1
|
Yang J, Ni S, Wang A, Wang K, Deng J, Li Z, Cai Y, Chen Y, Chen G, Lin D. Myrtenol promotes skin flap survival by inhibiting apoptosis and promoting autophagy via the MEK/ERK pathway. Arch Biochem Biophys 2025; 763:110230. [PMID: 39603374 DOI: 10.1016/j.abb.2024.110230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/05/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Skin flaps are often used for repair and reconstruction, including oral cavity and palate. However, postoperative flap necrosis limited applications. Myrtenol, a plant-derived bicyclic monoterpene, has pharmacological effects including inhibiting apoptosis and promoting autophagy. But any impact on skin flaps survival remains unclear. Thus, we established modified McFarlane flaps on 24 Sprague-Dawley rats and applied myrtenol. They were randomly divided into low-dose myrtenol (L-Myr), high-dose myrtenol (H-Myr), inhibitor and control groups. On postoperative day 7, flap survival rate was increased and Laser Doppler images showed blood circulation improvement under myrtenol treatment. Hematoxylin and eosin staining (H&E) results indicated that it increased micro vessel density (MVD) and decreased neutrophil numbers. Besides, kits detection showed that it improved anti-oxidant stress factors activities and reduced pro-oxidant stress factors contents. Moreover, immunofluorescence and Western blot results demonstrated that it upregulated the expression of pro-angiogenic factors, anti-apoptotic proteins, pro-autophagic proteins, mitogen-activated protein kinase 1/2 (MEK1/2) and extracellular signal-regulated kinases 1/2 (ERK1/2) and downregulated the expression of pro-inflammatory cytokines, pro-apoptotic proteins and anti-autophagic proteins. The specific inhibitor U0126 of MEK/ERK pathway partially reversed these effects. Overall, Myrtenol promoted angiogenesis, reduced oxidative stress, ameliorated inflammation, inhibited apoptosis and upregulated autophagy via MEK/ERK pathway to promote flap survival.
Collapse
Affiliation(s)
- Jialong Yang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Shenchuyue Ni
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325000, China
| | - An Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiapeng Deng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zijie Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yizhen Cai
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yiqi Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Guodong Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Bastedo WE, Scott RW, Arostegui M, Underhill TM. Single-cell analysis of mesenchymal cells in permeable neural vasculature reveals novel diverse subpopulations of fibroblasts. Fluids Barriers CNS 2024; 21:31. [PMID: 38575991 PMCID: PMC10996213 DOI: 10.1186/s12987-024-00535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND In the choroid plexus and pituitary gland, vasculature is known to have a permeable, fenestrated phenotype which allows for the free passage of molecules in contrast to the blood brain barrier observed in the rest of the CNS. The endothelium of these compartments, along with secretory, neural-lineage cells (choroid epithelium and pituitary endocrine cells) have been studied in detail, but less attention has been given to the perivascular mesenchymal cells of these compartments. METHODS The Hic1CreERT2 Rosa26LSL-TdTomato mouse model was used in conjunction with a PdgfraH2B-EGFP mouse model to examine mesenchymal cells, which can be subdivided into Pdgfra+ fibroblasts and Pdgfra- pericytes within the choroid plexus (CP) and pituitary gland (PG), by histological, immunofluorescence staining and single-cell RNA-sequencing analyses. RESULTS We found that both CP and PG possess substantial populations of distinct Hic1+ mesenchymal cells, including an abundance of Pdgfra+ fibroblasts. Within the pituitary, we identified distinct subpopulations of Hic1+ fibroblasts in the glandular anterior pituitary and the neurosecretory posterior pituitary. We also identified multiple distinct markers of CP, PG, and the meningeal mesenchymal compartment, including alkaline phosphatase, indole-n-methyltransferase and CD34. CONCLUSIONS Novel, distinct subpopulations of mesenchymal cells can be found in permeable vascular interfaces, including the CP, PG, and meninges, and make distinct contributions to both organs through the production of structural proteins, enzymes, transporters, and trophic molecules.
Collapse
Affiliation(s)
- William E Bastedo
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - R Wilder Scott
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- School of Biomedical Engineering and the Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Martin Arostegui
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- School of Biomedical Engineering and the Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
3
|
Alghazali R, Nugud A, El-Serafi A. Glycan Modifications as Regulators of Stem Cell Fate. BIOLOGY 2024; 13:76. [PMID: 38392295 PMCID: PMC10886185 DOI: 10.3390/biology13020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Glycosylation is a process where proteins or lipids are modified with glycans. The presence of glycans determines the structure, stability, and localization of glycoproteins, thereby impacting various biological processes, including embryogenesis, intercellular communication, and disease progression. Glycans can influence stem cell behavior by modulating signaling molecules that govern the critical aspects of self-renewal and differentiation. Furthermore, being located at the cell surface, glycans are utilized as markers for stem cell pluripotency and differentiation state determination. This review aims to provide a comprehensive overview of the current literature, focusing on the effect of glycans on stem cells with a reflection on the application of synthetic glycans in directing stem cell differentiation. Additionally, this review will serve as a primer for researchers seeking a deeper understanding of how synthetic glycans can be used to control stem cell differentiation, which may help establish new approaches to guide stem cell differentiation into specific lineages. Ultimately, this knowledge can facilitate the identification of efficient strategies for advancing stem cell-based therapeutic interventions.
Collapse
Affiliation(s)
- Raghad Alghazali
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
| | - Ahmed Nugud
- Clinical Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK
- Gastroenterology, Hepatology & Nutrition, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Ahmed El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
4
|
Bhutto IA, McLeod DS, Thomson BR, Lutty GA, Edwards MM. Visualization of choroidal vasculature in pigmented mouse eyes from experimental models of AMD. Exp Eye Res 2024; 238:109741. [PMID: 38056552 PMCID: PMC10872330 DOI: 10.1016/j.exer.2023.109741] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
A variety of techniques exist to investigate retinal and choroidal vascular changes in experimental mouse models of human ocular diseases. While all have specific advantages, a method for evaluating the choroidal vasculature in pigmented mouse eyes has been more challenging especially for whole mount visualization and morphometric analysis. Here we report a simple, reliable technique involving bleaching pigment prior to immunostaining the vasculature in whole mounts of pigmented mouse choroids. Eyes from healthy adult pigmented C57BL/6J mice were used to establish the methodology. The retina and anterior segment were separated from the choroid. The choroid with retinal pigment epithelial cells (RPE) and sclera was soaked in 1% ethylenediaminetetraacetic acid (EDTA) to remove the RPE. Tissues were fixed in 2% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Choroids were subjected to melanin bleaching with 10% hydrogen peroxide (H2O2) at 55 °C for 90 min, washed in PBS and then immunostained with anti-podocalyxin antibody to label vascular endothelium followed by Cy3-AffiniPure donkey anti-goat IgG at 4 °C overnight. Images of immunostained bleached choroids were captured using a Zeiss 710 confocal microscope. In addition to control eyes, this method was used to analyze the choroids from subretinal sodium iodate (NaIO3) RPE atrophy and laser-induced choroidal neovascularization (CNV) mouse models. The H2O2 pretreatment effectively bleached the melanin, resulting in a transparent choroid. Immunolabeling with podocalyxin antibody following bleaching provided excellent visualization of choroidal vasculature in the flat perspective. In control choroids, the choriocapillaris (CC) displayed different anatomical patterns in peripapillary (PP), mid peripheral (MP) and far peripheral (FP) choroid. Morphometric analysis of the vascular area (VA) revealed that the CC was most dense in the PP region (87.4 ± 4.3% VA) and least dense in FP (79.9 ± 6.7% VA). CC diameters also varied depending on location from 11.4 ± 1.97 mm in PP to 15.1 ± 3.15 mm in FP. In the NaIO3-injected eyes, CC density was significantly reduced in the RPE atrophic regions (50.7 ± 5.8% VA in PP and 45.8 ± 6.17% VA in MP) compared to the far peripheral non-atrophic regions (82.8 ± 3.8% VA). CC diameters were significantly reduced in atrophic regions (6.35 ± 1.02 mm in PP and 6.5 ± 1.2 mm in MP) compared to non-atrophic regions (14.16 ± 2.12 mm). In the laser-induced CNV model, CNV area was 0.26 ± 0.09 mm2 and luminal diameters of CNV vessels were 4.7 ± 0.9 mm. Immunostaining on bleached choroids with anti-podocalyxin antibody provides a simple and reliable tool for visualizing normal and pathologic choroidal vasculature in pigmented mouse eyes for quantitative morphometric analysis. This method will be beneficial for examining and evaluating the effects of various treatment modalities on the choroidal vasculature in mouse models of ocular diseases such as age-related macular degeneration, and degenerative genetic diseases.
Collapse
Affiliation(s)
- Imran A Bhutto
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Scott McLeod
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin R Thomson
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg SOM, Chicago, IL, USA
| | - Gerard A Lutty
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malia M Edwards
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Radu P, Zurzu M, Paic V, Bratucu M, Garofil D, Tigora A, Georgescu V, Prunoiu V, Pasnicu C, Popa F, Surlin P, Surlin V, Strambu V. CD34-Structure, Functions and Relationship with Cancer Stem Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:938. [PMID: 37241170 PMCID: PMC10220851 DOI: 10.3390/medicina59050938] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The CD34 protein was identified almost four decades ago as a biomarker for hematopoietic stem cell progenitors. CD34 expression of these stem cells has been exploited for therapeutic purposes in various hematological disorders. In the last few decades, studies have revealed the presence of CD34 expression on other types of cells with non-hematopoietic origins, such as interstitial cells, endothelial cells, fibrocytes, and muscle satellite cells. Furthermore, CD34 expression may also be found on a variety of cancer stem cells. Nowadays, the molecular functions of this protein have been involved in a variety of cellular functions, such as enhancing proliferation and blocking cell differentiation, enhanced lymphocyte adhesion, and cell morphogenesis. Although a complete understanding of this transmembrane protein, including its developmental origins, its stem cell connections, and other functions, is yet to be achieved. In this paper, we aimed to carry out a systematic analysis of the structure, functions, and relationship with cancer stem cells of CD34 based on the literature overview.
