome c, and cell death. However, SP did not inhibit celastrol-induced ROS accumulation. Celastrol downregulated HSP90 client proteins but did not disrupt the interaction between HSP90 and cdc37. NAC completely inhibited celastrol-induced decrease of HSP90 client proteins, catalase and thioredoxin. The activity of MRC complex I was completely inhibited in H1299 cells treated with 6 μM celastrol in the absence and presence of NAC. Moreover, the inhibition of MRC complex I activity preceded ROS accumulation in H1299 cells after celastrol treatment. Conclusion We identified ROS as the key intermediate for celastrol-induced cytotoxicity. JNK was activated by celastrol-induced ROS accumulation and then initiated mitochondrial-mediated apoptosis. Celastrol induced the downregulation of HSP90 client proteins through ROS accumulation and facilitated ROS accumulation by inhibiting MRC complex I activity. These results identify a novel target for celastrol-induced anticancer activity and define its mode of action.
Collapse
Affiliation(s)
- Guozhu Chen
- Department of Pathology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cheng L, Smith DJ, Anderson RL, Nagley P. Human neuroblastoma SH-SY5Y cells show increased resistance to hyperthermic stress after differentiation, associated with elevated levels of Hsp72. Int J Hyperthermia 2011; 27:415-26. [DOI: 10.3109/02656736.2010.531075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Hsp70 and its molecular role in nervous system diseases. Biochem Res Int 2011; 2011:618127. [PMID: 21403864 PMCID: PMC3049350 DOI: 10.1155/2011/618127] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/19/2010] [Accepted: 01/05/2011] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are induced in response to many injuries including stroke, neurodegenerative disease, epilepsy, and trauma. The overexpression of one HSP in particular, Hsp70, serves a protective role in several different models of nervous system injury, but has also been linked to a deleterious role in some diseases. Hsp70 functions as a chaperone and protects neurons from protein aggregation and toxicity (Parkinson disease, Alzheimer disease, polyglutamine diseases, and amyotrophic lateral sclerosis), protects cells from apoptosis (Parkinson disease), is a stress marker (temporal lobe epilepsy), protects cells from inflammation (cerebral ischemic injury), has an adjuvant role in antigen presentation and is involved in the immune response in autoimmune disease (multiple sclerosis). The worldwide incidence of neurodegenerative diseases is high. As neurodegenerative diseases disproportionately affect older individuals, disease-related morbidity has increased along with the general increase in longevity. An understanding of the underlying mechanisms that lead to neurodegeneration is key to identifying methods of prevention and treatment. Investigators have observed protective effects of HSPs induced by preconditioning, overexpression, or drugs in a variety of models of brain disease. Experimental data suggest that manipulation of the cellular stress response may offer strategies to protect the brain during progression of neurodegenerative disease.
Collapse
|
47
|
Induction of heat shock proteins in the adult rat cerebral cortex following pilocarpine-induced status epilepticus. Brain Res 2011; 1368:271-80. [DOI: 10.1016/j.brainres.2010.10.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/14/2010] [Accepted: 10/14/2010] [Indexed: 01/30/2023]
|
48
|
Venkatesha SH, Rajaiah R, Berman BM, Moudgil KD. Immunomodulation of Autoimmune Arthritis by Herbal CAM. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2010; 2011:986797. [PMID: 21234398 PMCID: PMC3014691 DOI: 10.1155/2011/986797] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/30/2010] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disease of global prevalence. The disease is characterized by synovial inflammation leading to cartilage and bone damage. Most of the conventional drugs used for the treatment of RA have severe adverse reactions and are quite expensive. Over the years, increasing proportion of patients with RA and other immune disorders are resorting to complementary and alternative medicine (CAM) for their health needs. Natural plant products comprise one of the most popular CAM for inflammatory and immune disorders. These herbal CAM belong to diverse traditional systems of medicine, including traditional Chinese medicine, Kampo, and Ayurvedic medicine. In this paper, we have outlined the major immunological pathways involved in the induction and regulation of autoimmune arthritis and described various herbal CAM that can effectively modulate these immune pathways. Most of the information about the mechanisms of action of herbal products in the experimental models of RA is relevant to arthritis patients as well. The study of immunological pathways coupled with the emerging application of genomics and proteomics in CAM research is likely to provide novel insights into the mechanisms of action of different CAM modalities.
