1
|
Jo S, Jing G, Chen J, Xu G, Shalev A. Oral TIX100 protects against obesity-associated glucose intolerance and diet-induced adiposity. Diabetes Obes Metab 2025; 27:2223-2231. [PMID: 39895486 PMCID: PMC11885086 DOI: 10.1111/dom.16223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
AIMS Glucagon-like peptide 1 receptor agonists and dual agonists have changed the treatment landscape of obesity and type 2 diabetes (T2D), but significant limitations have emerged due to their gastrointestinal side effects, loss of lean mass, and necessity for ongoing subcutaneous injections. Our objective was, therefore, to test a novel small molecule as a different and potentially better tolerated oral medications to improve obesity-associated impairment in glucose homeostasis. MATERIALS AND METHODS High-fat diet (HFD)-fed mice or severely obese, leptin-deficient ob/ob mice were randomly assigned to serve as controls or receive oral TIX100, a novel thioredoxin-interacting protein (TXNIP) inhibitor just approved by the FDA as an investigational new drug for type 1 diabetes (T1D). The TIX100 effects on glucose intolerance and weight control were then assessed. RESULTS TIX100 protected against HFD-induced glucose intolerance, hyperinsulinemia, and hyperglucagonemia. TIX100 also reduced diet-induced adiposity resulting in 15% lower weight in treated mice as compared with controls on HFD (p <0.05), while preserving lean mass. Even though the TIX100 weight effects were lost in ob/ob mice, TIX100 improved glucose control leading to a dramatic 2.3% reduction in HbA1C (p <0.05), independent of any weight loss. This is consistent with the beneficial effects of TIX100 in non-obese diabetes models and its protection against elevated TXNIP and islet cell stress common to all diabetes types. CONCLUSIONS Thus, TIX100 may provide a novel, oral therapy for T2D that targets underlying disease pathology including islet cell dysfunction and hyperglucagonemia and promotes metabolic health and weight control without aggressive weight loss.
Collapse
Affiliation(s)
- SeongHo Jo
- Comprehensive Diabetes Center, Department of Medicine, Division of Endocrinology, Diabetes, and MetabolismUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Gu Jing
- Comprehensive Diabetes Center, Department of Medicine, Division of Endocrinology, Diabetes, and MetabolismUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Junqin Chen
- Comprehensive Diabetes Center, Department of Medicine, Division of Endocrinology, Diabetes, and MetabolismUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Guanlan Xu
- Comprehensive Diabetes Center, Department of Medicine, Division of Endocrinology, Diabetes, and MetabolismUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Anath Shalev
- Comprehensive Diabetes Center, Department of Medicine, Division of Endocrinology, Diabetes, and MetabolismUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
2
|
Wieder N, Fried JC, Kim C, Sidhom EH, Brown MR, Marshall JL, Arevalo C, Dvela-Levitt M, Kost-Alimova M, Sieber J, Gabriel KR, Pacheco J, Clish C, Abbasi HS, Singh S, Rutter JC, Therrien M, Yoon H, Lai ZW, Baublis A, Subramanian R, Devkota R, Small J, Sreekanth V, Han M, Lim D, Carpenter AE, Flannick J, Finucane H, Haigis MC, Claussnitzer M, Sheu E, Stevens B, Wagner BK, Choudhary A, Shaw JL, Pablo JL, Greka A. FALCON systematically interrogates free fatty acid biology and identifies a novel mediator of lipotoxicity. Cell Metab 2023; 35:887-905.e11. [PMID: 37075753 PMCID: PMC10257950 DOI: 10.1016/j.cmet.2023.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
Cellular exposure to free fatty acids (FFAs) is implicated in the pathogenesis of obesity-associated diseases. However, there are no scalable approaches to comprehensively assess the diverse FFAs circulating in human plasma. Furthermore, assessing how FFA-mediated processes interact with genetic risk for disease remains elusive. Here, we report the design and implementation of fatty acid library for comprehensive ontologies (FALCON), an unbiased, scalable, and multimodal interrogation of 61 structurally diverse FFAs. We identified a subset of lipotoxic monounsaturated fatty acids associated with decreased membrane fluidity. Furthermore, we prioritized genes that reflect the combined effects of harmful FFA exposure and genetic risk for type 2 diabetes (T2D). We found that c-MAF-inducing protein (CMIP) protects cells from FFA exposure by modulating Akt signaling. In sum, FALCON empowers the study of fundamental FFA biology and offers an integrative approach to identify much needed targets for diverse diseases associated with disordered FFA metabolism.
