1
|
Singh V, Rochakim N, Ferraresso F, Choudhury A, Kastrup CJ, Ahn HJ. Caveolin-1 and Aquaporin-4 as Mediators of Fibrinogen-Driven Cerebrovascular Pathology in Hereditary Cerebral Amyloid Angiopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623066. [PMID: 39605467 PMCID: PMC11601418 DOI: 10.1101/2024.11.11.623066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hereditary Cerebral Amyloid Angiopathy (HCAA) is a rare inherited form of CAA, characterized by increased vascular deposits of amyloid peptides. HCAA provides a unique opportunity to study the pathogenic mechanisms linked to CAA, as it is associated with severe cerebrovascular pathology. Some of HCAA-associated amyloid-β (Aβ) mutations significantly enhance the interaction between fibrinogen and Aβ, resulting in altered fibrin structure and co-deposition with Aβ in the perivascular space. However, the mechanisms underlying perivascular fibrinogen deposition and the associated cerebrovascular pathology in HCAA remain unclear. To investigate this, we analyzed TgSwDI transgenic mice carrying HCAA-associated mutations and observed a significant age-dependent increase in fibrin(ogen) extravasation and fibrin(ogen)-Aβ colocalization in the perivascular space. Moreover, Caveolin-1, a protein involved in non-specific transcytosis across the endothelium, significantly increased with age in TgSwDI mice and correlated with fibrin(ogen) extravasation. Additionally, we noted significant aquaporin-4 (AQP4) depolarization in the CAA-laden blood vessels of TgSwDI mice, which also correlated with fibrin(ogen) extravasation and fibrin(ogen)-Aβ colocalization. Given that AQP4 plays a crucial role in Aβ clearance via the glymphatic pathway, its depolarization may disrupt this critical clearance mechanism, thereby exacerbating CAA pathology. To further explore the relationship between fibrin(ogen) and these factors, we depleted fibrinogen in TgSwDI mice using siRNA against fibrinogen. This intervention resulted in decreased CAA, reduced caveolin-1 levels, attenuated microglial activation, restored polarized expression of AQP4, and improved spatial memory in fibrinogen-depleted TgSwDI mice. These findings suggest that targeting fibrinogen could be a promising strategy for mitigating CAA pathology and its associated cerebrovascular pathology. Significance Statement Our study reveals the mechanism by which fibrin(ogen)-Aβ colocalization could exacerbates CAA pathology. Our findings highlight that the age-dependent increase of endothelial caveolin-1 could facilitate fibrin(ogen) extravasation, which binds with Aβ in the perivascular space inducing microglial neuroinflammation and AQP4 depolarization, thus exacerbating CAA pathology. Furthermore, fibrinogen depletion could mitigate CAA severity, reduce microglial activation, restore AQP4 polarization and memory impairment. These results suggest that targeting fibrinogen and caveolin-1-mediated transcytosis may offer new strategies to address CAA-associated cerebrovascular pathology.
Collapse
|
2
|
Gao R, Song SJ, Tian MY, Wang LB, Zhang Y, Li X. Myelin debris phagocytosis in demyelinating disease. Glia 2024; 72:1934-1954. [PMID: 39073200 DOI: 10.1002/glia.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
Collapse
Affiliation(s)
- Rui Gao
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng-Jiao Song
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng-Yuan Tian
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Li-Bin Wang
- Neurosurgery Department, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, Guangdong, China
| | - Yuan Zhang
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Li
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Li Y, Lei Z, Ritzel RM, He J, Liu S, Zhang L, Wu J. Ablation of the Integrin CD11b Mac-1 Limits Deleterious Responses to Traumatic Spinal Cord Injury and Improves Functional Recovery in Mice. Cells 2024; 13:1584. [PMID: 39329765 PMCID: PMC11430243 DOI: 10.3390/cells13181584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Spinal cord injury (SCI) triggers microglial/monocytes activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18), a heterodimer consisting of CD11b and CD18 chains, is expressed in multiple immune cells of the myeloid lineage. Here, we examined the effects of CD11b gene ablation in neuroinflammation and functional outcomes after SCI. qPCR analysis of C57BL/6 female mice showed upregulation of CD11b mRNA starting from 1 d after injury, which persisted up to 28 d. CD11b knockout (KO) mice and their wildtype littermates were subjected to moderate SCI. At 1 d post-injury, qPCR showed increased expression of genes involved with inflammation-resolving processes in CD11b KO mice. Flow cytometry analysis of CD45intLy6C-CX3CR1+ microglia, CD45hiLy6C+Ly6G- monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen species (ROS) production in CD11b KO mice at d3 post-injury. Further examination with NanoString and RNA-seq showed upregulation of pro-inflammatory genes, but downregulation of the ROS pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Rodney M. Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Simon Liu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| |
Collapse
|
4
|