Collapse
Affiliation(s)
- Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, HSF-1, Suite 380, 685 W. Baltimore st., Baltimore, MD 21201, USA
| | - Rajesh Rajaiah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, HSF-1, Suite 380, 685 W. Baltimore st., Baltimore, MD 21201, USA
| | - Brian M. Berman
- Center for Integrative Medicine, University of Maryland School of Medicine, East Hall, W. Lombard st., Baltimore, MD 21201, USA
| | - Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, HSF-1, Suite 380, 685 W. Baltimore st., Baltimore, MD 21201, USA
| |
Collapse
|
49
|
Cognitive decline following major surgery is associated with gliosis, β-amyloid accumulation, and τ phosphorylation in old mice. Crit Care Med 2010; 38:2190-8. [PMID: 20711073 DOI: 10.1097/ccm.0b013e3181f17bcb] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Elderly patients undergoing major surgery often develop cognitive dysfunction and the mechanism of this postoperative complication remains elusive. We sought to determine whether postoperative cognitive dysfunction in old mice is associated with the pathogenesis of Alzheimer's disease. DESIGN Prospective, randomized study. SETTING University teaching hospital-based research laboratory. SUBJECTS One-hundred and twenty C57BL/6 14-mo-old male mice (weighing 30-40 g). INTERVENTIONS Mice received intraperitoneal injections of either vehicle or Celastrol (a potent anti-inflammatory compound) for 3 days before undergoing sham surgery or partial hepatectomy, on the surgery day, and for a further 4 days after surgery. Cognitive function, hippocampal neuroinflammation, and pathologic markers of Alzheimer's disease were assessed 1 day after surgery day 1, 3, or 7. MEASUREMENTS AND MAIN RESULTS Cognitive impairment following surgery was associated with the appearance of certain pathologic hallmarks of Alzheimer's disease: microgliosis, astrogliosis, enhanced transcriptional and translational activity of β-amyloid precursor protein, β-amyloid production, and τ protein hyperphosphorylation in the hippocampus. Surgery-induced changes in cognitive dysfunction were prevented by the administration of Celastrol as were changes in β-amyloid and τ processing. CONCLUSIONS These data suggest that surgery can provoke astrogliosis, β-amyloid accumulation, and τ phosphorylation in old subjects, which is likely to be associated with the cognitive decline seen in postoperative cognitive dysfunction.
Collapse
|
50
|
Zhang D, Xu L, Cao F, Wei T, Yang C, Uzan G, Peng B. Celastrol regulates multiple nuclear transcription factors belonging to HSP90's clients in a dose- and cell type-dependent way. Cell Stress Chaperones 2010; 15:939-46. [PMID: 20480272 PMCID: PMC3024068 DOI: 10.1007/s12192-010-0202-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 12/18/2022] Open
Abstract
Celastrol, a novel HSP90 inhibitor, has recently attracted much attention due to its potential in multiple applications, such as anti-inflammation use, degenerative neuron disease relief, and tumor management. At present, the studies in celastrol's effects on HSP90's clients have focused on the kinase sub-population, while another key sub-population, nuclear transcription factors (TFs), is not being well-explored. In this study, we observe the effects of celastrol on 18 TFs (belonging to HSP90 clients) in three human cell lines: MCF-7 (breast cancer), HepG2 (hepatoma), and THP-1 (monocytic leukemia). The results show that at least half of the detectable TFs were affected by celastrol, though the effect patterns varied with cell type and dosage. Bi-directional regulations of some TFs were identified, a phenomenon not yet seen with other HSP90 inhibitors. Celastrol's capability to affect multiple TFs was consistent with its altering HSP90/TFs interactions and disrupting HSP90/Hop interaction, in addition to the reported damaging HSP90/Cdc37 interaction. This work confirms, for the first time, that celastrol has broad effects on TFs belonging to HSP90's clients, casts new light on understanding these reported actions, and suggests new possible applications for celastrol, such as diabetes management.
Collapse
Affiliation(s)
- Denghai Zhang
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, 207 Ju Ye Road, Pudong New District, Shanghai, 200135 China
- U972, Inserm, Bâtiment Lavoisier, Hôpital Paul Brousse, 12 avenue Paul Vaillant Couturier, 94807 Villejuif Cedex, France
| | - Limin Xu
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, 207 Ju Ye Road, Pudong New District, Shanghai, 200135 China
| | - Fanfan Cao
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, 207 Ju Ye Road, Pudong New District, Shanghai, 200135 China
| | - Tingxuan Wei
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, 207 Ju Ye Road, Pudong New District, Shanghai, 200135 China
| | - Chunxin Yang
- Pharmaceutical Department, Zhong Shan Hospital, Shanghai Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 China
| | - Georges Uzan
- U972, Inserm, Bâtiment Lavoisier, Hôpital Paul Brousse, 12 avenue Paul Vaillant Couturier, 94807 Villejuif Cedex, France
| | - Bin Peng
- Sino-French Cooperative Central Lab, Shanghai Gongli Hospital, 207 Ju Ye Road, Pudong New District, Shanghai, 200135 China
| |
Collapse
|