Collapse
Affiliation(s)
- Nicolas Wieder
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Neurology with Experimental Neurology and Berlin Institute of Health, Charité, 10117 Berlin, Germany
| | - Juliana Coraor Fried
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Choah Kim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Eriene-Heidi Sidhom
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Matthew R Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Carlos Arevalo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Moran Dvela-Levitt
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Jonas Sieber
- Department of Endocrinology, Metabolism and Cardiovascular Systems, University of Fribourg, Fribourg, Switzerland
| | | | - Julian Pacheco
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Shantanu Singh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Justine C Rutter
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | - Haejin Yoon
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multiomics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Aaron Baublis
- Harvard Chan Advanced Multiomics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Renuka Subramanian
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ranjan Devkota
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonnell Small
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vedagopuram Sreekanth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Myeonghoon Han
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Donghyun Lim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jason Flannick
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hilary Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Mass General Hospital, Boston, MA 02114, USA
| | - Marcia C Haigis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric Sheu
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Bridget K Wagner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amit Choudhary
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jillian L Shaw
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Al-Romaiyan A, Masocha W, Oyedemi S, Marafie SK, Huang GC, Jones PM, Persaud SJ. Commiphora myrrha stimulates insulin secretion from β-cells through activation of atypical protein kinase C and mitogen-activated protein kinase. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115937. [PMID: 36410575 DOI: 10.1016/j.jep.2022.115937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/22/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurvedic medicine has been used in the treatment of diabetes mellitus for centuries. In Arabia and some areas of Africa, Commiphora myrrha (CM) has been extensively used as a plant-based remedy. We have previously shown that an aqueous CM resin solution directly stimulates insulin secretion from MIN6 cells, a mouse β-cell line, and isolated mouse and human islets. However, the signaling pathways involved in CM-induced insulin secretion are completely unknown. Insulin secretion is normally triggered by elevations in intracellular Ca2+ ([Ca2+]i) through voltage gated Ca2+ channels (VGCC) and activation of protein kinases. Protein and lipid kinases such as protein kinase A (PKA), Ca2+-calmodulin dependent protein kinase II (CaMKII), phosphoinositide 3-kinases (PI3Ks), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK), specifically extracellular signal-regulated kinases (ERK1/2), may be involved in receptor-operated insulin secretion. Therefore, we hypothesized that CM may induce insulin secretion by modulating the activity of VGCC and/or one or more of the above kinases. AIM OF THE STUDY To investigate the possible molecular mechanism of action of CM-induced insulin secretion. The effects of aqueous CM resin extract on [Ca2+]i and protein kinase activation from β-cells were examined. METHODS The effect of aqueous CM resin solution on [Ca2+]i was assessed using Ca2+ microfluorimetry. The involvement of VGCC in CM-induced insulin secretion was investigated using static and perifusion insulin secretion experiments in the presence of either EGTA, a Ca2+ chelator, or nifedipine, a blocker of VGCC. The involvement of kinase activation in the stimulatory effect of CM on insulin secretion was examined by using static and perifusion insulin secretion experiments in the presence of known pharmacological inhibitors and/or downregulation of specific kinases. The effects of CM on phosphorylation of PKCζ and ERK1/2 were also assessed using the Wes™ capillary-based protein electrophoresis. RESULTS Ca2+ microfluorimetry measurements showed that exposing MIN6 cells to CM (0.5-2 mg/mL) was not associated with changes in [Ca2+]i. Similarly, incubating MIN6 cells and mouse islets with EGTA and nifedipine, respectively, did not attenuate the insulin secretion induced by CM. However, incubating mouse and human islets with CM in the presence of staurosporine, a non-selective protein kinase inhibitor, completely blocked the effect of CM on insulin secretion. Exposing mouse islets to CM in the presence of H89, KN62 and LY294002, inhibitors of PKA, CaMKII and PI3K, respectively, did not reduce CM-induced insulin secretion. However, incubating mouse and human islets with CM in the presence of Ro 31-8220, a pan-PKC inhibitor, diminished insulin secretion stimulated by CM, whereas inhibiting the action of typical PKC (with Go6976) and PLCβ (with U73122) did not affect CM-stimulated insulin secretion. Similarly, downregulating typical and novel PKC by chronic exposure of mouse islets to phorbol 12-myristate 13-acetate (PMA) was also not associated with a decrease in the stimulatory effect of CM on insulin secretion. Interestingly, CM-induced insulin secretion from mouse islets was inhibited in the presence of the PKCζ inhibitor ZIP and a MAPK inhibitor PD 98059. In addition, Wes™ capillary-based protein electrophoresis indicated that expression of the phosphorylated forms of PKCζ and ERK1/2, a MAPK, was significantly increased following exposure of INS-1832/13 cells, a rat insulinoma cell line, to CM. CONCLUSIONS Our data indicate that CM directly stimulates insulin secretion through activating known downstream effectors of insulin-stimulus secretion coupling. Indeed, the increase in insulin secretion seen with CM is independent of changes in [Ca2+]i and does not involve activation of VGCC. Instead, the CM stimulatory effect on insulin secretion is completely dependent on protein kinase activation. Our findings indicate that CM could induce insulin exocytosis by stimulating the phosphorylation and activation of PKCζ, which in turn phosphorylates and activates ERK1/2.
