1
|
Margariti M, Roussaki M, Sakellis E, Boukos N, Theodosiou M, Kostopoulou N, Efthimiadou EK. Dextran-Assisted Biomimetic Fabrication of CdSe:Eu QDs With Enhanced Biocompatibility and Stability. Chemistry 2025:e202500986. [PMID: 40328676 DOI: 10.1002/chem.202500986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
A dextran templated biomimetic synthetic approach was applied for the preparation of Cadmium Selinium:Europium Quantum Dots (CdSe:Eu QDs). The present work examines synthetic variables including the effect of increasing Europium concentration during QDs' synthesis and the use of different coating agents (citrate versus APTES) to improve the QDs' colloidal stability and ameliorate their cytotoxic behavior. All samples were subjected to structural and morphological characterizations via Fourier Transform infrared (FT-IR) spectroscopy, UV-Visible (UV-Vis) spectrophotometry, Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS). Subsequently, biological evaluation of all the synthesized samples of bare and APTES coated CdSe:Eu QDs was conducted on epithelial HaCaT and breast cancer MCF-7. Wound healing assays were conducted to assess cytotoxicity and cell migration under QD treatment. Results showed that both coated and uncoated QDs influenced wound closure rates in a concentration- and time-dependent manner. Finally, fluorescence microscopy revealed significant green luminescence of CdSe:Eu quantum dots (QDs) in both HaCaT and MCF-7 cell lines, indicating efficient cellular uptake. The internalization of QDs was influenced by their surface properties and charge, suggesting an endocytic uptake pathway.
Collapse
Affiliation(s)
- Myrto Margariti
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771, Greece
| | - Marianna Roussaki
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771, Greece
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research "Demokritos", Agia Paraskevi, 15341, Greece
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research "Demokritos", Agia Paraskevi, 15341, Greece
| | - Maria Theodosiou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771, Greece
| | - Nikoleta Kostopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771, Greece
| | - Eleni K Efthimiadou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771, Greece
| |
Collapse
|
2
|
Lan HR, Wu ZQ, Zhang LH, Jin KT, Wang SB. Nanotechnology Assisted Chemotherapy for Targeted Cancer Treatment: Recent Advances and Clinical Perspectives. Curr Top Med Chem 2021; 20:2442-2458. [PMID: 32703133 DOI: 10.2174/1568026620666200722110808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/05/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022]
Abstract
Nanotechnology has recently provided exciting platforms in the field of anticancer research with promising potentials for improving drug delivery efficacy and treatment outcomes. Nanoparticles (NPs) possess different advantages over the micro and bulk therapeutic agents, including their capability to carry high payloads of drugs, with prolonged half-life, reduced toxicity of the drugs, and increased targeting efficiency. The wide variety of nanovectors, coupled with different conjugation and encapsulation methods available for different theranostic agents provide promising opportunities to fine-tune the pharmacological properties of these agents for more effective cancer treatment methods. This review discusses applications of NPs-assisted chemotherapy in preclinical and clinical settings and recent advances in design and synthesis of different nanocarriers for chemotherapeutic agents. Moreover, physicochemical properties of different nanocarriers, their impacts on different tumor targeting strategies and effective parameters for efficient targeted drug delivery are discussed. Finally, the current approved NPs-assisted chemotherapeutic agents for clinical applications and under different phases of clinical trials are discussed.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang Province, China
| | - Zhi-Qiang Wu
- Department of Pharmacy, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China
| | - Li-Hua Zhang
- Department of Colorectal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang Province, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang Province, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
3
|
Jin KT, Yao JY, Ying XJ, Lin Y, Chen YF. Nanomedicine and Early Cancer Diagnosis: Molecular Imaging using Fluorescence Nanoparticles. Curr Top Med Chem 2020; 20:2737-2761. [PMID: 32962614 DOI: 10.2174/1568026620666200922112640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
Incorporating nanotechnology into fluorescent imaging and magnetic resonance imaging (MRI) has shown promising potential for accurate diagnosis of cancer at an earlier stage than the conventional imaging modalities. Molecular imaging (MI) aims to quantitatively characterize, visualize, and measure the biological processes or living cells at molecular and genetic levels. MI modalities have been exploited in different applications including noninvasive determination and visualization of diseased tissues, cell trafficking visualization, early detection, treatment response monitoring, and in vivo visualization of living cells. High-affinity molecular probe and imaging modality to detect the probe are the two main requirements of MI. Recent advances in nanotechnology and allied modalities have facilitated the use of nanoparticles (NPs) as MI probes. Within the extensive group of NPs, fluorescent NPs play a prominent role in optical molecular imaging. The fluorescent NPs used in molecular and cellular imaging can be categorized into three main groups including quantum dots (QDs), upconversion, and dyedoped NPs. Fluorescent NPs have great potential in targeted theranostics including cancer imaging, immunoassay- based cells, proteins and bacteria detections, imaging-guided surgery, and therapy. Fluorescent NPs have shown promising potentials for drug and gene delivery, detection of the chromosomal abnormalities, labeling of DNA, and visualizing DNA replication dynamics. Multifunctional NPs have been successfully used in a single theranostic modality integrating diagnosis and therapy. The unique characteristics of multifunctional NPs make them potential theranostic agents that can be utilized concurrently for diagnosis and therapy. This review provides the state of the art of the applications of nanotechnologies in early cancer diagnosis focusing on fluorescent NPs, their synthesis methods, and perspectives in clinical theranostics.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Jia-Yu Yao