Collapse
Affiliation(s)
- Petru Radu
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Mihai Zurzu
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Vlad Paic
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Mircea Bratucu
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Dragos Garofil
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Anca Tigora
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
| | - Valentin Georgescu
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
| | - Virgiliu Prunoiu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
- Oncological Institute “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Costin Pasnicu
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Florian Popa
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Petra Surlin
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Valeriu Surlin
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania
| | - Victor Strambu
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
6
|
dos Santos MM, dos Santos AS, Santos HHDM, Santos LDS, Nascimento RJM, Torres AJL. Immunophenotypic characterization of acute leukemias in Bahia, Brazil. EINSTEIN-SAO PAULO 2023; 21:eAO0117. [PMID: 36629681 PMCID: PMC9785573 DOI: 10.31744/einstein_journal/2023ao0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To characterize the immunophenotypic profile of acute leukemias in the population of the state of Bahia, Brazil. METHODS This is a descriptive, retrospective study. From 2014 to 2018, 796 new cases of acute leukemia were evaluated. The data were obtained from analysis of reports and records of tests performed by flow cytometry immunophenotyping. All individuals of all age groups diagnosed as acute lymphoblastic leukemia or acute myeloid leukemia were included in the study. Demographic variables and expression of leukemia antigens were evaluated. RESULTS Most cases were diagnosed as acute myeloid leukemia and 42.7% as acute lymphoblastic leukemia. Significant differences were found in expression of markers in acute leukemias when age groups were compared, as well as in demographic characteristics. B-cell acute lymphoblastic leukemia was more prevalent than cases of T-cell origin. Assessing the aberrant markers in acute myeloid leukemias, the non-acute promyelocytic leukemia group presented expression of CD7 and CD56 as the most frequent ones. In B-cell acute lymphoblastic leukemia, the most frequent aberrant markers were CD66c, CD13 and CD33. CONCLUSION Significant differences were found as to several antigens when comparing adults and children, and these findings may contribute to future studies correlating the phenotypic profile to genetic characteristics and therapeutic response, including specific antigen therapies, which may be better targeted.
Collapse
Affiliation(s)
- Mariane Melo dos Santos
- Universidade Federal da BahiaSalvadorBABrazil Universidade Federal da Bahia, Salvador, BA, Brazil.
| | - Allan Souza dos Santos
- Universidade Federal da BahiaSalvadorBABrazil Universidade Federal da Bahia, Salvador, BA, Brazil.
| | | | - Lorene da Silva Santos
- Universidade Federal da BahiaSalvadorBABrazil Universidade Federal da Bahia, Salvador, BA, Brazil.
| | | | - Alex José Leite Torres
- Universidade Federal da BahiaSalvadorBABrazil Universidade Federal da Bahia, Salvador, BA, Brazil.
| |
Collapse
|
7
|
Kraus X, van de Flierdt E, Renzelmann J, Thoms S, Witt M, Scheper T, Blume C. Peripheral blood derived endothelial colony forming cells as suitable cell source for pre-endothelialization of arterial vascular grafts under dynamic flow conditions. Microvasc Res 2022; 143:104402. [PMID: 35753506 DOI: 10.1016/j.mvr.2022.104402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
In regenerative medicine, autologous peripheral blood derived endothelial colony forming cells (PB-derived ECFC) represent a promising source of endothelial cells (EC) for pre-endothelialization of arterial tissue engineered vascular grafts (TEVG) since they are readily attainable, can easily be isolated and possess a high proliferation potential. The aim of this study was to compare the phenotype of PB-derived ECFC with arterial and venous model cells such as human aortic endothelial cells (HAEC) and human umbilical vein endothelial cells (HUVEC) under dynamic cell culture conditions to find a suitable cell source of EC for pre-endothelialization. In this study PB-derived ECFC were cultivated over 24 h under a high pulsatile shear stress (20 dyn/cm2, 1 Hz) and subsequently analyzed. ECFC oriented and elongated in the direction of flow and expressed similar anti-thrombotic and endothelial differentiation markers compared to HAEC. There were significant differences observable in gene expression levels of CD31, CD34 and NOTCH4 between ECFC and HUVEC. These results therefore suggest an arterial phenotype for PB-derived ECFC both under static and flow conditions, and this was supported by NOTCH4 protein expression profiles. ECFC also significantly up-regulated gene expression levels of anti-thrombotic genes such as krueppel-like factor 2, endothelial nitric oxide synthase 3 and thrombomodulin under shear stress cultivation as compared to static conditions. Dynamically cultured PB-derived ECFC therefore may be a promising cell source for pre-endothelialization of arterial TEVGs.
Collapse
Affiliation(s)
- Xenia Kraus
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany.
| | - Edda van de Flierdt
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jannis Renzelmann
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Stefanie Thoms
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Martin Witt
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Thomas Scheper
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Cornelia Blume
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
8
|
Baeriswyl T, Schaettin M, Leoni S, Dumoulin A, Stoeckli ET. Endoglycan Regulates Purkinje Cell Migration by Balancing Cell-Cell Adhesion. Front Neurosci 2022; 16:894962. [PMID: 35794952 PMCID: PMC9251411 DOI: 10.3389/fnins.2022.894962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The importance of cell adhesion molecules for the development of the nervous system has been recognized many decades ago. Functional in vitro and in vivo studies demonstrated a role of cell adhesion molecules in cell migration, axon growth and guidance, as well as synaptogenesis. Clearly, cell adhesion molecules have to be more than static glue making cells stick together. During axon guidance, cell adhesion molecules have been shown to act as pathway selectors but also as a means to prevent axons going astray by bundling or fasciculating axons. We identified Endoglycan as a negative regulator of cell-cell adhesion during commissural axon guidance across the midline. The presence of Endoglycan allowed commissural growth cones to smoothly navigate the floor-plate area. In the absence of Endoglycan, axons failed to exit the floor plate and turn rostrally. These observations are in line with the idea of Endoglycan acting as a lubricant, as its presence was important, but it did not matter whether Endoglycan was provided by the growth cone or the floor-plate cells. Here, we expand on these observations by demonstrating a role of Endoglycan during cell migration. In the developing cerebellum, Endoglycan was expressed by Purkinje cells during their migration from the ventricular zone to the periphery. In the absence of Endoglycan, Purkinje cells failed to migrate and, as a consequence, cerebellar morphology was strongly affected. Cerebellar folds failed to form and grow, consistent with earlier observations on a role of Purkinje cells as Shh deliverers to trigger granule cell proliferation.
Collapse
|
9
|
Baeriswyl T, Dumoulin A, Schaettin M, Tsapara G, Niederkofler V, Helbling D, Avilés E, Frei JA, Wilson NH, Gesemann M, Kunz B, Stoeckli ET. Endoglycan plays a role in axon guidance by modulating cell adhesion. eLife 2021; 10:64767. [PMID: 33650489 PMCID: PMC7946425 DOI: 10.7554/elife.64767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/25/2021] [Indexed: 01/27/2023] Open
Abstract
Axon navigation depends on the interactions between guidance molecules along the trajectory and specific receptors on the growth cone. However, our in vitro and in vivo studies on the role of Endoglycan demonstrate that in addition to specific guidance cue – receptor interactions, axon guidance depends on fine-tuning of cell-cell adhesion. Endoglycan, a sialomucin, plays a role in axon guidance in the central nervous system of chicken embryos, but it is neither an axon guidance cue nor a receptor. Rather, Endoglycan acts as a negative regulator of molecular interactions based on evidence from in vitro experiments demonstrating reduced adhesion of growth cones. In the absence of Endoglycan, commissural axons fail to properly navigate the midline of the spinal cord. Taken together, our in vivo and in vitro results support the hypothesis that Endoglycan acts as a negative regulator of cell-cell adhesion in commissural axon guidance.
Collapse
Affiliation(s)
- Thomas Baeriswyl
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Alexandre Dumoulin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Martina Schaettin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Georgia Tsapara
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Vera Niederkofler
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Denise Helbling
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Evelyn Avilés
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Jeannine A Frei
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Nicole H Wilson
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Gesemann
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Beat Kunz
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Esther T Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Zhou D, Liu J, Hang Y, Li T, Li P, Guo S, Liu T, Xia Z, Wang Y. TMT-based proteomics analysis reveals the protective effects of Xuefu Zhuyu decoction in a rat model of traumatic brain injury. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112826. [PMID: 32298754 DOI: 10.1016/j.jep.2020.112826] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal prescription. It is effective in treating traumatic brain injury (TBI). However, the underlying molecular mechanisms remain unclear. AIM OF THE STUDY This study aimed to reveal the possible mechanisms of XFZYD in treating acute TBI through proteomics clues. MATERIALS AND METHODS Controlled Cortical Impact (CCI) rats were given gavage administration of XFZYD (9 g/kg/d) or distilled water (equal volume) for three days. The Modified Neurological Severity Score (mNSS), brain water content, HE staining, Nissl staining and immunohistochemistry were performed to assess the effects of XFZYD for TBI treatment. Additionally, tandem mass tag-based (TMT) quantitative proteomics technology was applied to detect proteins of brain cortex. Bioinformatics analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Protein-protein interaction (PPI) networks were used to analyze differentially expressed proteins (DEPs). Bioinformatics Analysis Tool for Molecular mechanism of TCM (BATMAN-TCM) was conducted to anchor diseases and pathways. Besides, western blotting and immunofluorescence were exerted to verify related proteins. RESULTS XFZYD improved neurologic functions, reduced encephaledema and ameliorated cell morphology around the injured area in CCI rats. A total of 6099 proteins were identified with false discovery rate (FDR) < 1%. Overlapping DEPs (105 DEPs) were identified (295 DEPs and 804 DEPs in CCI/Sham or XFZYD/CCI group, respectively). Of these DEPs, 17 were regulated by XFZYD. Bioinformatics analysis showed that the 17 DEPs were predominantly related to platelet activation and PI3K-Akt signaling pathway. Next, PLG and CD34 were verified with molecular biotechnology. CONCLUSIONS XFZYD exerts therapeutic effects through multi-pathways regulation in the treatment of TBI. This work may provide proteomics clues for the continuation of research on TBI treatment with XFZYD.