Collapse
Affiliation(s)
- Altaf Al-Romaiyan
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| | - Willias Masocha
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| | - Sunday Oyedemi
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Sulaiman K Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait.
| | - Guo-Cai Huang
- Department of Diabetes, School of Cardiovascular Medicine &Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| | - Peter M Jones
- Department of Diabetes, School of Cardiovascular Medicine &Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular Medicine &Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| |
Collapse
|
4
|
Untangling the genetic link between type 1 and type 2 diabetes using functional genomics. Sci Rep 2021; 11:13871. [PMID: 34230558 PMCID: PMC8260770 DOI: 10.1038/s41598-021-93346-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
There is evidence pointing towards shared etiological features between type 1 diabetes (T1D) and type 2 diabetes (T2D) despite both phenotypes being considered genetically distinct. However, the existence of shared genetic features for T1D and T2D remains complex and poorly defined. To better understand the link between T1D and T2D, we employed an integrated functional genomics approach involving extensive chromatin interaction data (Hi-C) and expression quantitative trait loci (eQTL) data to characterize the tissue-specific impacts of single nucleotide polymorphisms associated with T1D and T2D. We identified 195 pleiotropic genes that are modulated by tissue-specific spatial eQTLs associated with both T1D and T2D. The pleiotropic genes are enriched in inflammatory and metabolic pathways that include mitogen-activated protein kinase activity, pertussis toxin signaling, and the Parkinson's disease pathway. We identified 8 regulatory elements within the TCF7L2 locus that modulate transcript levels of genes involved in immune regulation as well as genes important in the etiology of T2D. Despite the observed gene and pathway overlaps, there was no significant genetic correlation between variant effects on T1D and T2D risk using European ancestral summary data. Collectively, our findings support the hypothesis that T1D and T2D specific genetic variants act through genetic regulatory mechanisms to alter the regulation of common genes, and genes that co-locate in biological pathways, to mediate pleiotropic effects on disease development. Crucially, a high risk genetic profile for T1D alters biological pathways that increase the risk of developing both T1D and T2D. The same is not true for genetic profiles that increase the risk of developing T2D. The conversion of information on genetic susceptibility to the protein pathways that are altered provides an important resource for repurposing or designing novel therapies for the management of diabetes.
Collapse
|
5
|
Kalwat MA, Huang Z, Binns DD, McGlynn K, Cobb MH. α 2-Adrenergic Disruption of β Cell BDNF-TrkB Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2020; 8:576396. [PMID: 33178692 PMCID: PMC7593622 DOI: 10.3389/fcell.2020.576396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Adrenergic signaling is a well-known input into pancreatic islet function. Specifically, the insulin-secreting islet β cell expresses the Gi/o-linked α2-adrenergic receptor, which upon activation suppresses insulin secretion. The use of the adrenergic agonist epinephrine at micromolar doses may have supraphysiological effects. We found that pretreating β cells with micromolar concentrations of epinephrine differentially inhibited activation of receptor tyrosine kinases. We chose TrkB as an example because of its relative sensitivity to the effects of epinephrine and due to its potential regulatory role in the β cell. Our characterization of brain-derived neurotrophic factor (BDNF)-TrkB signaling in MIN6 β cells showed that TrkB is activated by BDNF as expected, leading to canonical TrkB autophosphorylation and subsequent downstream signaling, as well as chronic effects on β cell growth. Micromolar, but not nanomolar, concentrations of epinephrine blocked BDNF-induced TrkB autophosphorylation and downstream mitogen-activated protein kinase pathway activation, suggesting an inhibitory phenomenon at the receptor level. We determined epinephrine-mediated inhibition of TrkB activation to be Gi/o-dependent using pertussis toxin, arguing against an off-target effect of high-dose epinephrine. Published data suggested that inhibition of potassium channels or phosphoinositide-3-kinase signaling may abrogate the negative effects of epinephrine; however, these did not rescue TrkB signaling in our experiments. Taken together, these results show that (1) TrkB kinase signaling occurs in β cells and (2) use of epinephrine in studies of insulin secretion requires careful consideration of concentration-dependent effects. BDNF-TrkB signaling in β cells may underlie pro-survival or growth signaling and warrants further study.