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, P.R. China,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital Hangzhou Medical College), Hangzhou 310014, P.R. China
| | - Xiao-Jiang Ying
- Department of Colorectal Surgery Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang Province, P.R. China
| | - Yan Lin
- Department of Gastroenterology, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R China
| | - Yun-Fang Chen
- Department of Stomatology, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, P.R. China
| |
Collapse
|
4
|
Pandey S, Bodas D. High-quality quantum dots for multiplexed bioimaging: A critical review. Adv Colloid Interface Sci 2020; 278:102137. [PMID: 32171116 DOI: 10.1016/j.cis.2020.102137] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/18/2022]
Abstract
Bioimaging done using two or more fluorophores possessing different emission wavelengths can be termed as a multicolor/multiplexed bioimaging technique. Traditionally, images are captured sequentially using multiple fluorophores having specific excitation and emission. For this purpose, multifunctional nanoprobes, such as organic fluorophores, metallic nanoparticles, semiconductor quantum dots, and carbon dots (CDs) are used. Among these fluorophores, quantum dots (QDs) have emerged as an ideal probe for multiplexed bioimaging due to their unique property of size tunable emission. However, the usage of quantum dots in bioimaging is limited due to their toxicity. Furthermore, the reproducibility of optical properties is cynical. These desirable properties, along with enhancement in quantum efficiency, photostability, fluorescence lifetime, etc. can be achieved by stringent control over synthesis parameters. This review summarizes the desirable properties and synthesis methods of such superior QDs followed by their application in multiplexed imaging.
Collapse
Affiliation(s)
- Sulaxna Pandey
- Nanobioscience group, Agharkar Research Institute, GG Agarkar Road, Pune 411 004, India; Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Dhananjay Bodas
- Nanobioscience group, Agharkar Research Institute, GG Agarkar Road, Pune 411 004, India; Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India.
| |
Collapse
|
5
|
Francis JE, Mason D, Lévy R. Evaluation of quantum dot conjugated antibodies for immunofluorescent labelling of cellular targets. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1238-1249. [PMID: 28685124 PMCID: PMC5480344 DOI: 10.3762/bjnano.8.125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/09/2017] [Indexed: 05/20/2023]
Abstract
Semiconductor quantum dots (Qdots) have been utilised as probes in fluorescence microscopy and provide an alternative to fluorescent dyes and fluorescent proteins due to their brightness, photostability, and the possibility to excite different Qdots with a single wavelength. In spite of these attractive properties, their implemenation by biologists has been somewhat limited and only a few Qdot conjugates are commercially available for the labelling of cellular targets. Although many protocols have been reported for the specific labelling of proteins with Qdots, the majority of these relied on Qdot-conjugated antibodies synthesised specifically by the authors (and therefore not widely available), which limits the scope of applications and complicates replication. Here, the specificity of a commercially available, Qdot-conjugated secondary antibody (Qdot-Ab) was tested against several primary IgG antibodies. The antigens were labelled simultaneously with a fluorescent dye coupled to a secondary antibody (Dye-Ab) and the Qdot-Ab. Although, the Dye-Ab labelled all of the intended target proteins, the Qdot-Ab was found bound to only some of the protein targets in the cytosol and could not reach the nucleus, even after extensive cell permeabilisation.
Collapse
Affiliation(s)
- Jennifer E Francis
- Department of Biochemistry, Institute of Integrative Biology, Biosciences Building, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - David Mason
- Centre for Cell Imaging, Institute of Integrative Biology, Biosciences Building, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Raphaël Lévy
- Department of Biochemistry, Institute of Integrative Biology, Biosciences Building, Crown Street, Liverpool, L69 7ZB, United Kingdom
| |
Collapse
|
6
|
Banerjee A, Pons T, Lequeux N, Dubertret B. Quantum dots-DNA bioconjugates: synthesis to applications. Interface Focus 2016; 6:20160064. [PMID: 27920898 PMCID: PMC5071820 DOI: 10.1098/rsfs.2016.0064] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Semiconductor nanoparticles particularly quantum dots (QDs) are interesting alternatives to organic fluorophores for a range of applications such as biosensing, imaging and therapeutics. Addition of a programmable scaffold such as DNA to QDs further expands the scope and applicability of these hybrid nanomaterials in biology. In this review, the most important stages of preparation of QD-DNA conjugates for specific applications in biology are discussed. Special emphasis is laid on (i) the most successful strategies to disperse QDs in aqueous media, (ii) the range of different conjugation with detailed discussion about specific merits and demerits in each case, and (iii) typical applications of these conjugates in the context of biology.