Collapse
Affiliation(s)
- Dan Zhou
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008, Changsha, PR China
| | - Jiamiao Liu
- Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Yang Hang
- Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008, Changsha, PR China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Shichao Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University. Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University. Zhengzhou, Henan, 450052, Zhengzhou, China
| | - Tao Liu
- Department of Gerontology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, 830000, Urumqi, China
| | - Zian Xia
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008, Changsha, PR China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008, Changsha, PR China.
| |
Collapse
|
11
|
Hughes MR, Canals Hernaez D, Cait J, Refaeli I, Lo BC, Roskelley CD, McNagny KM. A sticky wicket: Defining molecular functions for CD34 in hematopoietic cells. Exp Hematol 2020; 86:1-14. [PMID: 32422232 DOI: 10.1016/j.exphem.2020.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
The CD34 cell surface antigen is widely expressed in tissues on cells with progenitor-like properties and on mature vascular endothelia. In adult human bone marrow, CD34 marks hematopoietic stem and progenitor cells (HSPCs) starting from the bulk of hematopoietic stem cells with long-term repopulating potential (LT-HSCs) throughout expansion and differentiation of oligopotent and unipotent progenitors. CD34 protein surface expression is typically lost as cells mature into terminal effectors. Because of this expression pattern of HSPCs, CD34 has had a central role in the evaluation or selection of donor graft tissue in HSC transplant (HSCT). Given its clinical importance, it is surprising that the biological functions of CD34 are still poorly understood. This enigma is due, in part, to CD34's context-specific role as both a pro-adhesive and anti-adhesive molecule and its potential functional redundancy with other sialomucins. Moreover, there are also critical differences in the regulation of CD34 expression on HSPCs in humans and experimental mice. In this review, we highlight some of the more well-defined functions of CD34 in HSPCs with a focus on proposed functions most relevant to HSCT biology.
Collapse
Affiliation(s)
- Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Diana Canals Hernaez
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jessica Cait
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Ido Refaeli
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Bernard C Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Calvin D Roskelley
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Al-Katib AM, Ebrahim AS, Kandouz M, Zaiem F, Raufi A, Ebrahim S, Mohamed A, Emara N, Gabali AM. Isolation and characterization of a CD34 + sub-clone in B-cell lymphoma. Oncotarget 2020; 11:148-160. [PMID: 32010428 PMCID: PMC6968783 DOI: 10.18632/oncotarget.27415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Non-Hodgkin's lymphoma (NHL) is the most common hematological malignancy in the US. Many types remain incurable despite response to initial therapy and achievement of complete remission (CR). Advanced laboratory techniques like multicolor flow cytometry (FCM) and polymerase chain reaction (PCR) have demonstrated persistence of rare malignant cell population post therapy. However, the functional and biological characteristics of this population have not been elucidated. Established B-lymphoma cell lines (B-NHL) and patient-derived samples (PDS) were analyzed using 8-color FCM. CD34+ sub-population was enriched using in vitro exposure to 2-chlorodeoxyadenosine (2-CdA) and by CD34 magnetic beads. Genetic analysis of cell fractions was done by karyotyping and array comparative genomic hybridization (aCGH). Sensitivity to chemotherapy was assayed by short-term in vitro exposure to chemotherapy. Clonogenicity was determined by soft agar colony formation assay, and proliferation was determined using DNA staining with propidium iodide and FCM. FCM demonstrated the presence of a minute sub-clone of monotypic B-cells that express CD34 in B-NHL cell lines (3 of 3) and in PDS (8 of 8). This sub-population enriched up to 50 fold in vitro by exposure to 2-CdA and up to 80% purity by CD34 magnetic bead column isolation. Except for CD34 expression, this population expressed identical phenotype and genotype to parent cells, but was more proliferative, Hoechst 33342-positive, clonogenic, and resistant to chemotherapy compared with the CD34- population. The isolated CD34+ monotypic B-cells may contribute to resistance of certain NHL to treatment and should be targeted by potential new drugs for NHL.
Collapse
Affiliation(s)
- Ayad M. Al-Katib
- Lymphoma Research Laboratory, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Abdul Shukkur Ebrahim
- Lymphoma Research Laboratory, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Feras Zaiem
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ali Raufi
- Lymphoma Research Laboratory, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Salah Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anwar Mohamed
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nada Emara
- Lymphoma Research Laboratory, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ali M. Gabali
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Annunziata J, Miller ML, Park DC, Vlad G, Bhagat G, Alobeid B. Detection of Nonhematologic Neoplasms by Routine Flow Cytometry Analysis. Am J Clin Pathol 2020; 153:99-104. [PMID: 31587038 DOI: 10.1093/ajcp/aqz138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES We investigated the ability of routine flow cytometry (FC) to detect nonhematologic neoplasms (non-HN) using antibody panels routinely used for the diagnosis of hematologic neoplasms. METHODS FC analyses of 4,000 various diagnostic samples were retrospectively reviewed to identify cases in which an aberrant, viable CD45-negative, nonhematologic neoplastic population was detected by FC panels designed to evaluate hematologic neoplasms. RESULTS A total of 57 (1.4%) diverse non-HNs were identified, representing neuroendocrine tumors (33/57) and carcinomas (9/57), as well as other malignancies (15/57) such as sarcoma and melanoma. The majority of neoplasms were positive for at least one antibody, typically CD56 (43/51, 84.3%), followed by CD117 (15/34, 44.1%) and CD138 (6/33, 18.2%). CONCLUSIONS Our findings highlight the importance of carefully inspecting CD45-negative events to identify non-HNs by routine FC analysis. This can help expedite further downstream immunophenotypic analysis of specimens and triage samples for appropriate genetic and molecular studies.
Collapse
Affiliation(s)
- Joseph Annunziata
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Michael L Miller
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - David C Park
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - George Vlad
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Bachir Alobeid
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
14
|
Schraven AL, Stannard HJ, Ong OTW, Old JM. Immunogenetics of marsupial B-cells. Mol Immunol 2019; 117:1-11. [PMID: 31726269 DOI: 10.1016/j.molimm.2019.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 11/19/2022]
Abstract
Marsupials and eutherians are mammals that differ in their physiological traits, predominately their reproductive and developmental strategies; eutherians give birth to well-developed young, while marsupials are born highly altricial after a much shorter gestation. These developmental traits also result in differences in the development of the immune system of eutherian and marsupial species. In eutherians, B-cells are the key to humoral immunity as they are found in multiple lymphoid organs and have the unique ability to mediate the production of antigen-specific antibodies in the presence of extracellular pathogens. The development of B-cells in marsupials has been reported and hypothesised to be similar to that of eutherians, except that haematopoiesis occurs in the liver, postpartum, until the bone marrow fully matures. In eutherians, specific genes are linked to specific stages in B-cell development, maturation, and differentiation processes, and have been identified including immunoglobulins (heavy and light chains), cluster of differentiation markers (CD10, 19, 34 and CD79α/β), signal transduction molecules (BTK, Lyn and Syk) and transcriptional regulators (EBF1, E2A, and Pax5). This review aims to discuss the known similarities and differences between marsupial and eutherian B-cells, in regards to their genetic presence, homology, and developmental stages, as well as to highlight the areas requiring further investigation. By enhancing our understanding of the genes that are involved with B-cells in the marsupial lineage, it will, in turn, aid our understanding of the marsupial immune system and support the development of specific immunological reagents for research and wildlife conservation purposes.
Collapse
Affiliation(s)
- Andrea L Schraven
- School of Science and Health, Hawkesbury Campus, Western Sydney University, Locked bag 1797, Penrith, NSW 2751, Australia
| | - Hayley J Stannard
- Charles Sturt University, School of Animal and Veterinary Sciences, Wagga Wagga, NSW 2678, Australia
| | - Oselyne T W Ong
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Julie M Old
- School of Science and Health, Hawkesbury Campus, Western Sydney University, Locked bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
15
|
Human adipocytes and CD34 + cells from the stromal vascular fraction of the same adipose tissue differ in their energy metabolic enzyme configuration. Exp Cell Res 2019; 380:47-54. [PMID: 31002814 DOI: 10.1016/j.yexcr.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 01/24/2023]
Abstract
Adipose tissue plays a role in energy storage and metabolic balance and is composed of different cell types. The metabolic activity of the tissue itself has been a matter of research for a long time, but comparative data about the energy metabolism of different cell types of human subcutaneous adipose tissue are sparse. Therefore, we compared the activity of major energy metabolic pathways of adipocytes and CD34+ cells from the stromal vascular fraction (SVF) separated from the same tissue. This CD34+ cell fraction is enriched with adipose tissue-derived mesenchymal progenitors, as they account for the largest proportion of CD34+ cells of the SVF. Adipocytes displayed significantly higher mitochondrial enzyme capacities compared to CD34+ SVF-cells, as shown by the higher activities of isocitrate dehydrogenase and ß-hydroxyacyl-CoA dehydrogenase. Inversely, the CD34+ SVF-cells showed higher capacities for cytosolic carbohydrate metabolism, represented by the activity of glycolysis and the pentose phosphate pathway. Thus, the CD34+ SVF-cells may ensure the provision of pentose phosphates and reduction equivalents for the replication of DNA during proliferation. The data indicate that these two cell fractions of the human adipose tissue vary in their metabolic configuration adapted to their physiological demands regarding proliferation and differentiation in vivo.
Collapse
|
16
|
Panteleyev AA. Functional anatomy of the hair follicle: The Secondary Hair Germ. Exp Dermatol 2019; 27:701-720. [PMID: 29672929 DOI: 10.1111/exd.13666] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 12/17/2022]
Abstract
The secondary hair germ (SHG)-a transitory structure in the lower portion of the mouse telogen hair follicle (HF)-is directly involved in anagen induction and eventual HF regrowth. Some crucial aspects of SHG functioning and ontogenetic relations with other HF parts, however, remain undefined. According to recent evidence (in contrast to previous bulge-centric views), the SHG is the primary target of anagen-inducing signalling and a source of both the outer root sheath (ORS) and ascending HF layers during the initial (morphogenetic) anagen subphase. The SHG is comprised of two functionally distinct cell populations. Its lower portion (originating from lower HF cells that survived catagen) forms all ascending HF layers, while the upper SHG (formed by bulge-derived cells) builds up the ORS. The predetermination of SHG cells to a specific morphogenetic fate contradicts their attribution to the "stem cell" category and supports SHG designation as a "germinative" or a "founder" cell population. The mechanisms of this predetermination driving transition of the SHG from "refractory" to the "competent" state during the telogen remain unknown. Functionally, the SHG serves as a barrier, protecting the quiescent bulge stem cell niche from the extensive follicular papilla/SHG signalling milieu. The formation of the SHG is a prerequisite for efficient "precommitment" of these cells and provides for easier sensing and a faster response to anagen-inducing signals. In general, the formation of the SHG is an evolutionary adaptation, which allowed the ancestors of modern Muridae to acquire a specific, highly synchronized pattern of hair cycling.
