1
|
Kwon M, Ghanta S, Ng J, Castano AP, Han J, Ith B, Lederer JA, El‐Chemaly S, Chung SW, Liu X, Perrella MA. Mesenchymal stromal cells expressing a dominant-negative high mobility group A1 transgene exhibit improved function during sepsis. J Leukoc Biol 2021; 110:711-722. [PMID: 33438259 PMCID: PMC8275698 DOI: 10.1002/jlb.4a0720-424r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/18/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
High mobility group (HMG)A proteins are nonhistone chromatin proteins that bind to the minor groove of DNA, interact with transcriptional machinery, and facilitate DNA-directed nuclear processes. HMGA1 has been shown to regulate genes involved with systemic inflammatory processes. We hypothesized that HMGA1 is important in the function of mesenchymal stromal cells (MSCs), which are known to modulate inflammatory responses due to sepsis. To study this process, we harvested MSCs from transgenic (Tg) mice expressing a dominant-negative (dn) form of HMGA1 in mesenchymal cells. MSCs harvested from Tg mice contained the dnHMGA1 transgene, and transgene expression did not change endogenous HMGA1 levels. Immunophenotyping of the cells, along with trilineage differentiation revealed no striking differences between Tg and wild-type (WT) MSCs. However, Tg MSCs growth was decreased compared with WT MSCs, although Tg MSCs were more resistant to oxidative stress-induced death and expressed less IL-6. Tg MSCs administered after the onset of Escherichia coli-induced sepsis maintained their ability to improve survival when given in a single dose, in contrast with WT MSCs. This survival benefit of Tg MSCs was associated with less tissue cell death, and also a reduction in tissue neutrophil infiltration and expression of neutrophil chemokines. Finally, Tg MSCs promoted bacterial clearance and enhanced neutrophil phagocytosis, in part through their increased expression of stromal cell-derived factor-1 compared with WT MSCs. Taken together, these data demonstrate that expression of dnHMGA1 in MSCs provides a functional advantage of the cells when administered during bacterial sepsis.
Collapse
Affiliation(s)
- Min‐Young Kwon
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Sailaja Ghanta
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Julie Ng
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Ana P. Castano
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Junwen Han
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Bonna Ith
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - James A. Lederer
- Department of SurgeryBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Souheil El‐Chemaly
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Su Wol Chung
- Department of Biological SciencesUniversity of UlsanUlsanSouth Korea
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Mito JK, Agoston AT, Dal Cin P, Srivastava A. Prevalence and significance of HMGA2 expression in oesophageal adenocarcinoma. Histopathology 2017; 71:909-917. [PMID: 28710822 DOI: 10.1111/his.13310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Abstract
AIMS Oesophageal adenocarcinoma (EAC) tumorigenesis has been linked primarily to loss-of-function mutations in tumour suppressor genes. Knowledge of specific oncogenes that drive tumour progression, and their relationship to outcomes, is limited. High mobility group AT-hook 2 (HMGA2) has been reported to be amplified in a subset of EACs, but the clinicopathological and prognostic implications of HMGA2 expression in EAC are unknown. METHODS AND RESULTS We performed HMGA2 immunohistochemistry and fluorescence in-situ hybridization (FISH) in EAC to determine its clinicopathological and prognostic significance. Ninety-one primary EAC resections without neoadjuvant treatment were identified and immunohistochemistry for HMGA2 was performed. The presence or absence of nuclear staining was evaluated and correlated with predetermined clinicopathological parameters and patient outcomes. A selected subset of tumours was subjected to FISH to identify alterations at the HMGA2 locus. HMGA2 expression was present in 25 of 91 (27.4%) tumours. HMGA2-expressing cells were present in solid, poorly differentiated areas of the tumours at the invasive front, or as single infiltrating cells. FISH showed that three to four copies of HMGA2 are frequently present in EAC irrespective of HMGA2 protein expression and that high level HMGA2 amplification is a rare event. HMGA2 expression was associated with numerous adverse clinicopathological parameters, including higher T- and N-stage, the presence of lymphovascular invasion and with a worse recurrence-free and overall survival. CONCLUSION Our data suggest that HMGA2 is regulated in EAC primarily through non-chromosomal-level alterations that lead to increased HMGA2 expression. HMGA2-positive EAC correlates with adverse pathological features and worse patient outcomes.