Collapse
Affiliation(s)
| | | | | | - Benoit Dubertret
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI ParisTech, CNRS UMR 8213, Université Pierre et Marie Curie, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
7
|
Wang T, Zheng Z, Zhang XE, Wang H. Quantum dot-fluorescence in situ hybridisation for Ectromelia virus detection based on biotin-streptavidin interactions. Talanta 2016; 158:179-184. [PMID: 27343592 DOI: 10.1016/j.talanta.2016.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/11/2016] [Accepted: 04/24/2016] [Indexed: 01/20/2023]
Abstract
Ectromelia virus (ECTV) is an pathogen that can lead to a lethal, acute toxic disease known as mousepox in mice. Prevention and control of ECTV infection requires the establishment of a rapid and sensitive diagnostic system for detecting the virus. In the present study, we developed a method of quantum-dot-fluorescence based in situ hybridisation for detecting ECTV genome DNA. Using biotin-dUTP to replace dTTP, biotin was incorporated into a DNA probe during polymerase chain reaction. High sensitivity and specificity of ECTV DNA detection were displayed by fluorescent quantum dots based on biotin-streptavidin interactions. ECTV DNA was then detected by streptavidin-conjugated quantum dots that bound the biotin-labelled probe. Results indicated that the established method can visualise ECTV genomic DNA in both infected cells and mouse tissues. To our knowledge, this is the first study reporting quantum-dot-fluorescence based in situ hybridisation for the detection of viral nucleic acids, providing a reference for the identification and detection of other viruses.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
8
|
Almlie CK, Hsiao A, Burrows SM. Dye-Specific Wavelength Offsets to Resolve Spectrally Overlapping and Co-Localized Two-Photon Induced Fluorescence. Anal Chem 2016; 88:1462-7. [DOI: 10.1021/acs.analchem.5b04476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- C. Kyle Almlie
- Chemistry Department, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Austen Hsiao
- Chemistry Department, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Sean M. Burrows
- Chemistry Department, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
9
|
Hwang G, Lee H, Lee J. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes. Biochem Biophys Res Commun 2015; 467:328-33. [PMID: 26449454 DOI: 10.1016/j.bbrc.2015.09.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Pt conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH.
Collapse
Affiliation(s)
- Gyoyeon Hwang
- Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon, Republic of Korea
| | - Hansol Lee
- Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Jiyeon Lee
- Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon, Republic of Korea.
| |
Collapse
|
10
|
Yao J, Yang M, Duan Y. Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem Rev 2014; 114:6130-78. [DOI: 10.1021/cr200359p] [Citation(s) in RCA: 507] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Yao
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mei Yang
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yixiang Duan
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Research
Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
11
|
|
12
|
Zhang W, Hubbard A, Brunhoeber P, Wang Y, Tang L. Automated Multiplexing Quantum Dots in Situ Hybridization Assay for Simultaneous Detection of ERG and PTEN Gene Status in Prostate Cancer. J Mol Diagn 2013; 15:754-64. [DOI: 10.1016/j.jmoldx.2013.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/22/2013] [Accepted: 06/05/2013] [Indexed: 11/17/2022] Open
|
13
|
Palacios MA, Lacy MM, Schubert SM, Manesse M, Walt DR. Assessing the stochastic intermittency of single quantum dot luminescence for robust quantification of biomolecules. Anal Chem 2013; 85:6639-45. [PMID: 23631644 PMCID: PMC3739287 DOI: 10.1021/ac4001332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single molecule detection schemes promise that one has the ability to reach the ultimate limit of detection: one molecule. In this paper, we use the stochastic luminescence of single semiconductor nanocrystals (quantum dots, QDs) to detect and localize particles as digital counts. These digital counts can be correlated to the concentration of analytes in solution. Here, we use total internal reflection fluorescence (TIRF) microscopy to probe individual QDs immobilized on a functionalized substrate. QDs have found their niche in the bioanalytical community due to their remarkable brightness and stability. Despite their numerous outstanding photophysical properties, QDs at the single particle level display a pronounced intermittent luminescence, posing a challenge for the detection of individual particles. In this paper, we demonstrate a reliable method for detecting QDs that takes advantage of these signal fluctuations by comparing the variations in the QD's fluorescence signals against variations of the background signal. The quantitative methodology developed here results in signal-to-background ratios up to 90:1, which is at least 8-times higher than the ratios obtained using methodologies relying solely on signal integration. This enhanced signal-to-background ratio facilitates a robust thresholding process and results in femtomolar limits of detection.
Collapse
Affiliation(s)
- Manuel A Palacios
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | | | | | | | | |
Collapse
|
14
|
dsDNA-coated quantum dots. Biotechniques 2011; 50:259-61. [DOI: 10.2144/000113650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/08/2011] [Indexed: 11/23/2022] Open
Abstract
Because of their unique spectral properties, quantum dots (QDs) have recently proved useful as fluorescent labels for biosensing probes. We developed a versatile QD label by modifying dsDNA with biotin and thiol groups at opposite ends and attaching it to quantum dots via a metal-thiol bond. These dsDNA-coated QDs fluorescently label their targets through biotin-streptavidin binding and show excellent histological results when used to detect biotin-labeled chromosome probes. The dsDNA coating also circumvented the common problems of aggregation and steric hindrance that occur with other QD probes.