Collapse
Affiliation(s)
- Michael A. Kalwat
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | | | | |
Collapse
|
6
|
Billert M, Sassek M, Wojciechowicz T, Jasaszwili M, Strowski MZ, Nowak KW, Skrzypski M. Neuropeptide B stimulates insulin secretion and expression but not proliferation in rat insulin‑producing INS‑1E cells. Mol Med Rep 2019; 20:2030-2038. [PMID: 31257494 DOI: 10.3892/mmr.2019.10415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/24/2019] [Indexed: 11/06/2022] Open
Abstract
Neuropeptide B (NPB) regulates food intake, body weight and energy homeostasis by interacting with NPBW1/NPBW2 in humans and NPBW1 in rodents. NPB and NPBW1 are widely expressed in the central nervous system and peripheral tissues including pancreatic islets. Although previous studies have demonstrated a prominent role for NPB and NPBW1 in controlling glucose and energy homeostasis, it remains unknown as to whether NPB modulates pancreatic β‑cell functions. Therefore, the aim of the present study was to investigate the effects of NPB on insulin expression and secretion in vitro. Furthermore, the role of NPB in the modulation of INS‑1E cell growth, viability and death was examined. Gene expression was assessed by reverse transcription‑quantitative PCR. Cell proliferation and viability were determined by BrdU or MTT tests, respectively. Apoptotic cell death was evaluated by relative quantification histone‑complexed DNA fragments (mono‑and oligonucleosomes). Insulin secretion was studied using an ELISA test. Protein phosphorylation was assessed by western blot analysis. NPB and NPBW1 mRNA was expressed in INS‑1E cells and rat pancreatic islets. In INS‑1E cells, NPB enhanced insulin 1 mRNA expression via an ERK1/2‑dependent mechanism. Furthermore, NPB stimulated insulin secretion from INS‑1E cells and rat pancreatic islets. By contrast, NPB failed to affect INS‑1E cell growth or death. We conclude that NPB may regulate insulin secretion and expression in INS‑1E cells and insulin secretion in rat pancreatic islets.
Collapse
Affiliation(s)
- Maria Billert
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60‑637 Poznań, Poland
| | - Maciej Sassek
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60‑637 Poznań, Poland
| | - Tatiana Wojciechowicz
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60‑637 Poznań, Poland
| | - Mariami Jasaszwili
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60‑637 Poznań, Poland
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology, Charité‑University Medicine Berlin, D‑13353 Berlin, Germany
| | - Krzysztof W Nowak
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60‑637 Poznań, Poland
| | - Marek Skrzypski
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60‑637 Poznań, Poland
| |
Collapse
|
7
|
Kumar R, Balhuizen A, Amisten S, Lundquist I, Salehi A. Insulinotropic and antidiabetic effects of 17β-estradiol and the GPR30 agonist G-1 on human pancreatic islets. Endocrinology 2011; 152:2568-79. [PMID: 21521748 DOI: 10.1210/en.2010-1361] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that 17β-estradiol (E2) and the synthetic G protein-coupled receptor 30 (GPR30) ligand G-1 have antiapoptotic actions in mouse pancreatic islets, raising the prospect that they might exert beneficial effects also in human islets. The objective of the present study was to identify the expression of GPR30 in human islets and clarify the role of GPR30 in islet hormone secretion and β-cell survival. GPR30 expression was analyzed by confocal microscopy, Western blot, and quantitative PCR in islets from female and male donors. Hormone secretion, phosphatidylinositol hydrolysis, cAMP content, and caspase-3 activity in female islets were determined with conventional methods and apoptosis with the annexin-V method. Confocal microscopy revealed GPR30 expression in islet insulin, glucagon, and somatostatin cells. GPR30 mRNA and protein expression was markedly higher in female vs. male islets. An amplifying effect of G-1 or E2 on cAMP content and insulin secretion from isolated female islets was not influenced by the E2 genomic receptor (ERα and ERβ) antagonists ICI 182,780 and EM-652. Cytokine-induced (IL-1β plus TNFα plus interferon-γ) apoptosis in islets cultured for 24 h at 5 mmol/liter glucose was almost abolished by G-1 or E2 treatment and was not affected by the nuclear estrogen receptor antagonists. Concentration-response studies on female islets from healthy controls and type 2 diabetic subjects showed that both E2 and G-1 displayed important antidiabetic actions by improving glucose-stimulated insulin release while suppressing glucagon and somatostatin secretion. In view of these findings, we propose that small molecules activating GPR30 could be promising in the therapy of diabetes mellitus.