Kou Y, Yuan Y, Li Q, Xie W, Xu H, Han N. Neutrophil peptide 1 accelerates the clearance of degenerative axons during Wallerian degeneration by activating macrophages after peripheral nerve crush injury. Neural Regen Res 2024; 19:1822-1827. [PMID: 38103249 PMCID: PMC10960303 DOI: 10.4103/1673-5374.387978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/18/2023] [Accepted: 08/29/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00036/figure1/v/2023-12-16T180322Z/r/image-tiff Macrophages play an important role in peripheral nerve regeneration, but the specific mechanism of regeneration is still unclear. Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration. However, the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear. This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury. The functions of RAW 264.7 cells were elucidated by Cell Counting Kit-8 assay, flow cytometry, migration assays, phagocytosis assays, immunohistochemistry and enzyme-linked immunosorbent assay. Axonal debris phagocytosis was observed using the CUBIC (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational analysis) optical clearing technique during Wallerian degeneration. Macrophage inflammatory factor expression in different polarization states was detected using a protein chip. The results showed that neutrophil peptide 1 promoted the proliferation, migration and phagocytosis of macrophages, and CD206 expression on the surface of macrophages, indicating M2 polarization. The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention. Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α, -6, -12, and tumor necrosis factor-α in vivo and in vitro. Thus, the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration, which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yuhui Kou
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
- National Center for Trauma Medicine, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Yusong Yuan
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Qicheng Li
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Wenyong Xie
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Hailin Xu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
- National Center for Trauma Medicine, Beijing, China
| | - Na Han
- National Center for Trauma Medicine, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
5
|
Beiter RM, Sheehan PW, Schafer DP. Microglia phagocytic mechanisms: Development informing disease. Curr Opin Neurobiol 2024; 86:102877. [PMID: 38631077 PMCID: PMC11162951 DOI: 10.1016/j.conb.2024.102877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Microglia are tissue-resident macrophages and professional phagocytes of the central nervous system (CNS). In development, microglia-mediated phagocytosis is important for sculpting the cellular architecture. This includes the engulfment of dead/dying cells, pruning extranumerary synapses and axons, and phagocytosing fragments of myelin sheaths. Intriguingly, these developmental phagocytic mechanisms by which microglia sculpt the CNS are now appreciated as important for eliminating synapses, myelin, and proteins during neurodegeneration. Here, we discuss parallels between neurodevelopment and neurodegeneration, which highlights how development is informing disease. We further discuss recent advances and challenges towards therapeutically targeting these phagocytic pathways and how we can leverage development to overcome these challenges.
Collapse
Affiliation(s)
- Rebecca M Beiter
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Patrick W Sheehan
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Wang Q, Ruan Z, Jing L, Guo Z, Zhang X, Liu J, Tian L, Sun W, Song S, Hong JS, Shih YYI, Hou L, Wang Q. Complement receptor 3-mediated neurotoxic glial activation contributes to rotenone-induced cognitive decline in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115550. [PMID: 37832486 PMCID: PMC10807506 DOI: 10.1016/j.ecoenv.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Microglia-mediated chronic neuroinflammation has been associated with cognitive decline induced by rotenone, a well-known neurotoxic pesticide used in agriculture. However, the mechanisms remain unclear. This work aimed to elucidate the role of complement receptor 3 (CR3), a highly expressed receptor in microglia, in cognitive deficits induced by rotenone. Rotenone up-regulated the expression of CR3 in the hippocampus and cortex area of mice. CR3 deficiency markedly ameliorated rotenone-induced cognitive impairments, neurodegeneration and phosphorylation (Ser129) of α-synuclein in mice. CR3 deficiency also attenuated rotenone-stimulated microglial M1 activation. In microglial cells, siRNA-mediated knockdown of CR3 impeded, while CR3 activation induced by LL-37 exacerbated, rotenone-induced microglial M1 activation. Mechanistically, CR3 deficiency blocked rotenone-induced activation of nuclear factor κB (NF-κB), signal transducer and activator of transcription 1 (STAT1) and STAT3 signaling pathways. Pharmacological inhibition of NF-κB or STAT3 but not STAT1 was confirmed to suppress microglial M1 activation elicited by rotenone. Further study revealed that CR3 deficiency or knockdown also reduced rotenone-induced expression of C3, an A1 astrocyte marker, and production of microglial C1q, TNFα and IL-1α, a cocktail for activated microglia to induce neurotoxic A1 astrocytes, via NF-κB and STAT3 pathways. Finally, a small molecule modulator of CR3 efficiently mitigated rotenone-elicited cognitive deficits in mice even administered after the establishment of cognitive dysfunction. Taken together, our findings demonstrated that CR3 is a key factor in mediating neurotoxic glial activation and subsequent cognitive impairments in rotenone-treated mice, giving novel insights into the immunopathogenesis of cognitive impairments in pesticide-related Parkinsonism.