Collapse
Affiliation(s)
- Jeffrey K Mito
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Agoston T Agoston
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amitabh Srivastava
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Günther K, Foraita R, Friemel J, Günther F, Bullerdiek J, Nimzyk R, Markowski DN, Behrens T, Ahrens W. The Stem Cell Factor HMGA2 Is Expressed in Non-HPV-Associated Head and Neck Squamous Cell Carcinoma and Predicts Patient Survival of Distinct Subsites. Cancer Epidemiol Biomarkers Prev 2016; 26:197-205. [PMID: 27742669 DOI: 10.1158/1055-9965.epi-16-0492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The transcription factor high-mobility AT-hook 2 (HMGA2) is involved in stem cell renewal and is expressed in many tumor tissues. Head and neck squamous cell carcinomas (HNSCC) comprise tumors of the upper aerodigestive tract and are characterized by high recurrence rates that represent a challenge to patient management. The study addresses the potential of HMGA2 as a molecular biomarker for HNSCC patient survival. METHODS Patients with HNSCC of the larynx, pharynx, tonsils, or oral cavity were recruited in a hospital-based case-control study (n = 202). Quantitative expression of HMGA2 in tumor tissues was measured by RT-PCR. In a 6- to 10-year follow-up, secondary cancers, vital status, and cause of death were ascertained. The HR and 95% confidence intervals (CI) for overall, tumor-specific, and progression-free survival were estimated by Cox proportional hazards with HMGA2 expression level as the independent variable. RESULTS High HMGA2 expression in tumor tissues of HNSCC patients was significantly correlated with negative HPV status (P = 0.01), and associated with shorter overall survival time. In Cox regression modeling, HMGA2 expression yielded a risk increase for overall and tumor-specific death in subsets of HNSCC patients, that is, laryngeal cancer patients (overall survival: HR = 4.00; 95% CI, 1.18-13.62) and in oral cancer patients (tumor-specific survival: HR = 2.88; 95% CI, 1.06-7.84), but not in patients with pharyngeal and tonsillar HNSCC. CONCLUSIONS HMGA2 expression is associated with a risk increase for adverse outcomes in patients with HNSCC of the larynx and oral cavity. IMPACT The understanding of stem cell signaling in HNSCC may offer new strategies for cancer treatment. Cancer Epidemiol Biomarkers Prev; 26(2); 197-205. ©2016 AACR.
Collapse
Affiliation(s)
- Kathrin Günther
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany.
| | - Ronja Foraita
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Juliane Friemel
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Frauke Günther
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Jörn Bullerdiek
- Center for Human Genetics (ZHG), University of Bremen, Bremen, Germany
| | - Rolf Nimzyk
- Center for Human Genetics (ZHG), University of Bremen, Bremen, Germany
| | | | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany.,Protein Research Unit Ruhr within Europe (PURE), Ruhr-University Bochum, Germany
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| |
Collapse
|
4
|
Lupiañez CB, Villaescusa MT, Carvalho A, Springer J, Lackner M, Sánchez-Maldonado JM, Canet LM, Cunha C, Segura-Catena J, Alcazar-Fuoli L, Solano C, Fianchi L, Pagano L, Potenza L, Aguado JM, Luppi M, Cuenca-Estrella M, Lass-Flörl C, Einsele H, Vázquez L, Ríos-Tamayo R, Loeffler J, Jurado M, Sainz J. Common Genetic Polymorphisms within NFκB-Related Genes and the Risk of Developing Invasive Aspergillosis. Front Microbiol 2016; 7:1243. [PMID: 27570521 PMCID: PMC4982195 DOI: 10.3389/fmicb.2016.01243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/26/2016] [Indexed: 12/02/2022] Open
Abstract
Invasive Aspergillosis (IA) is an opportunistic infection caused by Aspergillus, a ubiquitously present airborne pathogenic mold. A growing number of studies suggest a major host genetic component in disease susceptibility. Here, we evaluated whether 14 single-nucleotide polymorphisms within NFκB1, NFκB2, RelA, RelB, Rel, and IRF4 genes influence the risk of IA in a population of 834 high-risk patients (157 IA and 677 non-IA) recruited through a collaborative effort involving the aspBIOmics consortium and four European clinical institutions. No significant overall associations between selected SNPs and the risk of IA were found in this large cohort. Although a hematopoietic stem cell transplantation (HSCT)-stratified analysis revealed that carriers of the IRF4rs12203592T/T genotype had a six-fold increased risk of developing the infection when compared with those carrying the C allele (ORREC = 6.24, 95%CI 1.25–31.2, P = 0.026), the association of this variant with IA risk did not reach significance at experiment-wide significant threshold. In addition, we found an association of the IRF4AATC and IRF4GGTC haplotypes (not including the IRF4rs12203592T risk allele) with a decreased risk of IA but the magnitude of the association was similar to the one observed in the single-SNP analysis, which indicated that the haplotypic effect on IA risk was likely due to the IRF4rs12203592 SNP. Finally, no evidence of significant interactions among the genetic markers tested and the risk of IA was found. These results suggest that the SNPs on the studied genes do not have a clinically relevant impact on the risk of developing IA.