Collapse
Affiliation(s)
- Andrey A Panteleyev
- Kurchatov complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
17
|
Michler RE. The role of stem cells in treating coronary artery disease in 2018. Indian J Thorac Cardiovasc Surg 2018; 34:340-348. [PMID: 33060957 DOI: 10.1007/s12055-018-0739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/27/2022] Open
Abstract
The last decade has witnessed the publication of a number of stem cell clinical trials, primarily using bone marrow-derived cells as the injected cell. Much has been learned through these "first-generation" clinical trials. The advances in our understanding include the following: (1) cell therapy is safe; (2) cell therapy has been mildly effective; and (3) human bone marrow-derived stem cells do not transdifferentiate into cardiomyocytes or new blood vessels. The primary mechanism of action for cell therapy is now believed to be through paracrine effects that include the release of cytokines, chemokines, and growth factors that inhibit apoptosis and fibrosis, enhance contractility, and activate endogenous regenerative mechanisms through endogenous circulating or site-specific stem cells. The current direction for clinical trials includes the use of stem cells capable of cardiac lineage.
Collapse
Affiliation(s)
- Robert E Michler
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Greene Medical Arts Pavilion 5th Floor, 3400 Bainbridge Avenue, New York City, NY 10467 USA
- Department of Cardiothoracic & Vascular Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Greene Medical Arts Pavilion 5th Floor, 3400 Bainbridge Avenue, New York City, NY 10467 USA
| |
Collapse
|
18
|
Generation of renal Epo-producing cell lines by conditional gene tagging reveals rapid HIF-2 driven Epo kinetics, cell autonomous feedback regulation, and a telocyte phenotype. Kidney Int 2018; 95:375-387. [PMID: 30502050 DOI: 10.1016/j.kint.2018.08.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
Erythropoietin (Epo) is essential for erythropoiesis and is mainly produced by the fetal liver and the adult kidney following hypoxic stimulation. Epo regulation is commonly studied in hepatoma cell lines, but differences in Epo regulation between kidney and liver limit the understanding of Epo dysregulation in polycythaemia and anaemia. To overcome this limitation, we have generated a novel transgenic mouse model expressing Cre recombinase specifically in the active fraction of renal Epo-producing (REP) cells. Crossing with reporter mice confirmed the inducible and highly specific tagging of REP cells, located in the corticomedullary border region where there is a steep drop in oxygen bioavailability. A novel method was developed to selectively grow primary REP cells in culture and to generate immortalized clonal cell lines, called fibroblastoid atypical interstitial kidney (FAIK) cells. FAIK cells show very early hypoxia-inducible factor (HIF)-2α induction, which precedes Epo transcription. Epo induction in FAIK cells reverses rapidly despite ongoing hypoxia, suggesting a cell autonomous feedback mechanism. In contrast, HIF stabilizing drugs resulted in chronic Epo induction in FAIK cells. RNA sequencing of three FAIK cell lines derived from independent kidneys revealed a high degree of overlap and suggests that REP cells represent a unique cell type with properties of pericytes, fibroblasts, and neurons, known as telocytes. These novel cell lines may be helpful to investigate myofibroblast differentiation in chronic kidney disease and to elucidate the molecular mechanisms of HIF stabilizing drugs currently in phase III studies to treat anemia in end-stage kidney disease.
Collapse
|
19
|
Michler RE. The current status of stem cell therapy in ischemic heart disease. J Card Surg 2018; 33:520-531. [DOI: 10.1111/jocs.13789] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Robert E. Michler
- Department of Cardiothoracic and Vascular Surgery and Department of Surgery; Montefiore Medical Center, Albert Einstein College of Medicine; New York New York
| |
Collapse
|
20
|
Heterocellular molecular contacts in the mammalian stem cell niche. Eur J Cell Biol 2018; 97:442-461. [PMID: 30025618 DOI: 10.1016/j.ejcb.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Adult tissue homeostasis and repair relies on prompt and appropriate intervention by tissue-specific adult stem cells (SCs). SCs have the ability to self-renew; upon appropriate stimulation, they proliferate and give rise to specialized cells. An array of environmental signals is important for maintenance of the SC pool and SC survival, behavior, and fate. Within this special microenvironment, commonly known as the stem cell niche (SCN), SC behavior and fate are regulated by soluble molecules and direct molecular contacts via adhesion molecules providing connections to local supporting cells and the extracellular matrix. Besides the extensively discussed array of soluble molecules, the expression of adhesion molecules and molecular contacts is another fundamental mechanism regulating niche occupancy and SC mobilization upon activation. Some adhesion molecules are differentially expressed and have tissue-specific consequences, likely reflecting the structural differences in niche composition and design, especially the presence or absence of a stromal counterpart. However, the distribution and identity of intercellular molecular contacts for adhesion and adhesion-mediated signaling within stromal and non-stromal SCN have not been thoroughly studied. This review highlights common details or significant differences in cell-to-cell contacts within representative stromal and non-stromal niches that could unveil new standpoints for stem cell biology and therapy.
Collapse
|
21
|
Lortie K, Maheux C, Gendron D, Langlois A, Beaulieu MJ, Marsolais D, Bossé Y, Blanchet MR. CD34 Differentially Regulates Contractile and Noncontractile Elements of Airway Reactivity. Am J Respir Cell Mol Biol 2018; 58:79-88. [PMID: 28850257 DOI: 10.1165/rcmb.2017-0008oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Airway hyperresponsiveness (AHR), a major hallmark of asthma, results from alterations of contractile and noncontractile elements of airway reactivity. CD34 is a sialomucin that is expressed on various cells involved in asthma, such as eosinophils and airway smooth muscle precursors, highlighting its potential influence in AHR. To study the role of CD34 in regulating the contractile and noncontractile elements of AHR, AHR was induced by chronic exposure to house dust mite (HDM) antigen. To assess the role of CD34 on the contractile elements of AHR, airway reactivity and airway smooth muscle contractility in response to methacholine were measured. To assess CD34's role in regulating the noncontractile elements of AHR, a chimeric mouse model was used to determine the impact of CD34 expression on inflammatory versus microenvironmental cells in AHR development. Extracellular matrix production, mucus production, and mast cell degranulation were also measured. Whereas wild-type mice developed AHR in response to HDM, a loss of airway reactivity was observed in Cd34-/- mice 24 hours after the last exposure to HDM compared with naive controls. This was reversed when airway reactivity was measured 1 week after the last HDM exposure. Additionally, mast cell degranulation and mucus production were altered in the absence of CD34 expression. Importantly, simultaneous expression of CD34 on cells originating from the hematopoietic compartment and the microenvironment was needed for expression of this phenotype. These results provide evidence that CD34 is required for AHR and airway reactivity maintenance in the early days after an inflammatory episode in asthma.
Collapse
Affiliation(s)
- Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Catherine Maheux
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - David Gendron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Anick Langlois
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Marie-Josée Beaulieu
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - David Marsolais
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Marie-Renée Blanchet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
22
|
Saha A, Blando J, Fernandez I, Kiguchi K, DiGiovanni J. Linneg Sca-1high CD49fhigh prostate cancer cells derived from the Hi-Myc mouse model are tumor-initiating cells with basal-epithelial characteristics and differentiation potential in vitro and in vivo. Oncotarget 2018; 7:25194-207. [PMID: 26910370 PMCID: PMC5041897 DOI: 10.18632/oncotarget.7535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/29/2016] [Indexed: 12/11/2022] Open
Abstract
A cell line was established from ventral prostate (VP) tumors of one-year-old Hi-Myc mice. These cells, called HMVP2 cells, are LinnegSca-1highCD49fhigh with high CD44 and CD29 expression and express CK14, Sca-1 and CD49f (but not CK8), suggesting basal-epithelial characteristics. Furthermore, HMVP2 cells form spheroids and both the cells and spheroids produce tumors in syngeneic mice. After four days of culture, HMVP2 spheroids underwent a gradual transition from LinnegSca-1highCD49fhigh expression to LinnegSca-1lowCD49flow while a subpopulation of the cells retained the original LinnegSca-1highCD49fhigh expression pattern. Additional cell subpopulations expressing Lin positive markers were also present suggesting further differentiation of HMVP2 spheroids. Two additional highly tumorigenic cell lines (HMVP2A1 and HMVP2A2) were isolated from HMVP2 cells after subsequent tumor formation in FVB/N mice. Concurrently, we also established cell lines from the VP of 6 months old Hi-Myc mice (named as HMVP1) and FVB/N mice (called NMVP) having less aggressive growth properties compared to the other three cell lines. AR expression was reduced in HMVP2 cells compared to NMVP and HMVP1 cells and almost absent in HMVP2A1 and HMVP2A2 cells. These cell lines will provide valuable tools for further mechanistic studies as well as preclinical studies to evaluate preventive and/or therapeutic agents for prostate cancer.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA.,Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Jorge Blando
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA.,Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Irina Fernandez
- Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA.,Stem Cell Transplantation Department, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Kaoru Kiguchi
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA.,Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA.,Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| |
Collapse
|
23
|
Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44. Blood Adv 2017; 1:2799-2816. [PMID: 29296932 DOI: 10.1182/bloodadvances.2017004317] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
Abstract
CD34 is routinely used to identify and isolate human hematopoietic stem/progenitor cells (HSPCs) for use clinically in bone marrow transplantation, but its function on these cells remains elusive. Glycoprotein ligands on HSPCs help guide their migration to specialized microvascular beds in the bone marrow that express vascular selectins (E- and P-selectin). Here, we show that HSPC-enriched fractions from human hematopoietic tissue expressing CD34 (CD34pos) bound selectins, whereas those lacking CD34 (CD34neg) did not. An unbiased proteomics screen identified potential glycoprotein ligands on CD34pos cells revealing CD34 itself as a major vascular selectin ligand. Biochemical and CD34 knockdown analyses highlight a key role for CD34 in the first prerequisite step of cell migration, suggesting that it is not just a marker on these cells. Our results also entice future potential strategies to investigate the glycoforms of CD34 that discriminate normal HSPCs from leukemic cells and to manipulate CD34neg HSPC-enriched bone marrow or cord blood populations as a source of stem cells for clinical use.