Collapse
Affiliation(s)
- Qinghui Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
- Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China
| | - Zhengzheng Ruan
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Lu Jing
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Ziyang Guo
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Xiaomeng Zhang
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jianing Liu
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Lu Tian
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Wei Sun
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Sheng Song
- Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Liyan Hou
- Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
7
|
Gitik M, Elberg G, Reichert F, Tal M, Rotshenker S. Deletion of CD47 from Schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in Schwann cells and augments myelin debris phagocytosis in macrophages. J Neuroinflammation 2023; 20:243. [PMID: 37872624 PMCID: PMC10594853 DOI: 10.1186/s12974-023-02929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Myelin that surrounds axons breaks in trauma and disease; e.g., peripheral nerve and spinal cord injuries (PNI and SCI) and multiple sclerosis (MS). Resulting myelin debris hinders repair if not effectively scavenged by Schwann cells and macrophages in PNI and by microglia in SCI and MS. We showed previously that myelin debris evades phagocytosis as CD47 on myelin ligates SIRPα (signal regulatory protein-α) on macrophages and microglia, triggering SIRPα to inhibit phagocytosis in phagocytes. Using PNI as a model, we tested the in vivo significance of SIRPα-dependent phagocytosis inhibition in SIRPα null mice, showing that SIRPα deletion leads to accelerated myelin debris clearance, axon regeneration and recovery of function from PNI. Herein, we tested how deletion of CD47, a SIRPα ligand and a cell surface receptor on Schwann cells and phagocytes, affects recovery from PNI. METHODS Using CD47 null (CD47-/-) and wild type mice, we studied myelin disruption/dismantling and debris clearance, axon regeneration and recovery of function from PNI. RESULTS As expected from CD47 on myelin acting as a SIRPα ligand that normally triggers SIRPα-dependent phagocytosis inhibition in phagocytes, myelin debris clearance, axon regeneration and function recovery were all faster in CD47-/- mice than in wild type mice. Unexpectedly compared with wild type mice, myelin debris clearance started sooner and CD47-deleted Schwann cells displayed enhanced disruption/dismantling and scavenging of myelin in CD47-/- mice. Furthermore, CD47-deleted macrophages from CD47-/- mice phagocytosed more myelin debris than CD47-expressing phagocytes from wild type mice. CONCLUSIONS This study reveals two novel normally occurring CD47-dependent mechanisms that impede myelin debris clearance. First, CD47 expressed on Schwann cells inhibits myelin disruption/dismantling and debris scavenging in Schwann cells. Second, CD47 expressed on macrophages inhibits myelin debris phagocytosis in phagocytes. The two add to a third mechanism that we previously documented whereby CD47 on myelin ligates SIRPα on macrophages and microglia, triggering SIRPα-dependent phagocytosis inhibition in phagocytes. Thus, CD47 plays multiple inhibitory roles that combined impede myelin debris clearance, leading to delayed recovery from PNI. Similar inhibitory roles in microglia may hinder recovery from other pathologies in which repair depends on efficient phagocytosis (e.g., SCI and MS).
Collapse
Affiliation(s)
- Miri Gitik
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel
- Genomic Research Branch, Division of Neuroscience and Basic Behavioral Science (DNBBS), National Institute of Mental Health (NIMH), NIH, Rockville, USA
| | - Gerard Elberg
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel
| | - Fanny Reichert
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel
| | - Michael Tal
- Medical Neurobiology, Faculties of Medicine and Dentistry, Center for Research on Pain, Hebrew University, Jerusalem, Israel
| | - Shlomo Rotshenker
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
8
|
Prichard A, Garza KM, Shridhar A, He C, Bitarafan S, Pybus A, Wang Y, Snyder E, Goodson MC, Franklin TC, Jaeger D, Wood LB, Singer AC. Brain rhythms control microglial response and cytokine expression via NF-κB signaling. SCIENCE ADVANCES 2023; 9:eadf5672. [PMID: 37556553 PMCID: PMC10411883 DOI: 10.1126/sciadv.adf5672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Microglia transform in response to changes in sensory or neural activity, such as sensory deprivation. However, little is known about how specific frequencies of neural activity, or brain rhythms, affect microglia and cytokine signaling. Using visual noninvasive flickering sensory stimulation (flicker) to induce electrical neural activity at 40 hertz, within the gamma band, and 20 hertz, within the beta band, we found that these brain rhythms differentially affect microglial morphology and cytokine expression in healthy animals. Flicker induced expression of certain cytokines independently of microglia, including interleukin-10 and macrophage colony-stimulating factor. We hypothesized that nuclear factor κB (NF-κB) plays a causal role in frequency-specific cytokine and microglial responses because this pathway is activated by synaptic activity and regulates cytokines. After flicker, phospho-NF-κB colabeled with neurons more than microglia. Inhibition of NF-κB signaling down-regulated flicker-induced cytokine expression and attenuated flicker-induced changes in microglial morphology. These results reveal a mechanism through which brain rhythms affect brain function by altering microglial morphology and cytokines via NF-κB.