Collapse
MESH Headings
- Apoptosis/drug effects
- Cell Survival/drug effects
- Cyclopentanes/pharmacology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Estradiol/pharmacology
- Estrogen Antagonists/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Humans
- Hyperglycemia/metabolism
- Hypoglycemic Agents/pharmacology
- Insulin/metabolism
- Insulin Secretion
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Male
- Molecular Targeted Therapy
- Oligonucleotide Array Sequence Analysis
- Organ Culture Techniques
- Quinolines/pharmacology
- RNA, Messenger/metabolism
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Second Messenger Systems/drug effects
- Sex Characteristics
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Clinical Science, Skåne Universitetssjukhus, Division of Islet Cell Physiology, Clinical Research Center, Building 91, Plan 11, Entrance 72, S-205 02 Malmö, Sweden
| | | | | | | | | |
Collapse
|
8
|
Dalle S, Ravier MA, Bertrand G. Emerging roles for β-arrestin-1 in the control of the pancreatic β-cell function and mass: New therapeutic strategies and consequences for drug screening. Cell Signal 2011; 23:522-8. [DOI: 10.1016/j.cellsig.2010.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/06/2010] [Indexed: 01/09/2023]
|
9
|
Gupta D, Kono T, Evans-Molina C. The role of peroxisome proliferator-activated receptor γ in pancreatic β cell function and survival: therapeutic implications for the treatment of type 2 diabetes mellitus. Diabetes Obes Metab 2010; 12:1036-47. [PMID: 20977574 PMCID: PMC3764483 DOI: 10.1111/j.1463-1326.2010.01299.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathogenesis of type 2 diabetes mellitus involves both peripheral insulin resistance and dysfunctional insulin secretion from the pancreatic β cell. Currently, there is intense research focus on delineating the etiologies of pancreatic β cell dysfunction in type 2 diabetes. However, there remains an unmet clinical need to establish therapeutic guidelines and strategies that emphasize the preservation of pancreatic β cell function in at-risk and affected individuals. Thiazolidinediones are orally active agents approved for use in type 2 diabetes and act as agonists of the nuclear hormone receptor PPAR-γ. These drugs improve insulin sensitivity, but there is also a growing appreciation of PPAR-γ actions within the β cell. PPAR-γ has been shown to regulate directly key β cell genes involved in glucose sensing, insulin secretion and insulin gene transcription. Further, pharmacologic PPAR-γ activation has been shown to protect against glucose-, lipid-, cytokine- and islet amyloid polypeptide (IAPP)-induced activation of numerous stress pathways. This article will review the mechanisms by which PPAR-γ activation acts to maintain β cell function and survival in type 2 diabetes mellitus and highlight some of the current controversies in this field.
Collapse
Affiliation(s)
- D Gupta
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
10
|
Kamath V, Kyathanahalli CN, Jayaram B, Syed I, Olson LK, Ludwig K, Klumpp S, Krieglstein J, Kowluru A. Regulation of glucose- and mitochondrial fuel-induced insulin secretion by a cytosolic protein histidine phosphatase in pancreatic beta-cells. Am J Physiol Endocrinol Metab 2010; 299:E276-86. [PMID: 20501872 PMCID: PMC2928511 DOI: 10.1152/ajpendo.00091.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report localization of a cytosolic protein histidine phosphatase (PHP; approximately 16 kDa) in INS 832/13 cells, normal rat islets, and human islets. siRNA-mediated knockdown of PHP markedly reduced glucose- or mitochondrial fuel-induced but not KCl-induced insulin secretion. siRNA-mediated knockdown of PHP also attenuated mastoparan-induced insulin secretion, suggesting its participation in G protein-sensitive signaling steps, leading to insulin secretion. Functional assays revealed that the beta-cell PHP catalyzes the dephosphorylation of ATP-citrate lyase (ACL). Silencing of PHP expression markedly reduced ACL activity, suggesting functional regulation of ACL by PHP in beta-cells. Coimmunoprecipitation studies revealed modest effects of glucose on the interaction between PHP and ACL. Confocal microscopic evidence indicated that glucose promotes association between ACL and nm23-H1, a known kinase histidine kinase, but not between PHP and ACL. Furthermore, metabolic viability of INS 832/13 cells was resistant to siRNA-PHP, suggesting no regulatory roles of PHP in cell viability. Finally, long-term exposure (24 h) of INS 832/13 cells or rat islets to high glucose (30 mM) increased the expression of PHP. Such increases in PHP expression were also seen in islets derived from the Zucker diabetic fatty rat compared with islets from the lean control animals. Together, these data implicate regulatory roles for PHP in a G protein-sensitive step involved in nutrient-induced insulin secretion. In light of the current debate on putative regulatory roles of ACL in insulin secretion, additional studies are needed to precisely identify the phosphoprotein substrate(s) for PHP in the cascade of events leading to nutrient-induced insulin secretion.