Collapse
Affiliation(s)
- Carmen B Lupiañez
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| | - María T Villaescusa
- Hematology Department, University Hospital of SalamancaSalamanca, Spain; Hematology Department, Jiménez Díaz FoundationMadrid, Spain
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Jan Springer
- Universitätsklinikum Würzburg, Medizinische Klinik II Würzburg, Germany
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck Innsbruck, Austria
| | - José M Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada Granada, Spain
| | - Luz M Canet
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada Granada, Spain
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Juana Segura-Catena
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Carlos Solano
- Hematology Department, Clinic University Hospital of Valencia Valencia, Spain
| | - Luana Fianchi
- Istituto di Ematologia, Università Cattolica del S. Cuore Rome, Italy
| | - Livio Pagano
- Istituto di Ematologia, Università Cattolica del S. Cuore Rome, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia AOU Policlinico, Modena, Italy
| | - José M Aguado
- Unit of Infectious Diseases, University Hospital 12 de Octubre, Research Institute of Hospital 12 de Octubre (i+12) Madrid, Spain
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia AOU Policlinico, Modena, Italy
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck Innsbruck, Austria
| | - Hermann Einsele
- Universitätsklinikum Würzburg, Medizinische Klinik II Würzburg, Germany
| | - Lourdes Vázquez
- Hematology Department, University Hospital of Salamanca Salamanca, Spain
| | | | - Rafael Ríos-Tamayo
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| | - Jurgen Loeffler
- Universitätsklinikum Würzburg, Medizinische Klinik II Würzburg, Germany
| | - Manuel Jurado
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| |
Collapse
|
5
|
Messineo S, Laria AE, Arcidiacono B, Chiefari E, Luque Huertas RM, Foti DP, Brunetti A. Cooperation between HMGA1 and HIF-1 Contributes to Hypoxia-Induced VEGF and Visfatin Gene Expression in 3T3-L1 Adipocytes. Front Endocrinol (Lausanne) 2016; 7:73. [PMID: 27445976 PMCID: PMC4921468 DOI: 10.3389/fendo.2016.00073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022] Open
Abstract
The architectural transcription factor high-mobility group AT-hook 1 (HMGA1) is a chromatin regulator with implications in several biological processes, including tumorigenesis, inflammation, and metabolism. Previous studies have indicated a role for this factor in promoting the early stages of adipogenesis, while inhibiting adipocyte terminal differentiation, and decreasing fat mass. It has been demonstrated that hypoxia - through the hypoxia-inducible factor 1 (HIF-1) - plays a major role in triggering changes in the adipose tissue of the obese, leading to inhibition of adipocyte differentiation, adipose cell dysfunction, inflammation, insulin resistance, and type 2 diabetes. To examine the possible cooperation between HMGA1 and HIF-1, herein, we investigated the role of HMGA1 in the regulation of Visfatin and VEGF, two genes normally expressed in adipose cells, which are both responsive to hypoxia. We demonstrated that HMGA1 enhanced Visfatin and VEGF gene expression in human embryonic kidney (HEK) 293 cells in hypoxic conditions, whereas HMGA1 knockdown in differentiated 3T3-L1 adipocytes reduced these effects. Reporter gene analysis showed that Visfatin and VEGF transcriptional activity was increased by the addition of either HMGA1 or HIF-1 and even further by the combination of both factors. As demonstrated by chromatin immunoprecipitation in intact cells, HMGA1 directly interacted with the VEGF gene, and this interaction was enhanced in hypoxic conditions. Furthermore, as indicated by co-immunoprecipitation studies, HMGA1 and HIF-1 physically interacted with each other, supporting the notion that this association may corroborate a functional link between these factors. Therefore, our findings provide evidence for molecular cross-talk between HMGA1 and HIF-1, and this may be important for elucidating protein and gene networks relevant to obesity.