Collapse
Affiliation(s)
- Ashley Prichard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kristie M. Garza
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Avni Shridhar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Christopher He
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Sara Bitarafan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alyssa Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunmiao Wang
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Emma Snyder
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Matthew C. Goodson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tina C. Franklin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Dieter Jaeger
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Levi B. Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Annabelle C. Singer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Wu C, Shi L, Ma Y, Pan Y, Wang L, Chen S, Zhang Y, Wang J, Liu M, Guo Y. Construction and optimization of a coculture system of mouse brain microvascular endothelial cells and myelin debris. Neurosci Lett 2023:137345. [PMID: 37308055 DOI: 10.1016/j.neulet.2023.137345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Microvascular endothelial cells are a newly discovered cell type involved in the phagocytosis of myelin debris, which play a key role in the repair of spinal cord injuries. Several methods for the preparation of myelin debris and parameters for constructing a coculture system of microvascular endothelial cells and myelin debris are available, but no systematic studies have yet been conducted, which hinders further exploration of the mechanisms of demyelinating disease repair. Herein, we aimed to develop a standardized method for this process. Myelin debris of different sizes was obtained from the brains of C57BL/6 mice by stripping the brains under aseptic conditions, multiple grinding, gradient centrifugation, etc. Transmission electron microscopy and nanoparticle size analysis were used to characterize myelin debris. Microvascular endothelial cells were cultured on a matrix gel, and myelin debris of different sizes (fluorescently labeled using CFSE) was placed in coculture after forming a vascular-like structure. Subsequently, myelin debris of different concentrations was cocultured in the vascular-like structure, and phagocytosis of myelin debris by microvascular endothelial cells was detected using immunofluorescence staining and flow cytometry. We found that myelin debris could be successfuly obtained from the mouse brain with secondary grinding and other steps and cocultured with microvascular endothelial cells at a concentration of 2 mg/mL, which promoted the phagocytosis of microvascular endothelial cells. In conclusion, we provide a reference for the protocol of a coculture system of microvascular endothelial cells and myelin debris.
Collapse
Affiliation(s)
- Chengjie Wu
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Shi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yalan Pan
- Laboratory of Chinese Medicine Nursing Intervention for Chronic Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sixian Chen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Mengmin Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yang Guo
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China.
| |
Collapse
|
10
|
Ma Y, Liu Z, Jiang L, Wang L, Li Y, Liu Y, Wang Y, Yang GY, Ding J, Zhang Z. Endothelial progenitor cell transplantation attenuates synaptic loss associated with enhancing complement receptor 3-dependent microglial/macrophage phagocytosis in ischemic mice. J Cereb Blood Flow Metab 2023; 43:379-392. [PMID: 36457150 PMCID: PMC9941864 DOI: 10.1177/0271678x221135841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022]
Abstract
Endothelial progenitor cell (EPC) transplantation has therapeutic effects in cerebral ischemia. However, how EPCs modulate microglial activity remains unclear. In the study, we explored whether EPCs modulated microglial/macrophage activity and facilitated injured brain repair. Adult male mice (n = 184) underwent transient middle cerebral artery occlusion, and EPCs were transplanted into the brain immediately after ischemia. Microglial/macrophage activity and complement receptor 3 (CR3) expression were evaluated in ischemic brains and cultured microglia. CR3 agonist leukadherin-1 was administrated into mice immediately after ischemia to imitate the effects of EPCs. Synaptophysin and postsynaptic density protein 95 (PSD-95) expressions were detected in EPC- and leukadherin-1 treated mice. We found that EPC transplantation increased the number of M2 microglia/macrophage-phagocytizing apoptotic cells and CR3 expression in ischemic brains at 3 days after ischemia (p < 0.05). EPC-conditional medium or cultured EPCs increased microglial migration and phagocytosis and upregulated CR3 expression in cultured microglia under oxygen-glucose deprivation condition (p < 0.05). Leukadherin-1 reduced brain atrophy volume and neurological deficits at 14 days after ischemia (p < 0.05). Both EPC transplantation and leukadherin-1 increased synaptophysin and PSD-95 expression at 14 days after ischemia (p < 0.05). EPC transplantation promoted CR3-mediated microglial/macrophage phagocytosis and subsequently attenuated synaptic loss. Our study provided a novel therapeutic mechanism for EPCs.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital, Fudan University,