Collapse
Affiliation(s)
- Vasudeva Kamath
- Department of Pharmaceutical Sciences, Wayne State University and Veterans Affairs Medical Center, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kowluru A, Veluthakal R, Rhodes CJ, Kamath V, Syed I, Koch BJ. Protein farnesylation-dependent Raf/extracellular signal-related kinase signaling links to cytoskeletal remodeling to facilitate glucose-induced insulin secretion in pancreatic beta-cells. Diabetes 2010; 59:967-77. [PMID: 20071600 PMCID: PMC2844844 DOI: 10.2337/db09-1334] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Posttranslational prenylation (e.g., farnesylation) of small G-proteins is felt to be requisite for cytoskeletal remodeling and fusion of secretory vesicles with the plasma membrane. Here, we investigated roles of protein farnesylation in the signaling steps involved in Raf-1/extracellular signal-related kinase (ERK1/2) signaling pathway in glucose-induced Rac1 activation and insulin secretion in the pancreatic beta-cell. RESEARCH DESIGN AND METHODS These studies were carried out in INS 832/13 cells and normal rat islets. Molecular biological (e.g., overexpression or small interfering RNA [siRNA]-mediated knockdown) and pharmacologic approaches were used to determine roles for farnesylation in glucose-mediated activation of ERK1/2, Rac1, and insulin secretion. Activation of ERK1/2 was determined by Western blotting. Rac1 activation (i.e., Rac1.GTP) was quantitated by p21-activated kinase pull-down assay. Insulin release was quantitated by enzyme-linked immunosorbent assay. RESULTS Coprovision of structure-specific inhibitors of farnesyl transferase (FTase; e.g., FTI-277 or FTI-2628) or siRNA-mediated knockdown of FTase beta-subunit resulted in a significant inhibition of glucose-stimulated ERK1/2 and Rac1 activation and insulin secretion. Pharmacologic inhibition of Raf-1 kinase using GW-5074 markedly reduced the stimulatory effects of glucose on ERK1/2 phosphorylation, Rac1 activation, and insulin secretion, suggesting that Raf-1 kinase activation may be upstream to ERK1/2 and Rac1 activation leading to glucose-induced insulin release. Lastly, siRNA-mediated silencing of endogenous expression of ERK1/2 markedly attenuated glucose-induced Rac1 activation and insulin secretion. CONCLUSIONS Together, our findings provide the first evidence of a role for protein farnesylation in glucose-mediated regulation of the Raf/ERK signaling pathway culminating in the activation of Rac1, which has been shown to be necessary for cytoskeletal reorganization and exocytotic secretion of insulin.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Egr-1-A Ca(2+)-regulated transcription factor. Cell Calcium 2010; 47:397-403. [PMID: 20303171 DOI: 10.1016/j.ceca.2010.02.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 02/11/2010] [Accepted: 02/16/2010] [Indexed: 12/01/2022]
Abstract
The biosynthesis of the zinc finger transcription factor Egr-1 is stimulated by many extracellular signaling molecules including hormones, neurotransmitters, growth and differentiation factors. The Egr-1 gene represents a convergence point for many intracellular signaling cascades. An increase of the intracellular Ca(2+) concentration, by activating ionotropic or Galpha(q/11)-coupled receptors or voltage-gated L-type Ca(2+) channels, is often the prerequisite for enhanced Egr-1 gene transcription. This increase has been observed following stimulation with extracellular signaling molecules including ATP, glutamate, thrombin, carbachol, gonadotropin-releasing hormone, or glucose. Egr-1 is thus a Ca(2+) regulated transcription factor - similar to CREB, NFAT, NF-kappaB and others. This review also discusses the importance of the cytoplasmic and nuclear Ca(2+) concentration in transcriptional regulation of the Egr-1 gene.