Collapse
Affiliation(s)
- Sebastiano Messineo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Anna Elisa Laria
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Raúl M. Luque Huertas
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía (HURS), CIBERobn and ceiA3, University of Córdoba, Córdoba, Spain
| | - Daniela P. Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
6
|
Piazzi M, Williamson A, Lee CF, Pearson S, Lacaud G, Kouskoff V, McCubrey JA, Cocco L, Whetton AD. Quantitative phosphoproteome analysis of embryonic stem cell differentiation toward blood. Oncotarget 2015; 6:10924-39. [PMID: 25890499 PMCID: PMC4484429 DOI: 10.18632/oncotarget.3454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/24/2015] [Indexed: 11/25/2022] Open
Abstract
Murine embryonic stem (ES) cells can differentiate in vitro into three germ layers (endodermic, mesodermic, ectodermic). Studies on the differentiation of these cells to specific early differentiation stages has been aided by an ES cell line carrying the Green Fluorescent Protein (GFP) targeted to the Brachyury (Bry) locus which marks mesoderm commitment. Furthermore, expression of the Vascular Endothelial Growth Factor receptor 2 (Flk1) along with Bry defines hemangioblast commitment. Isobaric-tag for relative and absolute quantification (iTRAQ(TM)) and phosphopeptide enrichment coupled to liquid chromatography separation and mass spectrometry allow the study of phosphorylation changes occurring at different stages of ES cell development using Bry and Flk1 expression respectively. We identified and relatively quantified 37 phosphoentities which are modulated during mesoderm-induced ES cells differentiation, comparing epiblast-like, early mesoderm and hemangioblast-enriched cells. Among the proteins differentially phosphorylated toward mesoderm differentiation were: the epigenetic regulator Dnmt3b, the protein kinase GSK3b, the chromatin remodeling factor Smarcc1, the transcription factor Utf1; as well as protein specifically related to stem cell differentiation, as Eomes, Hmga2, Ints1 and Rif1. As most key factors regulating early hematopoietic development have also been implicated in various types of leukemia, understanding the post-translational modifications driving their regulation during normal development could result in a better comprehension of their roles during abnormal hematopoiesis in leukemia.
Collapse
Affiliation(s)
- Manuela Piazzi
- Cell Signaling Laboratory, Department of Biomedical Science (DIBINEM), University of Bologna, Italy
| | - Andrew Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Chia-Fang Lee
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Stella Pearson
- Stem Cell Research Group, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Georges Lacaud
- Stem Cell Biology Group Paterson Institute for Cancer Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Valerie Kouskoff
- Stem Cell Research Group, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Cell Signaling Laboratory, Department of Biomedical Science (DIBINEM), University of Bologna, Italy
| | - Anthony D. Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Morettin A, Baldwin RM, Cote J. Arginine methyltransferases as novel therapeutic targets for breast cancer. Mutagenesis 2015; 30:177-89. [DOI: 10.1093/mutage/geu039] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
8
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 740] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
9
|
Hudson LG, Gale JM, Padilla RS, Pickett G, Alexander BE, Wang J, Kusewitt DF. Microarray analysis of cutaneous squamous cell carcinomas reveals enhanced expression of epidermal differentiation complex genes. Mol Carcinog 2010; 49:619-29. [PMID: 20564339 DOI: 10.1002/mc.20636] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene expression profiles were determined for 12 cutaneous squamous cell carcinomas (SCC) removed from sun-exposed sites on nonimmunosuppressed patients. Gene expression in each SCC was compared to that in sun-exposed skin from the same patient using the Affymetrix HGU133 2.0 PlusGeneChip. We identified 440 genes with increased expression in SCC and 738 with decreased expression; overall we identified a large number of small changes in gene expression rather than a few marked changes that distinguished SCC from sun-exposed skin. Analyzing this robust data set according to biofunctional pathways using DAVID, transcriptional control elements using oPOSSUM, and chromosomal location using GSEA suggested genetic and epigenetic mechanisms of gene expression regulation in SCC. Some altered patterns of gene expression in SCC were consistent with regulation of spatially separated genes by a number of developmentally important transcription factors (forkhead, HMG, and homeo factors) that negatively regulated gene expression and to a few factors that positively regulated expression (Creb-1, NFkappaB, RelA, and Sp-1). We also found that coordinately enhanced expression of epidermal differentiation complex genes on chromosome 1q21 was a hallmark of SCC. A novel finding in our study was enhanced expression of keratin 13 in SCC, a result validated by immunohistochemical staining of an SCC tumor tissue array.