Shanghai, China
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| | - Ze Liu
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| | - Lu Jiang
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| | - Liping Wang
- Department of Neurology, Renji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| | - Yanqun Liu
- Department of Neurology, Changhai Hospital, Second Military
Medical University, Shanghai, China
| | - Yongting Wang
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University,
Shanghai, China
| | - Zhijun Zhang
- Department of Neurology, Ruijin Hospital, School of Medicine and
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai,
China
| |
Collapse
|
11
|
Rotshenker S. Galectin-3 (MAC-2) controls phagocytosis and macropinocytosis through intracellular and extracellular mechanisms. Front Cell Neurosci 2022; 16:949079. [PMID: 36274989 PMCID: PMC9581057 DOI: 10.3389/fncel.2022.949079] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Galectin-3 (Gal-3; formally named MAC-2) is a β-galactoside-binding lectin. Various cell types produce Gal-3 under either normal conditions and/or pathological conditions. Gal-3 can be present in cells' nuclei and cytoplasm, secreted from producing cells, and associated with cells' plasma membranes. This review focuses on how Gal-3 controls phagocytosis and macropinocytosis. Intracellular and extracellular Gal-3 promotes the phagocytosis of phagocytic targets/cargo (e.g., tissue debris and apoptotic cells) in “professional phagocytes” (e.g., microglia and macrophages) and “non-professional phagocytes” (e.g., Schwann cells and astrocytes). Intracellularly, Gal-3 promotes phagocytosis by controlling the “eat me” signaling pathways that phagocytic receptors generate, directing the cytoskeleton to produce the mechanical forces that drive the structural changes on which phagocytosis depends, protrusion and then retraction of filopodia and lamellipodia as they, respectively, engulf and then internalize phagocytic targets. Extracellularly, Gal-3 promotes phagocytosis by functioning as an opsonin, linking phagocytic targets to phagocytic receptors, activating them to generate the “eat me” signaling pathways. Macropinocytosis is a non-selective endocytic mechanism that various cells use to internalize the bulk of extracellular fluid and included materials/cargo (e.g., dissolved nutrients, proteins, and pathogens). Extracellular and intracellular Gal-3 control macropinocytosis in some types of cancer. Phagocytosed and macropinocytosed targets/cargo that reach lysosomes for degradation may rupture lysosomal membranes. Damaged lysosomal membranes undergo either repair or removal by selective autophagy (i.e., lysophagy) that intracellular Gal-3 controls.
Collapse
|
12
|
Kühl B, Beyerbach M, Baumgärtner W, Gerhauser I. Characterization of microglia/macrophage phenotypes in the spinal cord following intervertebral disc herniation. Front Vet Sci 2022; 9:942967. [PMID: 36262531 PMCID: PMC9574228 DOI: 10.3389/fvets.2022.942967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Dogs frequently suffer from traumatic spinal cord injury (SCI). Most cases of SCI have a favorable prognosis but 40-50% of dogs with paraplegia and absence of nociception do not regain ambulatory abilities, eventually leading to euthanasia. Microglia and infiltrating macrophages play a crucial role in inflammatory process after SCI. However, little is known about microglia/macrophage phenotypes representing a potential target for future therapeutic strategies. In the present study, the microglia/macrophage phenotype was characterized by immunohistochemistry in the morphologically unaltered canine spinal cord (10 control dogs) and during acute and subacute SCI (1-4 and 5-10 days post injury, 9 and 8 dogs, respectively) using antibodies directed against IBA1, MAC387, MHC-II, lysozyme, EGR2, myeloperoxidase, CD18, CD204 and lectin from Griffonia simplicifolia (BS-1). The expression of these markers was also analyzed in the spleen as reference for the phenotype of histiocytic cells. Histological lesions were absent in controls. In acute SCI, 4 dogs showed mild to moderate hemorrhages, 2 dogs bilateral gray matter necrosis and 6 dogs mild multifocal axonal swellings and myelin sheath dilation. One dog with acute SCI did not show histological alterations except for few dilated myelin sheaths. In subacute SCI, variable numbers of gitter cells, axonal changes and dilated myelin sheaths were present in all dogs and large areas of tissue necrosis in 2 dogs. Neuronal chromatolysis was found in 3 dogs with acute and subacute SCI, respectively. In control dogs, microglia/macrophage constitutively expressed IBA1 and rarely other markers. In acute SCI, a similar marker expression was found except for an increase in MAC387-positive cells in the spinal cord white matter due to an infiltration of few blood-borne macrophages. In subacute SCI, increased numbers of microglia/macrophages expressed CD18, CD204 and MHC-II in the gray matter SCI indicating enhanced antigen recognition, processing and presentation as well as cell migration and phagocytosis during this stage. Interestingly, only CD204-positive cells were upregulated in the white matter, which might be related to gray-white matter heterogeneity of microglia as previously described in humans. The present findings contribute to the understanding of the immunological processes during SCI in a large animal model for human SCI.