Collapse
|
24
|
Abstract
Glycans are essential for the maintenance of normal biological function, with alterations in glycan expression being a hallmark of cancer. Cancer stem cells (CSCs) are a subset of cells within a tumour capable of self-renewal, cellular differentiation and resistances to conventional therapies. As is the case with stem cells, marker proteins present on the cell surface are frequently used to identify and enrich CSCs, with the expression of these markers statistical correlating with the likelihood of cancer recurrence and overall patient survival. As such CSC markers are of high clinical relevance. The majority of markers currently used to identify CSC populations are glycoproteins, and although the diverse biological roles for many of these markers are known, the nature and function of the glycan moiety on these glycoproteins remains to be fully elucidated. This mini-review summarises our current knowledge regarding the types and extent of CSC marker glycosylation, and the various roles that these glycans play in CSC biology, including in mediating cell adhesion, metastasis, evading apoptosis, tear shear resistance, tumour growth, maintaining pluripotency, self-renewal, trafficking, maintaining stability, maintaining enzymatic activity and aiding epithelial mesenchymal transitioning. Given that CSCs markers have multiple diverse biological functions, and are potentially of significant diagnostic and therapeutic benefit the search for new markers that are uniquely expressed on CSCs is vital to selectively target/identify this subset of cancer cells. As such we have also outlined how high-throughput lectin microarrays can be used to successfully profile the glycosylation status of CSC and to identify glyco-markers unique to CSCs.
Collapse
|
25
|
Li P, Karaczyn AA, McGlauflin R, Favreau-Lessard AJ, Jachimowicz E, Vary CP, Xu K, Wojchowski DM, Sathyanarayana P. Novel roles for podocalyxin in regulating stress myelopoiesis, Rap1a, and neutrophil migration. Exp Hematol 2017; 50:77-83.e6. [PMID: 28408238 DOI: 10.1016/j.exphem.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 12/26/2022]
Abstract
Podocalyxin (Podxl) is a CD34 orthologue and cell surface sialomucin reported to have roles in renal podocyte diaphragm slit development; vascular cell integrity; and the progression of blood, breast, and prostate cancers. Roles for Podxl during nonmalignant hematopoiesis, however, are largely undefined. We have developed a Vav-Cre Podxl knockout (KO) mouse model, and report on novel roles for Podxl in governing stress myelopoiesis. At steady state, Podxl expression among hematopoietic progenitor cells was low level but was induced by granulocyte colony-stimulating factor (G-CSF) in myeloid progenitors and by thrombopoietin in human stem cells. In keeping with low-level Podxl expression at steady state, Vav-Cre deletion of Podxl did not markedly alter peripheral blood cell levels. A G-CSF challenge in Podxl-KO mice, in contrast, hyperelevated peripheral blood neutrophil and monocyte levels. Podxl-KO also substantially heightened neutrophil levels after 5-fluorouracil myeloablation. These loss-of-function phenotypes were selective, and Podxl-KO did not alter lymphocyte, basophil, or eosinophil levels. Within bone marrow (and after G-CSF challenge), Podxl deletion moderately decreased colony forming units-granulocytes, eyrthrocytes, monocyte/macrophages, megakaryocytes and CD16/32posCD11bpos progenitors but did not affect Gr-1pos cell populations. Notably, Podxl-KO did significantly heighten peripheral blood neutrophil migration capacities. To interrogate Podxl's action mechanisms, a co-immunoprecipitation plus liquid chromatography-mass spectrometry approach was applied using hematopoietic progenitors from G-CSF-challenged mice. Rap1a, a Ras-related small GTPase, was a predominant co-retrieved Podxl partner. In bone marrow human progenitor cells, Podxl-KO led to heightened G-CSF activation of Rap1aGTP, and Rap1aGTP inhibition attenuated Podxl-KO neutrophil migration. Studies have revealed novel roles for Podxl as an important modulator of neutrophil and monocyte formation and of Rap1a activation during stress hematopoiesis.
Collapse
Affiliation(s)
- Pan Li
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Aldona A Karaczyn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Rose McGlauflin
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | | | - Edward Jachimowicz
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; COBRE Center of Excellence in Stem Cell Biology and Regenerative Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Calvin P Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Kailin Xu
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Don M Wojchowski
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; COBRE Center of Excellence in Stem Cell Biology and Regenerative Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Pradeep Sathyanarayana
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; COBRE Center of Excellence in Stem Cell Biology and Regenerative Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
26
|
He MQ, He MQ, Wang JF, Zhu BL, Sun N, Zhou XH, Yao RX. Vascular Endothelial Growth Factor and Cluster of Differentiation 34 for Assessment of Perioperative Bleeding Risk in Gastric Cancer Patients. Chin Med J (Engl) 2017; 129:1950-4. [PMID: 27503021 PMCID: PMC4989427 DOI: 10.4103/0366-6999.187842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Angiogenesis is the formation of new blood vessels to supply nutrients to tumors. Vascular endothelial growth factor (VEGF) and cluster of differentiation 34 (CD34) are important signaling proteins involved in angiogenesis. Many studies have demonstrated that VEGF and CD34 are related to tumor progression. This study focused on the relationship between VEGF, CD34, and perioperative hemorrhage in patients with gastric cancer. Methods: To observe the relationship between VEGF and CD34, we tracked 112 patients with advanced gastric cancer for 5 years to assess factors related to hemorrhage, using immunohistochemistry. The results were subjected to statistical analysis using a 2 × 2 contingency table, logistic regression, and receiver operating characteristic (ROC) test. Results: The concentrations of VEGF and CD34 were critically correlated with perioperative hemorrhage and neural invasion in patients with gastric cancer (P < 0.05). Expression of VEGF and CD34 was related (P < 0.05, χ2 = 6.834). VEGF and CD34 co-expression strongly increased the risk of preoperative bleeding (area under the ROC curve >0.7, P < 0.05). Conclusions: Expression of VEGF and CD34 was critically correlated with perioperative hemorrhage in gastric cancer patients. Co-expression of VEGF and CD34 could be an effective indicator for evaluating the risk of perioperative bleeding in gastric cancer patients.
Collapse
Affiliation(s)
- Mu-Qing He
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mu-Qun He
- Department of Medical Oncology, Fujian Provincial Tumor Hospital, Fuzhou, Fujian 350014, China
| | - Jian-Feng Wang
- Department of Medical Oncology, Fujian Provincial Tumor Hospital, Fuzhou, Fujian 350014, China
| | - Bao-Ling Zhu
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ni Sun
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiao-Hai Zhou
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Rong-Xin Yao
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
27
|
Pei J, Grishin NV. Expansion of divergent SEA domains in cell surface proteins and nucleoporin 54. Protein Sci 2017; 26:617-630. [PMID: 27977898 DOI: 10.1002/pro.3096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022]
Abstract
SEA (sea urchin sperm protein, enterokinase, agrin) domains, many of which possess autoproteolysis activity, have been found in a number of cell surface and secreted proteins. Despite high sequence divergence, SEA domains were also proposed to be present in dystroglycan based on a conserved autoproteolysis motif and receptor-type protein phosphatase IA-2 based on structural similarity. The presence of a SEA domain adjacent to the transmembrane segment appears to be a recurring theme in quite a number of type I transmembrane proteins on the cell surface, such as MUC1, dystroglycan, IA-2, and Notch receptors. By comparative sequence and structural analyses, we identified dystroglycan-like proteins with SEA domains in Capsaspora owczarzaki of the Filasterea group, one of the closest single-cell relatives of metazoans. We also detected novel and divergent SEA domains in a variety of cell surface proteins such as EpCAM, α/ε-sarcoglycan, PTPRR, collectrin/Tmem27, amnionless, CD34, KIAA0319, fibrocystin-like protein, and a number of cadherins. While these proteins are mostly from metazoans or their single cell relatives such as choanoflagellates and Filasterea, fibrocystin-like proteins with SEA domains were found in several other eukaryotic lineages including green algae, Alveolata, Euglenozoa, and Haptophyta, suggesting an ancient evolutionary origin. In addition, the intracellular protein Nucleoporin 54 (Nup54) acquired a divergent SEA domain in choanoflagellates and metazoans.
Collapse
Affiliation(s)
| | - Nick V Grishin
- Howard Hughes Medical Institute.,Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| |
Collapse
|
28
|
CD34 and CD38 are prognostic biomarkers for acute B lymphoblastic leukemia. Biomark Res 2016; 4:23. [PMID: 28018598 PMCID: PMC5159997 DOI: 10.1186/s40364-016-0080-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/02/2016] [Indexed: 12/18/2022] Open
Abstract
CD34 and CD38 proteins are usually used as surface markers to identify HSCs and Leukemic stem cells. However, there have been cases that lacked CD34 or CD38 protein but still had leukemia initiating capacity in B-ALL suggesting the restrictive of these two markers. CD34 and CD38 expression were detected in most B-ALL and can serve as a specific biomarker for the prognosis of this subset of leukemia. Lack of CD34 or high CD38 expression is associated with favorable prognosis.
Collapse
|
29
|
Berger RP, Dookwah M, Steet R, Dalton S. Glycosylation and stem cells: Regulatory roles and application of iPSCs in the study of glycosylation-related disorders. Bioessays 2016; 38:1255-1265. [PMID: 27667795 PMCID: PMC5214967 DOI: 10.1002/bies.201600138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycosylation refers to the co- and post-translational modification of protein and lipids by monosaccharides or oligosaccharide chains. The surface of mammalian cells is decorated by a heterogeneous and highly complex array of protein and lipid linked glycan structures that vary significantly between different cell types, raising questions about their roles in development and disease pathogenesis. This review will begin by focusing on recent findings that define roles for cell surface protein and lipid glycosylation in pluripotent stem cells and their functional impact during normal development. Then, we will describe how patient derived induced pluripotent stem cells are being used to model human diseases such as congenital disorders of glycosylation. Collectively, these studies indicate that cell surface glycans perform critical roles in human development and disease.