Collapse
|
15
|
Algar WR, Krull UJ. Characterization of the adsorption of oligonucleotides on mercaptopropionic acid-coated CdSe/ZnS quantum dots using fluorescence resonance energy transfer. J Colloid Interface Sci 2011; 359:148-54. [PMID: 21486671 DOI: 10.1016/j.jcis.2011.03.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/13/2011] [Accepted: 03/17/2011] [Indexed: 01/10/2023]
Abstract
Semiconductor quantum dots (QDs) coated with thioalkyl acid ligands are often used as probes and reporters for nucleic acid sensing, or protein sensing using aptamers, and are also potential vectors for gene delivery. In such applications, the interactions that potentially lead to the adsorption of oligonucleotides onto the surface of colloidal QDs are an important consideration. To explore such interactions, fluorescence resonance energy transfer (FRET) between QDs and oligonucleotides labeled with a fluorescent dye was used to identify and characterize a set of conditions that favor strong adsorption on 3-mercaptopropionic acid (MPA)-coated CdSe/ZnS QDs. Adsorption curves and competitive binding experiments were used to determine that the order of affinity for nucleobase adsorption was dC>dA≥dG≫dT. The length of the oligonucleotide sequence was also important, with an 80-mer sequence adsorbing more strongly than its 20-mer analog. Adsorption decreased with increasing pH and corresponded to the ionization of the carboxylic acid groups of the MPA ligands. Increased ionic strength partially offsets ligand ionization and increased the extent of adsorption. The interaction between QDs and oligonucleotides was labile, with increases in adsorption at lower concentrations of oligonucleotide and with an increasing number of oligonucleotides per QD. The results were consistent with a hydrogen-bonding model for adsorption, where neutral thioalkyl acid ligands interact favorably with nucleobases and ionized ligands resist adsorption.
Collapse
Affiliation(s)
- W Russ Algar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. North, Mississauga, Ontario, Canada L5L 1C6
| | | |
Collapse
|
16
|
Abstract
Quantum dots (QDs) are novel photostable semiconductor nanocrystals possessing wide excitation spectra and narrow, symmetrical emission spectra and can be conjugated to a wide range of biological targets, including proteins, antibodies and nucleic acid probes. These characteristics have provoked considerable interest in their use for bioimaging. Much investigation has been performed into their use for multiplex immunohistochemistry and in situ hybridisation which, when combined with multispectral imaging, has enabled quantitation and colocalisation of gene expression in clinical tissue. Many advances have recently been made using QDs for live cell and in vivo imaging, in which QD-labelled molecules can be tracked and visualised in 3-D. This review aims to outline the beneficial properties presented by QDs along with important advances in their biological application.
Collapse
Affiliation(s)
- Richard J Byers
- School of Cancer and Enabling Sciences, University of Manchester, Manchester, UK.
| | | |
Collapse
|
17
|
Abstract
Coming from the material sciences, fluorescent semiconductor nanocrystals, also known as quantum dots (QDs), have emerged as powerful fluorescent probes for a wide range of biological imaging applications. QDs have several advantages over organic dyes which include higher brightness, better resistance to photobleaching, and simplified multicolor target detection. In this chapter, we describe a rapid assay for the direct imaging of multiple repetitive subnuclear genetic sequences using QD-based FISH probes. Streptavidin-coated QDs (SAvQDs) are functionalized with short biotinylated oligonucleotides and used in a single hybridization/detection step. These QD-FISH probes penetrate both intact interphase nuclei and metaphase chromosomes and show good targeting of dense chromatin domains. Importantly, the broad absorption spectra of QDs allows two sequence specific QD-FISH probes of different colors to be simultaneously imaged with a single laser excitation wavelength. This method, which requires minimal custom conjugation, is easily expandable and offers the experimentalist a new alternative to increase flexibility in multicolor cytogenetic FISH applications of repetitive DNAs.
Collapse
|
18
|
Chen HL, Peng J, Zhu XB, Gao J, Xue JL, Wang MW, Xia HS. Detection of EBV in nasopharyngeal carcinoma by quantum dot fluorescent in situ hybridization. Exp Mol Pathol 2010; 89:367-71. [PMID: 20858485 DOI: 10.1016/j.yexmp.2010.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 08/03/2010] [Accepted: 09/15/2010] [Indexed: 11/18/2022]
Abstract
AIMS Nasopharyngeal carcinoma (NPC) is a common cancer in Southeast Asia and is frequently associated with Epstein-Barr virus (EBV) infection. The primary aim of this study was to improve the method of EBV detection by exploring quantum dots in FISH detection, and compare QD-based FISH with conventional ISH. MATERIALS AND METHODS Biopsy specimens were retrospectively retrieved from 35 NPC patients as paraffin-embedded tissue blocks. QD-FISH was developed to detect the presence of EBV encoded small RNA (EBER) using biotin-labeled EBER oligonucleotide probe indirectly labeled with streptavidin-conjugated quantum dots. Conventional ISH was also performed using a commercial kit to assess concordance between the two methods. RESULTS All the 35 NPC cases were nonkeratinizing carcinoma (7 differentiated and 28 undifferentiated subtypes). EBER-positive signals were detected in 91.43% (32/35) and 80% (28/35) cases by QD-FISH and ISH, respectively. There was no significant difference in the number of EBER-positive cases by the two methods. A moderate concordance was found between QD-FISH and ISH for EBER status (κ=0.55). Four EBER-negative cases by ISH showed EBER-positive signals when detected by QD-FISH. CONCLUSIONS EBV is closely associated with NPC in Chinese patients. QD-FISH is a novel effective method for EBER detection, and has a moderate concordance with conventional ISH.