Collapse
Affiliation(s)
- Bianca Kühl
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Martin Beyerbach
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany,*Correspondence: Wolfgang Baumgärtner
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
13
|
Hammel G, Zivkovic S, Ayazi M, Ren Y. Consequences and mechanisms of myelin debris uptake and processing by cells in the central nervous system. Cell Immunol 2022; 380:104591. [PMID: 36030093 DOI: 10.1016/j.cellimm.2022.104591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Central nervous system (CNS) disorders and trauma involving changes to the neuronal myelin sheath have long been a topic of great interest. One common pathological change in these diseases is the generation of myelin debris resulting from the breakdown of the myelin sheath. Myelin debris contains many inflammatory and neurotoxic factors that inhibit remyelination and make its clearance a prerequisite for healing in CNS disorders. Many professional and semiprofessional phagocytes participate in the clearance of myelin debris in the CNS. These cells use various mechanisms for the uptake of myelin debris, and each cell type produces its own unique set of pathologic consequences resulting from the debris uptake. Examining these cells' phagocytosis of myelin debris will contribute to a more complete understanding of CNS disease pathogenesis and help us conceptualize how the necessary clearance of myelin debris must be balanced with the detrimental consequences brought about by its clearance.
Collapse
Affiliation(s)
- Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|
14
|
Jansen MI, Thomas Broome S, Castorina A. Exploring the Pro-Phagocytic and Anti-Inflammatory Functions of PACAP and VIP in Microglia: Implications for Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23094788. [PMID: 35563181 PMCID: PMC9104531 DOI: 10.3390/ijms23094788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory and demyelinating disease of the central nervous system (CNS), characterised by the infiltration of peripheral immune cells, multifocal white-matter lesions, and neurodegeneration. In recent years, microglia have emerged as key contributors to MS pathology, acting as scavengers of toxic myelin/cell debris and modulating the inflammatory microenvironment to promote myelin repair. In this review, we explore the role of two neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP), as important regulators of microglial functioning during demyelination, myelin phagocytosis, and remyelination, emphasising the potential of these neuropeptides as therapeutic targets for the treatment of MS.
Collapse
|
15
|
Peterson SL, Li Y, Sun CJ, Wong KA, Leung KS, de Lima S, Hanovice NJ, Yuki K, Stevens B, Benowitz LI. Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve. J Neurosci 2021; 41:8508-8531. [PMID: 34417332 PMCID: PMC8513703 DOI: 10.1523/jneurosci.0555-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Axon regenerative failure in the mature CNS contributes to functional deficits following many traumatic injuries, ischemic injuries, and neurodegenerative diseases. The complement cascade of the innate immune system responds to pathogen threat through inflammatory cell activation, pathogen opsonization, and pathogen lysis, and complement is also involved in CNS development, neuroplasticity, injury, and disease. Here, we investigated the involvement of the classical complement cascade and microglia/monocytes in CNS repair using the mouse optic nerve injury (ONI) model, in which axons arising from retinal ganglion cells (RGCs) are disrupted. We report that central complement C3 protein and mRNA, classical complement C1q protein and mRNA, and microglia/monocyte phagocytic complement receptor CR3 all increase in response to ONI, especially within the optic nerve itself. Importantly, genetic deletion of C1q, C3, or CR3 attenuates RGC axon regeneration induced by several distinct methods, with minimal effects on RGC survival. Local injections of C1q function-blocking antibody revealed that complement acts primarily within the optic nerve, not retina, to support regeneration. Moreover, C1q opsonizes and CR3+ microglia/monocytes phagocytose growth-inhibitory myelin debris after ONI, a likely mechanism through which complement and myeloid cells support axon regeneration. Collectively, these results indicate that local optic nerve complement-myeloid phagocytic signaling is required for CNS axon regrowth, emphasizing the axonal compartment and highlighting a beneficial neuroimmune role for complement and microglia/monocytes in CNS repair.SIGNIFICANCE STATEMENT Despite the importance of achieving axon regeneration after CNS injury and the inevitability of inflammation after such injury, the contributions of complement and microglia to CNS axon regeneration are largely unknown. Whereas inflammation is commonly thought to exacerbate the effects of CNS injury, we find that complement proteins C1q and C3 and microglia/monocyte phagocytic complement receptor CR3 are each required for retinal ganglion cell axon regeneration through the injured mouse optic nerve. Also, whereas studies of optic nerve regeneration generally focus on the retina, we show that the regeneration-relevant role of complement and microglia/monocytes likely involves myelin phagocytosis within the optic nerve. Thus, our results point to the importance of the innate immune response for CNS repair.
Collapse
Affiliation(s)
- Sheri L Peterson
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Yiqing Li
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong China, 510060
| | - Christina J Sun
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Kimberly A Wong
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kylie S Leung
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Silmara de Lima
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Nicholas J Hanovice
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kenya Yuki
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, and
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
16
|
Lamers C, Plüss CJ, Ricklin D. The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front Immunol 2021; 12:662164. [PMID: 33995387 PMCID: PMC8118671 DOI: 10.3389/fimmu.2021.662164] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
The β2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMβ2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.