Collapse
Affiliation(s)
- Ryan P. Berger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Michelle Dookwah
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Richard Steet
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
30
|
Typhoid toxin provides a window into typhoid fever and the biology of Salmonella Typhi. Proc Natl Acad Sci U S A 2016; 113:6338-44. [PMID: 27222578 DOI: 10.1073/pnas.1606335113] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella Typhi is the cause of typhoid fever, a disease that has challenged humans throughout history and continues to be a major public health concern. Unlike infections with most other Salmonellae, which result in self-limiting gastroenteritis, typhoid fever is a life-threatening systemic disease. Furthermore, in contrast to most Salmonellae, which can infect a broad range of hosts, S. Typhi is a strict human pathogen. The unique features of S. Typhi pathogenesis and its stringent host specificity have been a long-standing puzzle. The discovery of typhoid toxin not only has provided major insight into these questions but also has offered unique opportunities to develop novel therapeutic and prevention strategies to combat typhoid fever.
Collapse
|
31
|
Wagner B, Drel V, Gorin Y. Pathophysiology of gadolinium-associated systemic fibrosis. Am J Physiol Renal Physiol 2016; 311:F1-F11. [PMID: 27147669 DOI: 10.1152/ajprenal.00166.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/28/2016] [Indexed: 12/21/2022] Open
Abstract
Systemic fibrosis from gadolinium-based magnetic resonance imaging contrast is a scourge for the afflicted. Although gadolinium-associated systemic fibrosis is a rare condition, the threat of litigation has vastly altered clinical practice. Most theories concerning the etiology of the fibrosis are grounded in case reports rather than experiment. This has led to the widely accepted conjecture that the relative affinity of certain contrast agents for the gadolinium ion inversely correlates with the risk of succumbing to the disease. How gadolinium-containing contrast agents trigger widespread and site-specific systemic fibrosis and how chronicity is maintained are largely unknown. This review highlights experimentally-derived information from our laboratory and others that pertain to our understanding of the pathophysiology of gadolinium-associated systemic fibrosis.
Collapse
Affiliation(s)
- Brent Wagner
- South Texas Veterans Health Care System, San Antonio, Texas; and University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Viktor Drel
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yves Gorin
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
32
|
De Grandis M, Lhoumeau AC, Mancini SJC, Aurrand-Lions M. Adhesion receptors involved in HSC and early-B cell interactions with bone marrow microenvironment. Cell Mol Life Sci 2016; 73:687-703. [PMID: 26495446 PMCID: PMC11108274 DOI: 10.1007/s00018-015-2064-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023]
Abstract
Hematopoiesis takes place in the bone marrow of adult mammals and is the process by which blood cells are replenished every day throughout life. Differentiation of hematopoietic cells occurs in a stepwise manner through intermediates of differentiation that could be phenotypically identified. This has allowed establishing hematopoietic cell classification with hematopoietic stem cells (HSCs) at the top of the hierarchy. HSCs are mostly quiescent and serve as a reservoir for maintenance of lifelong hematopoiesis. Over recent years, it has become increasingly clear that HSC quiescence is not only due to intrinsic properties, but is also mediated by cognate interactions between HSCs and surrounding cells within micro-anatomical sites called “niches”. This hematopoietic/stromal crosstalk model also applies to more mature progenitors such as B cell progenitors, which are thought to reside in distinct “niches”. This prompted many research teams to search for specific molecular mechanisms supporting leuko-stromal crosstalk in the bone marrow and acting at specific stage of differentiation to regulate hematopoietic homeostasis. Here, we review recent data on adhesion mechanisms involved in HSCs and B cell progenitors interactions with surrounding bone marrow stromal cells.
Collapse
Affiliation(s)
- Maria De Grandis
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm U1068, CNRS UMR7258, Aix-Marseille Université UM105, Marseille, France
| | - Anne-Catherine Lhoumeau
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm U1068, CNRS UMR7258, Aix-Marseille Université UM105, Marseille, France
| | - Stéphane J. C. Mancini
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm U1068, CNRS UMR7258, Aix-Marseille Université UM105, Marseille, France
| | - Michel Aurrand-Lions
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm U1068, CNRS UMR7258, Aix-Marseille Université UM105, Marseille, France
| |
Collapse
|
33
|
In situ hematopoiesis: a regulator of TH2 cytokine-mediated immunity and inflammation at mucosal surfaces. Mucosal Immunol 2015; 8:701-11. [PMID: 25783967 DOI: 10.1038/mi.2015.17] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/01/2015] [Indexed: 02/04/2023]
Abstract
Hematopoiesis refers to the development of blood cells in the body through the differentiation of pluripotent stem cells. Although hematopoiesis is a multifocal process during embryonic development, under homeostatic conditions it occurs exclusively within the bone marrow. There, a limited number of hematopoietic stem cells differentiate into a rapidly proliferating population of lineage-restricted progenitors that serve to replenish circulating blood cells. However, emerging reports now suggest that under inflammatory conditions, alterations in hematopoiesis that occur outside of the bone marrow appear to constitute a conserved mechanism of innate immunity. Moreover, recent reports have identified previously unappreciated pathways that regulate the egress of hematopoietic progenitor cells from the bone marrow, alter their activation status, and skew their developmental potential. These studies suggest that progenitor cells contribute to inflammatory response by undergoing in situ hematopoiesis (ISH). In this review, we highlight the differences between homeostatic hematopoiesis, which occurs in the bone marrow, and ISH, which occurs at mucosal surfaces. Further, we highlight factors produced at local sites of inflammation that regulate hematopoietic progenitor cell responses and the development of TH2 cytokine-mediated inflammation. Finally, we discuss the therapeutic potential of targeting ISH in preventing the development of inflammation at mucosal sites.
Collapse
|
34
|
Andrews TE, Wang D, Harki DA. Cell surface markers of cancer stem cells: diagnostic macromolecules and targets for drug delivery. Drug Deliv Transl Res 2015; 3:121-42. [PMID: 25787981 DOI: 10.1007/s13346-012-0075-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The recognition that the persistence of cancer stem cells (CSCs) in patients following chemotherapy can result in disease relapse underscores the necessity to develop therapeutics against those cells. CSCs display a unique repertoire of cell surface macromolecules, which have proven essential for their characterization and isolation. Additionally, CSC-specific cell surface macromolecules or markers provide targets for the development of specific agents to destroy them. In this review, we compiled those cell surface molecules that have been validated as CSC markers for many common blood and solid tumors. We describe the unique chemical and structural features of the most common cell surface markers, as well as recent efforts to deliver chemotherapeutic agents into CSCs by targeting those macromolecules.
Collapse
Affiliation(s)
- Timothy E Andrews
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware St SE, Minneapolis, MN, 55414, USA
| | | | | |
Collapse
|
35
|
Perry C, Soomro I, Kaye P, Hardy E, Parsons SL, Ragunath K, Lobo DN, Martin SG, Madhusudan S. Analysis of lymphatic and blood vessel invasion biomarkers in T1 esophagogastric adenocarcinomas for improved patient prognostication. Dis Esophagus 2015; 28:262-268. [PMID: 24612464 DOI: 10.1111/dote.12190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lymphovascular invasion (LVI) in T1 esophagogastric adenocarcinoma may predict risk of recurrence despite definitive treatment with surgery or endoscopic resection. Podoplanin and CD34 are emerging biomarkers of lymphatic and blood vessel invasion, respectively, and could be adopted to refine LVI assessment. A consecutive series of 65 patients with T1 adenocarcinomas diagnosed at Nottingham University Hospitals were investigated. T1 tumors from 43/65 patients who received primary surgery only were suitable for LVI evaluation by hematoxylin and eosin (H&E) staining as well as by CD34 and Podoplanin immunohistochemistry. LVI was correlated to clinicopathological features and recurrence free survival. H&E staining detected LVI in 11.6% (5/43) of T1 tumors. CD34 and Podoplanin immunohistochemistry significantly improved LVI detection to 25.6% (11/43). Compared with LVI by H&E, immunohistochemical evaluation of blood vessel invasion (CD34) or lymphatic vessel invasion (Podoplanin) was significantly associated with higher grade (P = 0.005), submucosal invasion (T1b) (P = 0.018), lymph node positivity (N1) (P = 0.029) and poor recurrence free survival (P = 0.0003). Our study provides evidence that CD34 and Podoplanin immunohistochemistry could improve LVI detection and allow better prognostication of patients and optimum selection of definitive treatment. Larger multicenter studies are required for further validation that could have significant clinical implications.
Collapse
Affiliation(s)
- C Perry
- Division of Oncology, School of Medicine, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lodhia KA, Hadley AM, Haluska P, Scott CL. Prioritizing therapeutic targets using patient-derived xenograft models. Biochim Biophys Acta Rev Cancer 2015; 1855:223-34. [PMID: 25783201 DOI: 10.1016/j.bbcan.2015.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/12/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
Effective systemic treatment of cancer relies on the delivery of agents with optimal therapeutic potential. The molecular age of medicine has provided genomic tools that can identify a large number of potential therapeutic targets in individual patients, heralding the promise of personalized treatment. However, determining which potential targets actually drive tumor growth and should be prioritized for therapy is challenging. Indeed, reliable molecular matches of target and therapeutic agent have been stringently validated in the clinic for only a small number of targets. Patient-derived xenografts (PDXs) are tumor models developed in immunocompromised mice using tumor procured directly from the patient. As patient surrogates, PDX models represent a powerful tool for addressing individualized therapy. Challenges include humanizing the immune system of PDX models and ensuring high quality molecular annotation, in order to maximize insights for the clinic. Importantly, PDX can be sampled repeatedly and in parallel, to reveal clonal evolution, which may predict mechanisms of drug resistance and inform therapeutic strategy design.
Collapse
Affiliation(s)
- K A Lodhia
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - A M Hadley
- Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - P Haluska
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - C L Scott
- Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
37
|
Abstract
The last decade has witnessed the publication of a large number of clinical trials, primarily using bone marrow-derived stem cells as the injected cell. Much has been learned through these "first-generation" clinical trials. The considerable advances in our understanding include (1) cell therapy is safe, (2) cell therapy has been modestly effective, (3) the recognition that in humans bone marrow-derived stem cells do not transdifferentiate into cardiomyocytes or new blood vessels (or at least in sufficient numbers to have any effect). The primary mechanism of action for cell therapy is now believed to be through paracrine effects that include the release of cytokines, chemokines, and growth factors that inhibit apoptosis and fibrosis, enhance contractility, and activate endogenous regenerative mechanisms through endogenous circulating or site-specific stem cells. The new direction for clinical trials includes the use of stem cells capable of cardiac lineage, such as endogenous cardiac stem cells.