Collapse
|
13
|
Abstract
Glucose-stimulated insulin secretion from the islet beta-cell involves a sequence of metabolic events and an interplay between a wide range of signaling pathways leading to the generation of second messengers (e.g., cyclic nucleotides, adenine and guanine nucleotides, soluble lipid messengers) and mobilization of calcium ions. Consequent to the generation of necessary signals, the insulin-laden secretory granules are transported from distal sites to the plasma membrane for fusion and release of their cargo into the circulation. The secretory granule transport underlies precise changes in cytoskeletal architecture involving a well-coordinated cross-talk between various signaling proteins, including small molecular mass GTP-binding proteins (G proteins) and their respective effector proteins. The purpose of this article is to provide an overview of current understanding of the identity of small G proteins (e.g., Cdc42, Rac1, and ARF-6) and their corresponding regulatory factors (e.g., GDP/GTP-exchange factors, GDP-dissociation inhibitors) in the pancreatic beta-cell. Plausible mechanisms underlying regulation of these signaling proteins by insulin secretagogues are also discussed. In addition to their positive modulatory roles, certain small G proteins also contribute to the metabolic dysfunction and demise of the islet beta-cell seen in in vitro and in vivo models of impaired insulin secretion and diabetes. Emerging evidence also suggests significant insulin secretory abnormalities in small G protein knockout animals, further emphasizing vital roles for these proteins in normal health and function of the islet beta-cell. Potential significance of these experimental observations from multiple laboratories and possible avenues for future research in this area of islet research are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48202-3489, USA.
| |
Collapse
|
14
|
Abstract
Glucotoxicity plays a major role in pancreatic β-cell apoptosis and diabetes progression, but the factors involved have remained largely unknown. Our recent studies have identified TXNIP (thioredoxin-interacting protein) as a novel pro-apoptotic β-cell factor that is induced by glucose, suggesting that TXNIP may play a role in β-cell glucotoxicity. Incubation of INS-1 β-cells and isolated primary mouse and human islets at high glucose levels led to a significant increase in TXNIP as well as in apoptosis. Very similar results were obtained in vivo in islets of diabetic mice. To determine whether TXNIP plays a causative role in glucotoxic β-cell death, we used TXNIP-deficient islets of HcB-19 mice harbouring a natural nonsense mutation in the TXNIP gene. We incubated islets of HcB-19 and C3H control mice at low and high glucose levels and assessed them for TXNIP expression and apoptosis. Interestingly, whereas in C3H islets, high glucose levels led again to significant elevation of TXNIP and apoptosis levels as measured by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) and cleaved caspase 3, no increase in apoptosis was observed in TXNIP-deficient HcB-19 islets, indicating that TXNIP is required for β-cell death caused by glucotoxicity. Thus inhibition of TXNIP protects against glucotoxic β-cell apoptosis and therefore may represent a novel therapeutic approach to halt diabetes progression.
Collapse
|
15
|
Kowluru A. Emerging roles for protein histidine phosphorylation in cellular signal transduction: lessons from the islet beta-cell. J Cell Mol Med 2008; 12:1885-908. [PMID: 18400053 PMCID: PMC4506158 DOI: 10.1111/j.1582-4934.2008.00330.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein phosphorylation represents one of the key regulatory events in physiological insulin secretion from the islet β-cell. In this context, several classes of protein kinases (e.g. calcium-, cyclic nucleotide- and phospholipid-dependent protein kinases and tyrosine kinases) have been characterized in the β-cell. The majority of phosphorylated amino acids identified include phosphoserine, phosphothreonine and phosphotyrosine. Protein histidine phosphorylation has been implicated in the prokaryotic and eukaryotic cellular signal transduction. Most notably, phoshohistidine accounts for 6% of total protein phosphorylation in eukaryotes, which makes it nearly 100-fold more abundant than phosphotyrosine, but less abundant than phosphoserine and phosphothreonine. However, very little is known about the number of proteins with phosphohistidines, since they are highly labile and are rapidly lost during phosphoamino acid identification under standard experimental conditions. The overall objectives of this review are to: (i) summarize the existing evidence indicating the subcellular distribution and characterization of various histidine kinases in the islet β-cell, (ii) describe evidence for functional regulation of these kinases by agonists of insulin secretion, (iii) present a working model to implicate novel regulatory roles for histidine kinases in the receptor-independent activation, by glucose, of G-proteins endogenous to the β-cell, (iv) summarize evidence supporting the localization of protein histidine phosphatases in the islet β-cell and (v) highlight experimental evidence suggesting potential defects in the histidine kinase signalling cascade in islets derived from the Goto-Kakizaki (GK) rat, a model for type 2 diabetes. Potential avenues for future research to further decipher regulatory roles for protein histidine phosphorylation in physiological insulin secretion are also discussed.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