Collapse
Affiliation(s)
- Christina Lamers
- Molecular Pharmacy Unit, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
17
|
Liu Y, Hammel G, Shi M, Cheng Z, Zivkovic S, Wang X, Xu P, He X, Guo B, Ren Y, Zuo L. Myelin Debris Stimulates NG2/CSPG4 Expression in Bone Marrow-Derived Macrophages in the Injured Spinal Cord. Front Cell Neurosci 2021; 15:651827. [PMID: 33815067 PMCID: PMC8017290 DOI: 10.3389/fncel.2021.651827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Although the increased expression of members of the chondroitin sulfate proteoglycan family, such as neuron-glial antigen 2 (NG2), have been well documented after an injury to the spinal cord, a complete picture as to the cellular origins and function of this NG2 expression has yet to be made. Using a spinal cord injury (SCI) mouse model, we describe that some infiltrated bone marrow-derived macrophages (BMDMΦ) are early contributors to NG2/CSPG4 expression and secretion after SCI. We demonstrate for the first time that a lesion-related form of cellular debris generated from damaged myelin sheaths can increase NG2/CSPG4 expression in BMDMΦ, which then exhibit enhanced proliferation and decreased phagocytic capacity. These results suggest that BMDMΦ may play a much more nuanced role in secondary spinal cord injury than previously thought, including acting as early contributors to the NG2 component of the glial scar.
Collapse
Affiliation(s)
- Yang Liu
- Department of Immunology, Guizhou Medical University, Guiyang, China.,Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.,Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Minjun Shi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.,Department of Pathology, Guizhou Medical University, Guiyang, China
| | - Zhijian Cheng
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.,Department of Orthopedics, The Second Affiliated Hospital of Xian Jiaotong University, Xian, China
| | - Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Xiaoqi Wang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Pingyi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xian Jiaotong University, Xian, China
| | - Bing Guo
- Department of Pathology, Guizhou Medical University, Guiyang, China
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Li Zuo
- Department of Immunology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
18
|
Wan B, Li C, Wang M, Kong F, Ding Q, Zhang C, Liu H, Qian D, Deng W, Chen J, Tang P, Wang Q, Zhao S, Zhou Z, Xu T, Huang Y, Gu J, Fan J, Yin G. GIT1 protects traumatically injured spinal cord by prompting microvascular endothelial cells to clear myelin debris. Aging (Albany NY) 2021; 13:7067-7083. [PMID: 33621952 PMCID: PMC7993661 DOI: 10.18632/aging.202560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
The clearance of myelin debris is a critical step in the functional recovery following spinal cord injury (SCI). As phagocytes do, microvascular endothelial cells (MECs) participate in myelin debris clearance at the injury site within one week. Our group has verified that G protein-coupled receptor kinase 2 interacting protein-1 (GIT1) is essential in autophagy and angiogenesis, both of which are tightly related to the uptake and degradation of myelin debris by MECs. Here, we analyzed the performance and mechanism of GIT1 in myelin debris clearance after SCI. The SCI contusion model was established and in vitro MECs were treated with myelin debris. Better recovery from traumatic SCI was observed in the GIT1 WT mice than in the GIT1 KO mice. More importantly, we found that GIT1 prompted MECs to clear myelin debris and further enhanced MECs angiogenesis in vivo and in vitro. Mechanistically, GIT1-mediated autophagy contributed to the clearance of myelin debris by MECs. In this study, we demonstrated that GIT1 may prompt MECs to clear myelin debris via autophagy and further stimulate MECs angiogenesis via upregulating VEGF. Our results indicate that GITI may serve as a promising target for accelerating myelin debris clearance and improving SCI recovery.
Collapse
Affiliation(s)
- Bowen Wan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Wang
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fanqi Kong
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Qirui Ding
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenliang Zhang
- Department of Orthopedics, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian 223600, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dingfei Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenlin Deng
- Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Pengyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qian Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yifan Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Gu
- Department of Orthopedics, Xishan People's Hospital, Wuxi 214000, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
19
|
Yuan Y, Wu C, Ling EA. Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations. Curr Pharm Des 2020; 25:2375-2393. [PMID: 31584369 DOI: 10.2174/1381612825666190722114248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies. METHODS Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed. RESULTS Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds. CONCLUSION Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore
| |
Collapse
|
20
|
Liu Y, Wu C, Hou Z, Fu X, Yuan L, Sun S, Zhang H, Yang D, Yao X, Yang J. Pseudoginsenoside-F11 Accelerates Microglial Phagocytosis of Myelin Debris and Attenuates Cerebral Ischemic Injury Through Complement Receptor 3. Neuroscience 2020; 426:33-49. [DOI: 10.1016/j.neuroscience.2019.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
|
21
|