Collapse
Affiliation(s)
- Hong-lei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, 430071 Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Algar WR, Krull UJ. New opportunities in multiplexed optical bioanalyses using quantum dots and donor–acceptor interactions. Anal Bioanal Chem 2010; 398:2439-49. [DOI: 10.1007/s00216-010-3837-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/09/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
|
20
|
Ioannou D, Griffin DK. Nanotechnology and molecular cytogenetics: the future has not yet arrived. NANO REVIEWS 2010; 1:NANO-1-5117. [PMID: 22110858 PMCID: PMC3215214 DOI: 10.3402/nano.v1i0.5117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/01/2010] [Accepted: 04/07/2010] [Indexed: 01/07/2023]
Abstract
Quantum dots (QDs) are a novel class of inorganic fluorochromes composed of nanometer-scale crystals made of a semiconductor material. They are resistant to photo-bleaching, have narrow excitation and emission wavelengths that can be controlled by particle size and thus have the potential for multiplexing experiments. Given the remarkable optical properties that quantum dots possess, they have been proposed as an ideal material for use in molecular cytogenetics, specifically the technique of fluorescent in situ hybridisation (FISH). In this review, we provide an account of the current QD-FISH literature, and speculate as to why QDs are not yet optimised for FISH in their current form.
Collapse
|
21
|
Mansur HS. Quantum dots and nanocomposites. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:113-29. [DOI: 10.1002/wnan.78] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Resch-Genger U, Grabolle M, Nitschke R, Nann T. Nanocrystals and Nanoparticles Versus Molecular Fluorescent Labels as Reporters for Bioanalysis and the Life Sciences: A Critical Comparison. ADVANCED FLUORESCENCE REPORTERS IN CHEMISTRY AND BIOLOGY II 2010. [DOI: 10.1007/978-3-642-04701-5_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Choi Y, Kim HP, Hong SM, Ryu JY, Han SJ, Song R. In situ visualization of gene expression using polymer-coated quantum-dot-DNA conjugates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:2085-2091. [PMID: 19517489 DOI: 10.1002/smll.200900116] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Imaging of specific mRNA targets in cells is of great importance in understanding gene expression and cell signaling processes. Subcellular localization of mRNA is known as a universal mechanism for cells to sequester specific mRNA for high production of required proteins. Various gene expressions in Drosophila cells are studied using quantum dots (QDs) and the fluorescence in situ hybridization (FISH) method. The excellent photostability and highly luminescent properties of QDs compared to conventional fluorophores allows reproducible obtainment of quantifiable mRNA gene expression imaging. Amine-modified oligonucleotide probes are designed and covalently attached to the carboxyl-terminated polymer-coated QDs via EDC chemistry. The resulting QD-DNA conjugates show sequence-specific hybridization with target mRNAs. Quantitative analysis of FISH on the Diptericin gene after lipopolysaccharide (LPS) treatment shows that the intensity and number of FISH signals per cell depends on the concentration of LPS and correlates well with quantitative real-time PCR results. In addition, our QD-DNA probes exhibit excellent sensitivity to detect the low-expressing Dorsal-related immunity factor gene. Importantly, multiplex FISH of Ribosomal protein 49 and Actin 5C using green and red QD-DNA conjugates allows the observation of cellular distribution of the two independent genes simultaneously. These results demonstrate that highly fluorescent and stable QD-DNA probes can be a powerful tool for direct localization and quantification of gene expression in situ.
Collapse
Affiliation(s)
- Youngseon Choi
- Nano/Bio Chemistry Group, Institut Pasteur Korea, Seongnam, South Korea
| | | | | | | | | | | |
Collapse
|
24
|
Ioannou D, Tempest HG, Skinner BM, Thornhill AR, Ellis M, Griffin DK. Quantum dots as new-generation fluorochromes for FISH: an appraisal. Chromosome Res 2009; 17:519-30. [PMID: 19644760 DOI: 10.1007/s10577-009-9051-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/23/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
In the field of nanotechnology, quantum dots (QDs) are a novel class of inorganic fluorochromes composed of nanometre-scale crystals made of a semiconductor material. Given the remarkable optical properties that they possess, they have been proposed as an ideal material for use in fluorescent in-situ hybridization (FISH). That is, they are resistant to photobleaching and they excite at a wide range of wavelengths but emit light in a very narrow band that can be controlled by particle size and thus have the potential for multiplexing experiments. The principal aim of this study was to compare the potential of QDs against traditional organic fluorochromes in both indirect (i.e. QD-conjugated streptavidin) and direct (i.e. synthesis of QD-labelled FISH probes) detection methods. In general, the indirect experiments met with a degree of success, with FISH applications demonstrated for chromosome painting, BAC mapping and use of oligonucleotide probes on human and avian chromosomes/nuclei. Many of the reported properties of QDs (e.g. brightness, 'blinking' and resistance to photobleaching) were observed. On the other hand, signals were more frequently observed where the chromatin was less condensed (e.g. around the periphery of the chromosome or in the interphase nucleus) and significant bleed-through to other filters was apparent (despite the reported narrow emission spectra). Most importantly, experimental success was intermittent (sometimes even in identical, parallel experiments) making attempts to improve reliability difficult. Experimentation with direct labelling showed evidence of the generation of QD-DNA constructs but no successful FISH experiments. We conclude that QDs are not, in their current form, suitable materials for FISH because of the lack of reproducibility of the experiments; we speculate why this might be the case and look forward to the possibility of nanotechnology forming the basis of future molecular cytogenetic applications.