Collapse
Affiliation(s)
- Laurie G Hudson
- University of New Mexico College of Pharmacy, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Wu W, Wan W, Li ADQ. The nuclear architectural protein HMGA1a triggers receptor-mediated endocytosis. J Cell Biochem 2009; 108:791-801. [PMID: 19739099 DOI: 10.1002/jcb.22281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
High mobility group proteins A (HMGA), nuclear architectural factors, locate in the cell nuclei and mostly execute gene-regulation function. However, our results reveal that a HMGA member (HMGA1a) has a unique plasma membrane receptor; this receptor specifically binds to HMGA-decorated species, effectively mediates endocytosis, and internalizes extracellular HMGA-functionalized cargoes. Indeed, dyes or nanoparticles labeled with HMGA1a protein readily enter Hela cells. Using a stratagem chemical cross-linker, we covalently bonded the HMGA receptor to the HMGA1a-GFP fusion protein, thus capturing the plasma membrane receptor. Subsequent Western blots and SDS-PAGE gel revealed that the HMGA receptor is a 26-kDa protein. Confocal live-cell microscopic imaging was used to monitor the whole endocytic process, in which the internalized HMGA1a-decorated species are transported by motor proteins on microtubules and eventually arrive at the late endosomes/lysosomes. Cell viability assays also suggested that extracellular HMGA1a protein directly influences the survival ability of Hela cells in a dose-dependent manner, implying versatility of HMGA1a protein and its potent role to suppress cancer cell survivability and to regulate growth.
Collapse
Affiliation(s)
- Wuwei Wu
- Department of Chemistry and Center for Materials Research, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
11
|
Inhibition of high-mobility-group A2 protein binding to DNA by netropsin: a biosensor-surface plasmon resonance assay. Anal Biochem 2007; 374:7-15. [PMID: 18023407 DOI: 10.1016/j.ab.2007.10.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 12/28/2022]
Abstract
The design of small synthetic molecules that can be used to affect gene expression is an area of active interest for development of agents in therapeutic and biotechnology applications. Many compounds that target the minor groove in AT sequences in DNA are well characterized and are promising reagents for use as modulators of protein-DNA complexes. The mammalian high-mobility-group transcriptional factor HMGA2 also targets the DNA minor groove and plays critical roles in disease processes from cancer to obesity. Biosensor-surface plasmon resonance methods were used to monitor HMGA2 binding to target sites on immobilized DNA, and a competition assay for inhibition of the HMGA2-DNA complex was designed. HMGA2 binds strongly to the DNA through AT hook domains with KD values of 20-40 nM depending on the DNA sequence. The well-characterized minor groove binder netropsin was used to develop and test the assay. The compound has two binding sites in the protein-DNA interaction sequence, and this provides an advantage for inhibition. An equation for analysis of results when the inhibitor has two binding sites in the biopolymer recognition surface is presented with the results. The assay provides a platform for discovery of HMGA2 inhibitors.