Collapse
|
38
|
Peikert K, Kasper M, May CA. Distribution of caveolin in the muscle spindles of human skeletal muscle. J Anat 2014; 224:681-7. [PMID: 24660982 DOI: 10.1111/joa.12173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 01/16/2023] Open
Abstract
The aim of the present study was to demonstrate the location of the different members of the caveolin (cav) family in human muscle spindles. Twenty spindles of three human muscles (vastus medialis, ischiocavernosus, bulbospongiosus) from 12 cadavers were immunohistochemically stained for cav-1, cav-2, and cav-3, and the equatorial and polar regions evaluated. All layers of the outer and inner spindle capsule and all blood vessels within the spindle stained for cav-1 and cav-2. In the muscle spindle, intrafusal muscle fibres stained selectively for cav-3, but with a patchy appearance. Caveolinopathies may therefore also include changes in muscle spindle function.
Collapse
Affiliation(s)
- Kevin Peikert
- Department of Anatomy, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | | | |
Collapse
|
39
|
Mahnke YD, Beddall MH, Roederer M. OMIP-019: quantification of human γδT-cells, iNKT-cells, and hematopoietic precursors. Cytometry A 2014; 83:676-8. [PMID: 23897714 DOI: 10.1002/cyto.a.22326] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/24/2013] [Accepted: 06/06/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Yolanda D Mahnke
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
40
|
Perrotta C, Buldorini M, Assi E, Cazzato D, De Palma C, Clementi E, Cervia D. The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:230-47. [PMID: 24215914 DOI: 10.1016/j.ajpath.2013.10.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/17/2013] [Accepted: 10/04/2013] [Indexed: 12/17/2022]
Abstract
The endocrine system participates in regulating macrophage maturation, although little is known about the modulating role of the thyroid hormones. In vitro results demonstrate a negative role of one such hormone, triiodothyronine (T3), in triggering the differentiation of bone marrow-derived monocytes into unpolarized macrophages. T3-induced macrophages displayed a classically activated (M1) signature. A T3-induced M1-priming effect was also observed on polarized macrophages because T3 reverses alternatively activated (M2) activation, whereas it enhances that of M1 cells. In vivo, circulating T3 increased the content of the resident macrophages in the peritoneal cavity, whereas it reduced the content of the recruited monocyte-derived cells. Of interest, T3 significantly protected mice against endotoxemia induced by lipopolysaccharide i.p. injection; in these damaged animals, decreased T3 levels increased the recruited (potentially damaging) cells, whereas restoring T3 levels decreased recruited and increased resident (potentially beneficial) cells. These data suggest that the anti-inflammatory effect of T3 is coupled to the modulation of peritoneal macrophage content, in a context not fully explained by the M1/M2 framework. Thyroid hormone receptor expression analysis and the use of different thyroid hormone receptor antagonists suggest thyroid hormone receptor β1 as the major player mediating T3 effects on macrophages. The novel homeostatic link between thyroid hormones and the pathophysiological role of macrophages opens new perspectives on the interactions between the endocrine and immune systems.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, National Research Council Institute of Neuroscience, Luigi Sacco University Hospital, University of Milan, Milan, Italy
| | | | - Emma Assi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, National Research Council Institute of Neuroscience, Luigi Sacco University Hospital, University of Milan, Milan, Italy
| | | | - Clara De Palma
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, National Research Council Institute of Neuroscience, Luigi Sacco University Hospital, University of Milan, Milan, Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, National Research Council Institute of Neuroscience, Luigi Sacco University Hospital, University of Milan, Milan, Italy; E. Medea Scientific Institute, Bosisio Parini, Italy.
| | - Davide Cervia
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, National Research Council Institute of Neuroscience, Luigi Sacco University Hospital, University of Milan, Milan, Italy; Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy.
| |
Collapse
|
41
|
Abstract
The last decade has witnessed the publication of a large number of clinical trials primarily using bone marrow-derived stem cells as the injected cell. These "first-generation" clinical trials have advanced our understanding and shown us that (1) cell therapy is safe, (2) cell therapy has been modestly effective, and (3) in humans, bone marrow-derived stem cells do not transdifferentiate into cardiomyocytes or new blood vessels (or at least in sufficient numbers to have any effect). The primary mechanism of action for cell therapy is now believed to be through paracrine effects that include the release of cytokines, chemokines, and growth factors that inhibit apoptosis and fibrosis, enhance contractility, and activate endogenous regenerative mechanisms through endogenous circulating or site-specific stem cells. The new direction for clinical trials includes the use of stem cells capable of cardiac lineage, such as endogenous cardiac stem cells.
Collapse
Affiliation(s)
- Robert E Michler
- Montefiore Medical Center, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
42
|
Ohnishi H, Sasaki H, Nakamura Y, Kato S, Ando K, Narimatsu H, Tachibana K. Regulation of cell shape and adhesion by CD34. Cell Adh Migr 2013; 7:426-33. [PMID: 24036614 DOI: 10.4161/cam.25957] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We previously reported that expression of CD43/leukosialin induces cell rounding and microvillus formation via inhibition of cell adhesion. Here, we found that CD34, a cell surface sialomucin and marker for hematopoietic progenitor cells, also inhibited cell adhesion and induced cell rounding and microvillus formation. Forced expression of CD34-induced cell rounding, microvillus formation, and phosphorylation of ezrin/radixin/moesin (ERM) proteins in HEK293T cells, while inhibiting integrin-mediated cell re-attachment. Furthermore, CD34+ blood cells and KG-1 cells, which express endogenous CD34 on their surface, were spherical in shape, surrounded by microvilli, and non-adherent to substrata. In addition, cleavage of O-sialomucin augmented integrin-mediated cell adhesion of KG-1 cells. These results suggest the involvement of CD34 in the inhibition of integrin-mediated cell adhesion and formation of the cell surface structure. The inhibitory function of CD34 in cell adhesion may affect cell shape organization via phosphorylation of ERM proteins. Cellular structures such as the spherical shape and microvilli of CD34+ cells may also contribute to regulation of cell adhesion.
Collapse
Affiliation(s)
- Hiroe Ohnishi
- Research Center for Medical Glycoscience; National Institute of Advanced Industrial Science and Technology (AIST); Umezono, Tsukuba, Ibaraki, Japan; Health Research Institute; AIST; Nakouji, Amagasaki, Hyogo, Japan
| | - Hiroyuki Sasaki
- Department of Molecular Cell Biology, Institute of DNA Medicine, The Jikei University School of Medicine, Nishi-Shinbashi, Minato-ku, Tokyo 105, Japan
| | - Yoshihiko Nakamura
- Research Center for Regenerative Medicine; Tokai University School of Medicine; Bohseidai, Isehara, Kanagawa, Japan
| | - Shunichi Kato
- Department of Cell Transplantation and Regenerative Medicine; Tokai University School of Medicine; Bohseidai, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Research Center for Regenerative Medicine; Tokai University School of Medicine; Bohseidai, Isehara, Kanagawa, Japan; Department of Hematology/Oncology; Tokai University School of Medicine; Bohseidai, Isehara, Kanagawa, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience; National Institute of Advanced Industrial Science and Technology (AIST); Umezono, Tsukuba, Ibaraki, Japan
| | - Kouichi Tachibana
- Research Center for Medical Glycoscience; National Institute of Advanced Industrial Science and Technology (AIST); Umezono, Tsukuba, Ibaraki, Japan; Health Research Institute; AIST; Nakouji, Amagasaki, Hyogo, Japan
| |
Collapse
|
43
|
Lin CS, Ning H, Lin G, Lue TF. Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy 2013; 14:1159-63. [PMID: 23066784 DOI: 10.3109/14653249.2012.729817] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prevailing school of thought is that mesenchymal stromal cells (MSC) do not express CD34, and this sets MSC apart from hematopoietic stem cells (HSC), which do express CD34. However, the evidence for MSC being CD34(-) is largely based on cultured MSC, not tissue-resident MSC, and the existence of CD34(-) HSC is in fact well documented. Furthermore, the Stro-1 antibody, which has been used extensively for the identification/isolation of MSC, was generated by using CD34(+) bone marrow cells as immunogen. Thus, neither MSC being CD34(-) nor HSC being CD34(+) is entirely correct. In particular, two studies that analyzed CD34 expression in uncultured human bone marrow nucleated cells found that MSC (BMSC) existed in the CD34(+) fraction. Several studies have also found that freshly isolated adipose-derived MSC (ADSC) express CD34. In addition, all of these ADSC studies and several other MSC studies have observed a disappearance of CD34 expression when the cells are propagated in culture. Thus the available evidence points to CD34 being expressed in tissue-resident MSC, and its negative finding being a consequence of cell culturing.
Collapse
Affiliation(s)
- Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California , San Francisco, California 94143 – 0738, USA.
| | | | | | | |
Collapse
|
44
|
Karsten U, Goletz S. What makes cancer stem cell markers different? SPRINGERPLUS 2013; 2:301. [PMID: 23888272 PMCID: PMC3710573 DOI: 10.1186/2193-1801-2-301] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/26/2013] [Indexed: 01/06/2023]
Abstract
Since the cancer stem cell concept has been widely accepted, several strategies have been proposed to attack cancer stem cells (CSC). Accordingly, stem cell markers are now preferred therapeutic targets. However, the problem of tumor specificity has not disappeared but shifted to another question: how can cancer stem cells be distinguished from normal stem cells, or more specifically, how do CSC markers differ from normal stem cell markers? A hypothesis is proposed which might help to solve this problem in at least a subgroup of stem cell markers. Glycosylation may provide the key.