Collapse
|
25
|
Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch-Genger U. Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties. Anal Chem 2009. [DOI: 10.1021/ac900308v] [Citation(s) in RCA: 356] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Markus Grabolle
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany, and Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062 Dresden, Germany
| | - Monika Spieles
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany, and Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062 Dresden, Germany
| | - Vladimir Lesnyak
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany, and Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062 Dresden, Germany
| | - Nikolai Gaponik
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany, and Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062 Dresden, Germany
| | - Alexander Eychmüller
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany, and Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062 Dresden, Germany
| | - Ute Resch-Genger
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany, and Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062 Dresden, Germany
| |
Collapse
|
26
|
Seleverstov O, Phang JM, Zabirnyk O. Semiconductor nanocrystals in autophagy research: methodology improvement at nanosized scale. Methods Enzymol 2009; 452:277-96. [PMID: 19200889 DOI: 10.1016/s0076-6879(08)03618-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Our recent findings establish a functional link between foreign nanosized bodies and autophagy. We find that nanoparticles (NP) within a certain size range act as potent autophagy activators, and that autophagic flux is an underlying physiological process of the cellular clearance of the NP. Therefore, NP may be used to study and to monitor autophagy. We provide a detailed description of laboratory protocols designed for studying NP-mediated autophagy. In addition, we review available methods of nanotechnology, which may benefit autophagy research.
Collapse
Affiliation(s)
- Oleksandr Seleverstov
- Department of Animal Science, College of Agriculture, University of Wyoming, Laramie, Wyoming, USA
| | | | | |
Collapse
|
27
|
Ebenstein Y, Gassman N, Kim S, Antelman J, Kim Y, Ho S, Samuel R, Michalet X, Weiss S. Lighting up individual DNA binding proteins with quantum dots. NANO LETTERS 2009; 9:1598-603. [PMID: 19290670 PMCID: PMC3084662 DOI: 10.1021/nl803820b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ability to determine the precise loci and occupancy of DNA-binding proteins is instrumental to our understanding of cellular processes like gene expression and regulation. We propose a single-molecule approach for the direct visualization of proteins bound to their template DNA. Fluorescent quantum dots (QD) are used to label proteins bound to DNA, allowing multicolor, nanometer-resolution localization. Protein-DNA complexes are linearly extended and imaged to determine the precise location of the protein binding sites. The method is demonstrated by detecting individual QD-labeled T7-RNA polymerases on the T7 bacteriophage genome. This work demonstrates the potential of this approach to precisely read protein binding position or, alternatively, "write" such information on extended DNA with QDs via sequence-specific molecular recognition.
Collapse
|
28
|
Antelman J, Ebenstein Y, Dertinger T, Michalet X, Weiss S. Suppression of quantum dot blinking in DTT-doped polymer films. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2009; 113:11541-11545. [PMID: 20161096 PMCID: PMC2745152 DOI: 10.1021/jp811078e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this report we evaluate the emission properties of single quantum dots embedded in a thin, thiol containing polymer film. We report the suppression of quantum dot blinking leading to a continuous photon flux from both organic and water soluble quantum dots and demonstrate their application as robust fluorescent point sources for ultrahigh resolution localization. In addition, we apply the polymer coating to cell samples immunostained with antibody conjugated QDs and show that fluorescence intensity from the polymer embedded cells shows no sign of degradation after 67 hours of continuous excitation. The reported thin polymer film coating may prove advantageous for immuno-cyto/histo-chemistry as well as for the fabrication of quantum dot containing devices requiring a reliable and stable photon source (including a single photon source) or stable charge characteristics while maintaining intimate contact between the quantum dot and the surrounding matrix.
Collapse
Affiliation(s)
- Josh Antelman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095 USA
| | - Yuval Ebenstein
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095 USA
| | - Thomas Dertinger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095 USA
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095 USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095 USA
- Department of Physiology, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095 USA
- DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095 USA
| |
Collapse
|
29
|
Russ Algar W, Massey M, Krull UJ. The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics. Trends Analyt Chem 2009. [DOI: 10.1016/j.trac.2008.11.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Yezhelyev M, Yacoub R, O’Regan R. Inorganic nanoparticles for predictive oncology of breast cancer. Nanomedicine (Lond) 2009; 4:83-103. [DOI: 10.2217/17435889.4.1.83] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanoparticles (NPs) and nanosized objects are being incorporated rapidly into clinical medicine and particularly into the field of medical oncology, including breast cancer. A number of novel methods for breast cancer diagnosis and treatment, which are based on NPs and other nanodevices, are now available for translation into clinical practice. Computer tomography and MRI with iron-based magnetic NPs are promising methods for radiological detection of cancers. Semiconductor fluorescent NPs (quantum dots) are being developed for simultaneous detection and localization of multiple breast cancer biomarkers, enabling the personalization of therapeutic regimens for each patient. Additionally, inorganic NPs can be conjugated with tumor-specific ligands and used for tumor-selective delivery of chemotherapeutic or hormonal agents. NPs bearing tumor-targeted antibodies and oligonucleotides for anticancer gene therapy are a novel and rapidly developing therapeutic approach in oncology. Nab-paclitaxel and liposomal anthracyclines are US FDA-approved NP-based drug-delivery systems that have demonstrated at least equivalent efficacy and decreased toxicity compared with conventional chemotherapeutic agents used in the treatment of breast cancer. This review focuses on recent applications of NPs into predictive oncology of breast cancer with an emphasis placed on the role of inorganic nanosized objects in the diagnosis and treatment of this malignancy.