Collapse
|
12
|
Li Y, Lu J, Prochownik EV. Dual Role for SUMO E2 Conjugase Ubc9 in Modulating the Transforming and Growth-promoting Properties of the HMGA1b Architectural Transcription Factor. J Biol Chem 2007; 282:13363-71. [PMID: 17350957 DOI: 10.1074/jbc.m610919200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the HMGA1 (high mobility group A1) family of architectural transcription factors, HMGA1a and HMGA1b, play important roles in many normal cellular processes and in tumorigenesis. We performed a yeast two-hybrid screen for HMGA1-interacting proteins and identified the SUMO E2 conjugase Ubc9 as one such partner. The Ubc9-interacting domain of HMGA1 is bipartite, consisting of a proline-rich region near the N terminus and an acidic domain at the extreme C terminus, whereas the HMGA1-interacting domain of Ubc9 comprises a single region previously shown to associate with and SUMOylate other transcription factors. Consistent with these findings, endogenous HMGA1 proteins and Ubc9 could be co-immunoprecipitated from several human cell lines. Studies with HMGA1b proteins containing mutations of either or both Ubc9-interacting domains and with Ubc9-depleted cell lines indicated that the proline-rich domain of HMGA1b positively influences transformation and growth, whereas the acidic domain negatively influences these properties. None of the changes in HMGA1 protein functions mediated by Ubc9 appears to require SUMOylation. These findings are consistent with the idea that Ubc9 can act as both a positive and negative regulator of proliferation and transformation via its non-SUMO-dependent interaction with HMGA1 proteins.
Collapse
Affiliation(s)
- Youjun Li
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh, The Department of Molecular Genetics and Biochemistry, the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
13
|
Okuda H, Manabe T, Yanagita T, Matsuzaki S, Bando Y, Katayama T, Wanaka A, Tohyama M. Novel interaction between HMGA1a and StIP1 in murine terminally differentiated retina. Mol Cell Neurosci 2006; 33:81-7. [PMID: 16870469 DOI: 10.1016/j.mcn.2006.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 05/30/2006] [Accepted: 06/15/2006] [Indexed: 10/24/2022] Open
Abstract
High mobility group protein A1a (HMGA1a) is expressed at high levels in embryonic cells and has been implicated in their transcriptional regulation. However, it has been reported that high levels of HMGA1a expression are normally detected in the photoreceptor of adult (terminally differentiated cells) murine retina. We showed that biochemical purification of the recombinant HMGA1a binding activity in nuclear fractions from murine retina, but not from hippocampus, resulted in STAT3 interacting protein 1 (StIP1) that formed a novel complex with HMGA1a, STAT3 and homeodomain-interacting protein kinase 2 (HIPK2). While StIP1 expressions in brain, liver, lung, heart, skeletal muscle, spleen and thymus have previously been demonstrated, this is the first report that StIP1 was expressed in nuclear fractions from murine retina, and that in murine retina there are several novel complexes of transcriptional regulators consisting of HMGA1a, StIP1, STAT3 and HIPK2.
Collapse
Affiliation(s)
- Hiroaki Okuda
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Passe CMM, Cooper G, Quirk CC. The murine p8 gene promoter is activated by activating transcription factor 4 (ATF4) in the gonadotrope-derived LbetaT2 cell line. Endocrine 2006; 30:81-91. [PMID: 17185796 DOI: 10.1385/endo:30:1:81] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/09/2006] [Accepted: 06/22/2006] [Indexed: 11/11/2022]
Abstract
The factor p8 is a high mobility group (HMG) A family member that is upregulated during the cellular stress response in numerous tissues. Because expression of this protein encourages cellular transformation, our goal is to characterize the mechanism by which the p8 gene is regulated. Using LbetaT2 cells as a model of a transformed cell in which p8 plays a role in tumor formation, we dissected the p8 promoter into its minimal functional units and found that activating transcription factor 4 (ATF4), a factor also upregulated during cellular stress responses, enhances p8 promoter activity in a dose-dependent manner. In addition, ATF4 binds in the highly conserved major activation domain of the p8 proximal promoter between -130 and -100 bp. Furthermore, we show that six of the nine base pairs that encompass the putative element are essential for ATF4 binding. These findings increase our knowledge of the mechanisms regulating the p8 gene in a genetically defined tumor model.