16
|
Chen J, Saxena G, Mungrue IN, Lusis AJ, Shalev A. Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes 2008; 57:938-44. [PMID: 18171713 PMCID: PMC3618659 DOI: 10.2337/db07-0715] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE In diabetes, glucose toxicity affects different organ systems, including pancreatic islets where it leads to beta-cell apoptosis, but the mechanisms are not fully understood. Recently, we identified thioredoxin-interacting protein (TXNIP) as a proapoptotic beta-cell factor that is induced by glucose, raising the possibility that TXNIP may play a role in beta-cell glucose toxicity. RESEARCH DESIGN AND METHODS To assess the effects of glucose on TXNIP expression and apoptosis and define the role of TXNIP, we used INS-1 beta-cells; primary mouse islets; obese, diabetic BTBR.ob mice; and a unique mouse model of TXNIP deficiency (HcB-19) that harbors a natural nonsense mutation in the TXNIP gene. RESULTS Incubation of INS-1 cells at 25 mmol/l glucose for 24 h led to an 18-fold increase in TXNIP protein, as assessed by immunoblotting. This was accompanied by increased apoptosis, as demonstrated by a 12-fold induction of cleaved caspase-3. Overexpression of TXNIP revealed that TXNIP induces the intrinsic mitochondrial pathway of apoptosis. Islets of diabetic BTBR.ob mice also demonstrated increased TXNIP and apoptosis as did isolated wild-type islets incubated at high glucose. In contrast, TXNIP-deficient HcB-19 islets were protected against glucose-induced apoptosis as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and caspase-3, indicating that TXNIP is a required causal link between glucose toxicity and beta-cell death. CONCLUSIONS These findings shed new light onto the molecular mechanisms of beta-cell glucose toxicity and apoptosis, demonstrate that TXNIP induction plays a critical role in this vicious cycle, and suggest that inhibition of TXNIP may represent a novel approach to reduce glucotoxic beta-cell loss.
Collapse
Affiliation(s)
- Junqin Chen
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Geetu Saxena
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Imran N. Mungrue
- Department of Medicine, University of California, Los Angeles, California
| | - Aldons J. Lusis
- Department of Medicine, University of California, Los Angeles, California
| | - Anath Shalev
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
17
|
Kilkenny DM, Rocheleau JV. Fibroblast growth factor receptor-1 signaling in pancreatic islet beta-cells is modulated by the extracellular matrix. Mol Endocrinol 2007; 22:196-205. [PMID: 17916654 DOI: 10.1210/me.2007-0241] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maintenance of pancreatic beta-cell mass depends on extracellular stimuli that promote survival and proliferation. In the islet, these stimuli come from the beta-cell microenvironment and include extracellular matrix deposited by associated vascular endothelial cells. Fibroblast growth factor receptor-1 (FGFR1) has recently been implicated as a signaling pathway that is important for normal beta-cell function. We would like to understand how extracellular matrix and FGFR1 signaling interact to promote beta-cell survival and proliferation. To examine beta-cell-specific receptor responses, we created lentiviral vectors with rat insulin promoter-driven expression of Venus fluorescent protein-tagged full-length (R1betav) and kinase-deficient (KDR1betav) FGFR1. Significant FGF-1-dependent activation of ERK1/2 was observed in betaTC3 cells, dispersed beta-cells, and beta-cells in intact islets. This response was enhanced by R1betav expression and reduced by KDR1betav expression. Plating-dispersed beta-cells on collagen type IV resulted in enhanced expression of endogenous FGFR1 that was associated with sustained activation of ERK1/2. Conversely, plating cells on laminin reduced expression of FGFR1, and this reduction was associated with transient activation of ERK1/2. Addition of neutralizing antibodies to inhibit beta-cell attachment to laminin via alpha(6)-integrin increased high-affinity FGF-1-binding at the plasma membrane and resulted in sustained ERK1/2 activity similar to cells plated on collagen type IV. These data show that the FGF-stimulated beta-cell response is negatively affected by alpha(6)-integrin binding to laminin and suggest regulation associated with vascular endothelial cell remodeling.
Collapse
Affiliation(s)
- Dawn M Kilkenny
- Cell Imaging Shared Resource, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0615, USA
| | | |
Collapse
|