Collapse
Affiliation(s)
- Maksym Yezhelyev
- Winship Cancer Institute, 1701 Upper Gate Drive, Emory University, Atlanta, GA 30322, USA
| | - Rami Yacoub
- Winship Cancer Institute, 1701 Upper Gate Drive, Emory University, Atlanta, GA 30322, USA
| | - Ruth O’Regan
- Winship Cancer Institute, 1701 Upper Gate Drive, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
31
|
|
32
|
Tholouli E, Sweeney E, Barrow E, Clay V, Hoyland JA, Byers RJ. Quantum dots light up pathology. J Pathol 2008; 216:275-85. [PMID: 18814189 DOI: 10.1002/path.2421] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Quantum dots (QDs) are novel nanocrystal fluorophores with extremely high fluorescence efficiency and minimal photobleaching. They also possess a constant excitation wavelength together with sharp and symmetrical tunable emission spectra. These unique optical properties make them near-perfect fluorescent markers and there has recently been rapid development of their use for bioimaging. QDs can be conjugated to a wide range of biological targets, including proteins, antibodies, and nucleic acid probes, rendering them of particular interest to pathology researchers. They have been used in multiplex immunohistochemistry and in situ hybridization, which when combined with multispectral imaging, has enabled quantitative measurement of gene expression in situ. QDs have also been used for live in vivo animal imaging and are now being applied to an ever-increasing range of biological problems. These are detailed in this review, which also acts to outline the important advances that have been made in their range of applications. The relative novelty of QDs can present problems in their practical use and guidelines for their application are given.
Collapse
Affiliation(s)
- E Tholouli
- Department of Clinical Haematology, Manchester Royal Infirmary, Oxford Road, Manchester, UK
| | | | | | | | | | | |
Collapse
|
33
|
FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 2008; 45:385-6, 388, 390 passim. [PMID: 18855767 DOI: 10.2144/000112811] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The introduction of FISH (fluorescence in situ hybridization) marked the beginning of a new era for the study of chromosome structure and function. As a combined molecular and cytological approach, the major advantage of this visually appealing technique resides in its unique ability to provide an intermediate degree of resolution between DNA analysis and chromosomal investigations while retaining information at the single-cell level. Used to support large-scale mapping and sequencing efforts related to the human genome project, FISH accuracy and versatility were subsequently capitalized on in biological and medical research, providing a wealth of diverse applications and FISH-based diagnostic assays. The diversification of the original FISH protocol into the impressive number of procedures available these days has been promoted throughout the years by a number of interconnected factors: the improvement in sensitivity, specificity and resolution, together with the advances in the fields of fluorescence microscopy and digital imaging, and the growing availability of genomic and bioinformatic resources. By assembling in a glossary format many of the "acronymed" FISH applications published so far, this review intends to celebrate the ability of FISH to re-invent itself and thus remain at the forefront of biomedical research.
Collapse
|
34
|
Abstract
The use of luminescent colloidal quantum dots in biological investigations has increased dramatically over the past several years due to their unique size-dependent optical properties and recent advances in biofunctionalization. In this review, we describe the methods for generating high-quality nanocrystals and report on current and potential uses of these versatile materials. Numerous examples are provided in several key areas including cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. We also explore toxicity issues surrounding these materials and speculate about the future uses of quantum dots in a clinical setting.
Collapse
Affiliation(s)
- Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory,Washington, DC, USA.
| | | | | |
Collapse
|
35
|
Son A, Nichkova M, Dosev D, Kennedy IM, Hristova KR. Luminescent lanthanide nanoparticles as labels in DNA microarrays for quantification of methyl tertiary butyl ether degrading bacteria. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2008; 8:2463-7. [PMID: 18572664 PMCID: PMC3909105 DOI: 10.1166/jnn.2008.347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report application of lanthanide nanoparticles for DNA quantification in a microarray platform as a substitute for conventional organic fluorophores. A non-PCR based DNA microarray assay for quantifying bacteria capable of biodegrading methyl tertiary-butyl ether (MTBE) was demonstrated. Probe DNA was immobilized on a glass surface, hybridized with biotinylated target DNA and subsequently incubated with Neutravidin-biofunctionalized nanoparticles. The fluorescence spot intensities, measured by a commercial laser scanner, show a linear relationship (R2 = 0.98) with bacterial 16S rDNA over a range of target DNA concentrations, while the background fluorescence remained low. In addition, nanoparticles fluorescence shows a stronger intensity than Quasar570 (Cy3). Present sensitivity of the assay is 10 pM of target DNA. The selectivity of the DNA-nanoparticle-probes to discriminate a non-target DNA with two base pairs mismatch in the 16S rDNA gene sequence was shown. The use of Eu:Gd2O3 nanoparticles as biolabels provides a relatively non-toxic, inexpensive, rapid and sensitive alternative to the materials currently used in DNA microarrays.