Collapse
|
15
|
Agate RJ, Choe M, Arnold AP. Sex Differences in Structure and Expression of the Sex Chromosome Genes CHD1Z and CHD1W in Zebra Finches. Mol Biol Evol 2004; 21:384-96. [PMID: 14660691 DOI: 10.1093/molbev/msh027] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genes on the sex chromosomes are unique because of their sex-specific inheritance. One question is whether homologous gene pairs on the sex chromosomes, which have diverged in their sequence, have acquired different functions. We have analyzed the first homologous pair of genes (CHD1Z and CHD1W) discovered on the avian Z and W sex chromosomes of the zebra finch (Taeniopygia guttata) to examine whether functional differences may have evolved. Sequence analysis revealed that the two genes maintained a high degree of similarity especially within the C, H, and D domains, but outside of these regions larger differences were observed. Expression studies showed that CHD1W was unique to females and has the potential to produce a protein that CHD1Z does not. CHD1Z mRNA was expressed at a higher level in the male brain than in the female brain at various post-hatch ages. Reporter constructs containing the 5' flanking regions of each gene showed they had the ability to drive reporter expression in primary cell cultures. The 5' flanking region sequence of CHD1Z and CHD1W exhibited little homology, and differences in putative promoter elements were apparent. These differences between CHD1Z and CHD1W suggest that the two proteins may have diverged in their function.
Collapse
Affiliation(s)
- Robert J Agate
- Department of Physiological Science, University of California, Los Angeles, USA
| | | | | |
Collapse
|
16
|
Derepression of HMGA2 Gene Expression in Retinoblastoma Is Associated with Cell Proliferation. Mol Med 2003. [DOI: 10.1007/bf03402180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
17
|
Chau KY, Manfioletti G, Cheung-Chau KW, Fusco A, Dhomen N, Sowden JC, Sasabe T, Mukai S, Ono SJ. Derepression of HMGA2 gene expression in retinoblastoma is associated with cell proliferation. Mol Med 2003; 9:154-65. [PMID: 14571323 PMCID: PMC1430825 DOI: 10.2119/2003-00020.ono] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 06/11/2003] [Indexed: 12/15/2022] Open
Abstract
To assess whether retinoblastoma formation is associated with the expression of high mobility group (HMG) A2 protein, a transcription factor that is highly expressed during embryogenesis and completely repressed in normal adult tissues, we performed Northern and Western blots and RT-PCR analyses, and immunohistochemistry to test for HMGA2 expression. We used established retinoblastoma cell lines in tumors grown in nude mice and clinical retinoblastoma specimens, and contrasted these tumors with normal embryonic and adult retina. Adenoviral-mediated antisense experiments were conducted on the retinoblastoma cell lines to suppress HMGA2 expression and determine if cell proliferation is HMGA2-dependent. We also transfected a retinoblastoma cell line to identify cis-regulatory elements and transcription initiation sites on the HMGA2 gene promoter. HMGA2 gene expression was silenced in terminally differentiated retina of 6-wk-old mice, but it was detected in retina of a 13.5-d postcoitum embryo. Reactivation of HMGA2 gene expression was observed in the retinoblastoma cell lines Y79, WERI-Rb1, and TOTL-1, in tumors derived from some of these cells propagated in nude mice, and in a high frequency of retinoblastomas excised from human patients. This suggests that expression of HMGA2 gene in retinoblastoma cells involves a derepression process. By using an antisense approach to block HMGA2 expression, we observed a decrease in the number of proliferating retinoblastoma cells. As a 1st step toward understanding HMGA2 gene reactivation in retinoblastoma, we mapped the 2 transcription initiation sites and associated positive regulatory elements within the WERI-Rb1 cells. Our discovery of derepression of HMGA2 gene expression in retinoblastoma provides the 1st evidence that this protein might contribute to neoplastic transformation of retina cells.