Collapse
Affiliation(s)
- Uwe Karsten
- Glycotope GmbH, Robert-Rössle-Str.10, D-13125 Berlin-Buch, Germany
| | | |
Collapse
|
45
|
Lee MW, Kim DS, Yoo KH, Kim HR, Jang IK, Lee JH, Kim SY, Son MH, Lee SH, Jung HL, Sung KW, Koo HH. Human bone marrow-derived mesenchymal stem cell gene expression patterns vary with culture conditions. Blood Res 2013; 48:107-14. [PMID: 23826579 PMCID: PMC3698395 DOI: 10.5045/br.2013.48.2.107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/30/2013] [Accepted: 05/17/2013] [Indexed: 12/18/2022] Open
Abstract
Background Because of the heterogeneity of human mesenchymal stem cells (MSCs), methods for cell expansion in culture and the effects on gene expression are critical factors that need to be standardized for preparing MSCs. We investigated gene expression patterns of MSCs with different seeding densities and culture times. Methods Bone marrow-derived MSCs were plated at densities from 200 cells/cm2 to 5,000 cells/cm2, and the gene expression patterns were evaluated over time using a reverse-transcription polymerase chain reaction assay. Results The mRNA levels of factors that play a critical role in cell migration and tissue regeneration, such as podocalyxin-like protein (PODXL), α4-integrin, α6-integrin, and leukemia inhibitory factor (LIF), were higher in MSCs plated at 200 cells/cm2 than in MSCs plated at 5,000 cells/cm2. The mRNA levels of these factors gradually increased for 10 days and then decreased by day 15 in culture. MSCs seeded at 200 cells/cm2 that were cultured for 10 days expressed high levels of Oct-4 and Nanog. Indoleamine 2,3-dioxygenase, cyclooxygenase-1, and hepatocyte growth factor expression were upregulated in the presence of the proinflammatory cytokine interferon-γ in these cells. Conclusion We found differences in the gene expression patterns of MSCs under different culture conditions. MSCs from 10-day cultures seeded at a low density were efficiently expanded, expressed PODXL, α6-integrin, α4-integrin, and LIF, and maintained properties like stemness and immunomodulation. Therefore, ex vivo expansion of MSCs maintained for an adequate culture time after plating at low cell density can provide an effective regenerative medicinal strategy for cell therapies using MSCs.
Collapse
Affiliation(s)
- Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Choi WY, Jeon HG, Chung Y, Lim JJ, Shin DH, Kim JM, Ki BS, Song SH, Choi SJ, Park KH, Shim SH, Moon J, Jung SJ, Kang HM, Park S, Chung HM, Ko JJ, Cha KY, Yoon TK, Kim H, Lee DR. Isolation and characterization of novel, highly proliferative human CD34/CD73-double-positive testis-derived stem cells for cell therapy. Stem Cells Dev 2013; 22:2158-73. [PMID: 23509942 DOI: 10.1089/scd.2012.0385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human adult stem cells are a readily available multipotent cell source that can be used in regenerative medicine. Despite many advantages, including low tumorigenicity, their rapid senescence and limited plasticity have curtailed their use in cell-based therapies. In this study, we isolated CD34/CD73-double-positive (CD34(+)/CD73(+)) testicular stromal cells (HTSCs) and found that the expression of CD34 was closely related to the cells' stemness and proliferation. The CD34(+)/CD73(+) cells grew in vitro for an extended period of time, yielding a multitude of cells (5.6×10(16) cells) without forming tumors in vivo. They also differentiated into all three germ layer lineages both in vitro and in vivo, produced cartilage more efficiently compared to bone marrow stem cells and, importantly, restored erectile function in a cavernous nerve crush injury rat model. Thus, these HTSCs may represent a promising new autologous cell source for clinical use.
Collapse
Affiliation(s)
- Won Yun Choi
- Fertility Center, CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Control of cell adhesion and migration by podocalyxin. Implication of Rac1 and Cdc42. Biochem Biophys Res Commun 2013; 432:302-7. [PMID: 23396057 DOI: 10.1016/j.bbrc.2013.01.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 11/22/2022]
Abstract
Podocalyxin (PODXL) is a type I membrane sialomucin, originally described in the epithelial cells (podocytes) of kidney glomeruli. PODXL is also found in extra-renal tissues and in certain aggressive tumors, but its precise pathophysiological role is unknown. Expression of PODXL in CHO cells enhances their adhesive, migratory and cell-cell interactive properties in a selectin and integrin-dependent manner. We aimed at defining the PODXL domains responsible for those cell responses. For this purpose we have analyzed the cell adhesion/migration responses to deletion mutants of human PODXL, and the correlation with the activities of Rac1 and Cdc42 GTPases. The results obtained indicate that integrity of the PODXL ectodomain is essential for enhancing cell adhesion but not migration, while the integrity of the cytoplasmic domain is required for both adhesion and migration. Deletion of the carboxy-terminal DTHL domain (PODXL-ΔDTHL) limited only cell adhesion. The activities of Rac1 and Cdc42 GTPases parallel the PODXL-induced variations in cell adhesion and migration. Moreover, silencing the rac1 gene virtually abolished the effect of PODXL in enhancing cell adhesion.
Collapse
|
48
|
Elevated expression of podocalyxin is associated with lymphatic invasion, basal-like phenotype, and clinical outcome in axillary lymph node-negative breast cancer. Breast Cancer Res Treat 2013; 137:709-19. [PMID: 23288345 DOI: 10.1007/s10549-012-2392-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 12/17/2012] [Indexed: 12/18/2022]
Abstract
Lymphatic invasion (LVI) is associated with disease recurrence in axillary node-negative (ANN) breast cancer. Using gene expression profiling of 105 ANN tumors, we found that podocalyxin (PODXL) was more highly expressed in tumors with LVI (LVI+) than in those without LVI (LVI-). Differences in PODXL expression were validated using real-time polymerase chain reaction as well as by immunohistochemistry in an independent set of 652 tumors on tissue microarrays. Disease-free survival (DFS) analyses were conducted for association of high PODXL protein expression with risk of distant recurrence overall and within breast cancer subtypes using both Cox and cure-rate models. High PODXL expression was associated with poor prognosis features including large tumor size, high histological grade, estrogen and progesterone receptor negativity, and with clinical alterations characteristic of the basal-like breast cancer phenotype. Surprisingly, despite having other poor prognosis characteristics, women with high PODXL expressing tumors had better long-term DFS in multivariate analysis with traditional clinicopathologic factors including LVI and HER2 status (P = 0.001). PODXL has the potential to be a useful biomarker for identifying good prognosis patients in characteristically poor prognosis breast cancer groups and may impact treatment of women with this disease.
Collapse
|
49
|
Wagner B, Tan C, Barnes JL, Ahuja S, Davis TL, Gorin Y, Jimenez F. Nephrogenic systemic fibrosis: evidence for oxidative stress and bone marrow-derived fibrocytes in skin, liver, and heart lesions using a 5/6 nephrectomy rodent model. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1941-52. [PMID: 23041060 DOI: 10.1016/j.ajpath.2012.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 08/09/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
Nephrogenic systemic fibrosis (NSF) is associated with gadolinium-based magnetic resonance imaging (MRI) contrast exposure in the setting of acute or chronic renal compromise. It has been proposed that circulating fibrocytes mediate the disease. A study was conducted to determine whether bone marrow-derived fibroblast precursors are involved in contributing to organ fibrosis in MRI contrast-treated rodents with renal insufficiency. Rats status post 5/6 nephrectomy underwent bone marrow transplant from human placental alkaline phosphatase (hPAP)-expressing donors. After engraftment, animals were treated with gadolinium-based MRI contrast (2.5 mmol/kg IP), during weekdays for 4 weeks, or an equivalent volume of normal saline. Dermal cellularity in the contrast-treated group was fourfold that of control. Skin cells from the contrast-treated group demonstrated greater hPAP expression with co-expression of pro-collagen I and α-smooth muscle actin-positive stress fibers. Donor and host cells expressed CD34. Dihydroethidium staining of skin was greater in the contrast-treated animals, indicating oxidative stress. This was abrogated when the animals were co-administered the superoxide dismutase mimetic tempol. In conclusion, a bone marrow-derived cell population is increased in the dermis of MRI contrast-treated rodents. The cell markers are consistent with fibrocytes mediating the disease. These changes correlate with oxidative stress and expression of Nox4, suggestive of a novel therapeutic target. Elucidation of the mechanisms of MRI contrast-induced fibrosis may aid in discovering therapies to this devastating disease.
Collapse
Affiliation(s)
- Brent Wagner
- VA Research, South Texas Veterans Health Care System, University of Texas Health Science Center at San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Braun J, Kurtz A, Barutcu N, Bodo J, Thiel A, Dong J. Concerted regulation of CD34 and CD105 accompanies mesenchymal stromal cell derivation from human adventitial stromal cell. Stem Cells Dev 2012; 22:815-27. [PMID: 23072708 DOI: 10.1089/scd.2012.0263] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stromal cells (MSC) have been intensively studied for innovative therapeutic applications. MSC in vitro are characterized by plastic-adherent proliferation, their specific immunophenotype and multipotency, whereas MSC progenitors in vivo are described as perivascular cells. Whether MSC progenitors acquire in vitro MSC characteristics upon in vitro culture is still unclear. This question can be experimentally accessed by analyzing changes in cellular properties that occur during the early in vitro culture phase, the MSC derivation phase. Here, we examined dynamics in morphology, proliferation, and expression of surface markers used for MSC characterization (such as CD34, CD105, CD146, and CD271) in tight kinetics during the MSC derivation phase of adipose tissue-derived MSC (AT-MSC). Using multiparametric flow cytometry, we identified 3 major ex vivo stromal vascular cell subsets: CD34+ CD146-CD271(+/-) adventitial stromal cell-like cells (AdSC), CD34- CD146+ CD271(+/-) pericyte-like cells (PC), and CD34+ CD31+ CD146+ endothelial cells. Of these subsets, only AdSC, but not PC gave rise to MSC under MSC culture conditions. At day 4 of culture, AdSC became fibroblastoid and upregulated CD105, CD146, and CD271. Following this phenotypic transition, AdSC commenced proliferation and downregulated CD34. In our study, we demonstrate that AdSC are more clonogenic AT-MSC progenitors than PC. Moreover, we, for the first time have dissected the phenotypic transitions from MSC progenitors to in vitro MSC during the MSC derivation phase using multiparametric flow cytometry. Hence, we propose a model describing how de novo acquisition of the typical MSC morphology by AdSC is accompanied by concerted regulation of surface marker expression upon in vitro culture.
Collapse
Affiliation(s)
- Julian Braun
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine, Berlin, Germany
| | | | | | | | | | | |
Collapse
|