Collapse
Affiliation(s)
- Ahjeong Son
- Department of Land, Air, and Water Resources, Department of Entomology, and Department of Mechanical and Aeronautical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616
| | - Mikaela Nichkova
- Department of Land, Air, and Water Resources, Department of Entomology, and Department of Mechanical and Aeronautical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616
| | - Dosi Dosev
- Department of Land, Air, and Water Resources, Department of Entomology, and Department of Mechanical and Aeronautical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616
| | - Ian M. Kennedy
- Department of Land, Air, and Water Resources, Department of Entomology, and Department of Mechanical and Aeronautical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616
| | - Krassimira R. Hristova
- Department of Land, Air, and Water Resources, Department of Entomology, and Department of Mechanical and Aeronautical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616
| |
Collapse
|
36
|
Quantum Optics: Colloidal Fluorescent Semiconductor Nanocrystals (Quantum Dots) in Single-Molecule Detection and Imaging. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-3-540-73924-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
37
|
Fluorescence in situ hybridization (FISH) on maize metaphase chromosomes with quantum dot-labeled DNA conjugates. Chromosoma 2007; 117:181-7. [PMID: 18046569 DOI: 10.1007/s00412-007-0136-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/30/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Semiconductor nanocrystals, also called quantum dots (QDs), are novel inorganic fluorophores which are brighter and more photostable than organic fluorophores. In the present study, highly dispersive QD-labeled oligonucleotide (TAG)(8) (QD-deoxyribonucleic acid [DNA]) conjugates were constructed via the metal-thiol bond, which can be used as fluorescence in situ hybridization (FISH) probes. FISH analysis of maize metaphase chromosomes using the QD-DNA probes showed that the probes could penetrate maize chromosomes and nuclei and solely hybridized to complementary target DNAs. Compared with the conventional organic dyes such as Cy3 and fluorescein isothiocyanate, this class of luminescent labels bound with oligonucleotides is brighter and more stable against photobleaching on the chromosomes after FISH. These results suggest that QD fluorophores may be a more stable and useful fluorescent label for FISH applications in plant chromosome mapping considering their size-tunable luminescence spectra.
Collapse
|
38
|
Abstract
Abstract
Background: Nanobiotechnologies are being applied to molecular diagnostics and several technologies are in development.
Methods: This review describes nanobiotechnologies that are already incorporated in molecular diagnostics or have potential applications in clinical diagnosis. Selected promising technologies from published literature as well as some technologies that are in commercial development but have not been reported are included.
Results: Nanotechnologies enable diagnosis at the single-cell and molecule levels, and some can be incorporated in current molecular diagnostic methods, such as biochips. Nanoparticles, such as gold nanoparticles and quantum dots, are the most widely used, but various other nanotechnological devices for manipulation at the nanoscale as well as nanobiosensors are also promising for potential clinical applications.
Conclusions: Nanotechnologies will extend the limits of current molecular diagnostics and enable point-of-care diagnostics, integration of diagnostics with therapeutics, and development of personalized medicine. Although the potential diagnostic applications are unlimited, the most important current applications are foreseen in the areas of biomarker discovery, cancer diagnosis, and detection of infectious microorganisms. Safety studies are needed for in vivo use. Because of its close interrelationships with other technologies, nanobiotechnology in clinical diagnosis will play an important role in the development of nanomedicine in the future.
Collapse
|
39
|
Byers RJ, Di Vizio D, O'connell F, Tholouli E, Levenson RM, Gossage K, Gossard K, Twomey D, Yang Y, Benedettini E, Rose J, Ligon KL, Finn SP, Golub TR, Loda M. Semiautomated multiplexed quantum dot-based in situ hybridization and spectral deconvolution. J Mol Diagn 2007; 9:20-9. [PMID: 17251332 PMCID: PMC2248801 DOI: 10.2353/jmoldx.2007.060119] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression profiling has identified several potentially useful gene signatures for predicting outcome or for selecting targeted therapy. However, these signatures have been developed in fresh or frozen tissue, and there is a need to apply them to routinely processed samples. Here, we demonstrate the feasibility of a potentially high-throughput methodology combining automated in situ hybridization with quantum dot-labeled oligonucleotide probes followed by spectral imaging for the detection and subsequent deconvolution of multiple signals. This method is semiautomated and quantitative and can be applied to formalin-fixed, paraffin-embedded tissues. We have combined dual in situ hybridization with immunohistochemistry, enabling simultaneous measurement of gene expression and cell lineage determination. The technique achieves levels of sensitivity and specificity sufficient for the potential application of known expression signatures to biopsy specimens in a semiquantitative way, and the semiautomated nature of the method enables application to high-throughput studies.
Collapse
Affiliation(s)
- Richard J Byers
- Division of Laboratory and Regenerative Medicine, University of Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jonas M, Yao Y, So PTC, Dewey CF. Detecting Single Quantum Dot Motion With Nanometer Resolution for Applications in Cell Biology. IEEE Trans Nanobioscience 2006; 5:246-50. [PMID: 17181023 DOI: 10.1109/tnb.2006.886559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantum dots (QDs), semiconductor particles of nanometer dimension, have emerged as excellent fluorescent analogs in tracer experiments with single molecule sensitivity for bioassays. Cell imaging greatly benefits from the remarkable optical and physical properties of these inorganic nanocrystals: QDs are much brighter and exhibit a higher resistance to photobleaching than traditional fluorophores, and their narrow emission spectrum and flexible surface chemistry make them particularly suitable for multiplex imaging. Here, we have demonstrated the achievement of a nanometer spatial resolution on the position of a single QD in a simple optomechanical instrument using a high-sensitivity low-noise detector, an intensified CCD camera. Furthermore, nanometer variations in the amplitude of a QD's sinusoidal oscillations could be quantitatively distinguished after fast Fourier transform (FFT) based data processing. As confirmed by experiments where QDs were attached to the surface of bovine aortic endothelial cells, this method can be exploited in biology to assess molecular and subcellular contributions to responses such as motility, intracellular trafficking, and mechanotransduction, with high resolution and minimal disturbance to cells.
Collapse
Affiliation(s)
- Maxine Jonas
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|