Collapse
Affiliation(s)
- Kai-Yin Chau
- Department of Immunology, Institutes of Ophthalmology and Child Health, University College London, University of London, UK
| | - Guidalberto Manfioletti
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecule, Universitá di Trieste, Italy
| | - Kam-Wa Cheung-Chau
- Department of Immunology, Institutes of Ophthalmology and Child Health, University College London, University of London, UK
| | - Alfredo Fusco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Universitá degli Studi di Napoli “Federico II,” Italy
| | - Nathalie Dhomen
- Developmental Biology Unit, Institute of Child Health, University College London, UK
| | - Jane C Sowden
- Developmental Biology Unit, Institute of Child Health, University College London, UK
| | - Tetsuo Sasabe
- Department of Ophthalmology, Osaka Habikino Hospital, Osaka, Japan
| | - Shizuo Mukai
- Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Santa Jeremy Ono
- Department of Immunology, Institutes of Ophthalmology and Child Health, University College London, University of London, UK
| |
Collapse
|
18
|
Muñoz-Sanjuán I, Bell E, Altmann CR, Vonica A, Brivanlou AH. Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein. Development 2002; 129:5529-40. [PMID: 12403722 DOI: 10.1242/dev.00097] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The earliest decision in vertebrate neural development is the acquisition of a neural identity by embryonic ectodermal cells. The default model for neural induction postulates that neural fate specification in the vertebrate embryo occurs by inhibition of epidermal inducing signals in the gastrula ectoderm. Bone morphogenetic proteins (BMPs) act as epidermal inducers, and all identified direct neural inducers block BMP signaling either intra- or extracellularly. Although the mechanism of action of the secreted neural inducers has been elucidated, the relevance of intracellular BMP inhibitors in neural induction is not clear. In order to address this issue and to identify downstream targets after BMP inhibition, we have monitored the transcriptional changes in ectodermal explants neuralized by Smad7 using a Xenopus laevis 5000-clone gastrula-stage cDNA microarray. We report the identification and initial characterization of 142 genes whose transcriptional profiles change in the neuralized explants. In order to address the potential involvement during neural induction of genes identified in the array, we performed gain-of-function studies in ectodermal explants. This approach lead to the identification of four genes that can function as neural inducers in Xenopus and three others that can synergize with known neural inducers in promoting neural fates. Based on these studies, we propose a role for post-transcriptional control of gene expression during neural induction in vertebrates and present a model whereby sustained BMP inhibition is promoted partly through the regulation of TGFbeta activated kinase (TAK1) activity by a novel TAK1-binding protein (TAB3).
Collapse
Affiliation(s)
- Ignacio Muñoz-Sanjuán
- The Laboratory of Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Members of the HMGA (a.k.a. HMGI/Y) family of 'high mobility group' (HMG) proteins participate in a wide variety of nuclear processes ranging from chromosome and chromatin mechanics to acting as architectural transcription factors that regulate the expression of numerous genes in vivo. As a consequence, they function in the cell as highly connected 'nodes' of protein-DNA and protein-protein interactions that influence a diverse array of normal biological processes including growth, proliferation, differentiation and death. The HMGA proteins, likewise, participate in pathological processes by, for example, acting as regulators of viral gene transcription and by serving as host-supplied proteins that facilitate retroviral integration. HMGA genes are bona fide proto-oncogenes that promote tumor progression and metastasis when overexpressed in cells. High constitutive HMGA protein levels are among the most consistent feature observed in all types of cancers with increasing concentrations being correlated with increasing malignancy. The intrinsic attributes that endow the HMGA proteins with these remarkable abilities are a combination of structural, biochemical and biological characteristics that are unique to these proteins. HMGA proteins have little, if any, secondary structure while free in solution but undergo disordered-to-ordered structural transitions when bound to substrates such as DNA or other proteins. Each protein contains three copies of a conserved DNA-binding peptide motif called the 'AT-hook' that preferentially binds to the minor groove of stretches of AT-rich sequence. In vivo HMGA proteins specifically interact with a large number of other proteins, most of which are transcription factors. They are also subject to many types of in vivo biochemical modifications that markedly influence their ability to interact with DNA substrates, other proteins and chromatin. And, most importantly, both the transcription of HMGA genes and the biochemical modifications of HMGA proteins are direct downstream targets of numerous signal transduction pathways making them exquisitely responsive to various environmental influences. This review covers recent advances that have contributed to our understanding of how this constellation of structural and biological features allows the HMGA proteins to serve as central 'hubs' of nuclear function.
Collapse
Affiliation(s)
- R Reeves
- Department of Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA.
| |
Collapse
|