Elberg G, Liraz-Zaltsman S, Reichert F, Matozaki T, Tal M, Rotshenker S. Deletion of SIRPα (signal regulatory protein-α) promotes phagocytic clearance of myelin debris in Wallerian degeneration, axon regeneration, and recovery from nerve injury. J Neuroinflammation 2019; 16:277. [PMID: 31883525 PMCID: PMC6935070 DOI: 10.1186/s12974-019-1679-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recovery of function from traumatic nerve injury depends on the ability of severed axons to grow/regenerate back to their target tissues. This is achieved by successfully crossing the lesion site where physical impact severed axons, determined by the type of trauma, followed by successfully growing throughout the Wallerian degenerating nerve segment located distal to and beyond the lesion site, determined by the nature of Wallerian degeneration. The protracted removal of myelin debris in Wallerian degeneration, which leads residual myelin debris to slow down axon growth, impedes recovery of function. We focused in this study on mechanism(s) that delay the removal of myelin debris in Wallerian degeneration and so impede recovery. Previously, we showed that myelin debris inhibited its own phagocytosis in primary cultured macrophages and microglia as CD47 on myelin ligated SIRPα (signal regulatory protein-α) on phagocytes, and sequentially, SIRPα generated "don't eat me" signaling. We also demonstrated that serum inhibited phagocytosis in a SIRPα-dependent manner. Herein, we aimed to determine whether SIRPα-dependent inhibition of phagocytosis in macrophages impedes the in vivo removal of myelin debris in Wallerian degeneration, further leading to impaired healing. METHODS Using SIRPα null (SIRPα-/-) and littermate wild-type (SIRPα+/+) mice, we studied the recovery of sensory and motor functions from nerve injury and, further, axon regeneration, SIRPα expression, myelin debris removal, and the phagocytic capacity and presence of macrophages in Wallerian degeneration. RESULTS Myelin debris removal, axon regeneration, and the recovery of functions were all faster in SIRPα-/- mice than in wild-type mice. Between the two cell types that mostly scavenge myelin debris, macrophages but not Schwann cells expressed SIRPα in wild-type mice, and furthermore, SIRPα-/- macrophages phagocytosed significantly more than wild-type macrophages. CONCLUSIONS Our findings suggest an intrinsic normally occurring SIRPα-dependent mechanism that impedes the in vivo removal of myelin debris in Wallerian degeneration by inhibiting the phagocytosis of myelin debris in macrophages, hence preventing fast growing axons from fully implementing their regenerative potential. Thus, accelerating the removal of myelin debris by eliminating SIRPα-dependent inhibition of phagocytosis will most likely advance recovery of functions from nerve injury.
Collapse
Affiliation(s)
- Gerard Elberg
- Medical Neurobiology, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Kerem Campus, POB 12272, 91120, Jerusalem, Israel
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Kiryat Ono, Israel
- The Faculty of health profession, Ono Academic College, Kiryat Ono, Israel
- The Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Fanny Reichert
- Medical Neurobiology, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Kerem Campus, POB 12272, 91120, Jerusalem, Israel
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Michael Tal
- Medical Neurobiology, Faculties of Medicine and Dentistry, Center for Research on Pain, Hebrew University, Jerusalem, Israel
| | - Shlomo Rotshenker
- Medical Neurobiology, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Kerem Campus, POB 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
22
|
Zhu Z, Zheng L, Li Y, Huang T, Chao YC, Pan L, Zhu H, Zhao Y, Yu W, Li P. Potential Immunotherapeutic Targets on Myeloid Cells for Neurovascular Repair After Ischemic Stroke. Front Neurosci 2019; 13:758. [PMID: 31447626 PMCID: PMC6696904 DOI: 10.3389/fnins.2019.00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Neurological deficits and cognitive dysfunctions caused by acute ischemic stroke pose enormous burden to the stroke families and the communities. Restoration of the normal function of the neurovascular unit following ischemic stroke is critical for improving neurological recovery and cognitive functions after stroke. Recent evidence suggests that the myeloid cells including both the resident microglia and infiltrating monocytes/macrophages and neutrophils are highly plastic in response to the environmental cues. They intimately interact with multiple components of the neurovascular unit in response to the alarmins, danger associated pattern molecules (DAMPs) and other signals released from the ischemic brain. The aim of this review is to discuss the reciprocal interactions between the myeloid cells and the ischemic neurovascular unit during the late repair phase of cerebral ischemic stroke. We also summarize potential immunotherapeutic targets on myeloid cells and new therapeutic approaches targeting myeloid cells, such as cell transplantation, mitochondrial dynamic and extracellular vesicles-based therapy et al to enhance neurovascular repair for better stroke recovery.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Chieh Chao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lijun Pan
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hui Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanhua Zhao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
23
|
Marin MA, Carmichael ST. Mechanisms of demyelination and remyelination in the young and aged brain following white matter stroke. Neurobiol Dis 2019; 126:5-12. [DOI: 10.1016/j.nbd.2018.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/03/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023] Open
|
24
|
Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro. Arch Toxicol 2019; 93:2007-2019. [PMID: 31073625 DOI: 10.1007/s00204-019-02471-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
Acrylamide, a soft electrophile, is widely used in the industry and laboratories, and also contaminates certain foods. Neurotoxicity and neurodegenerative effects of acrylamide have been reported in humans and experimental animals, although the underlying mechanism remains obscure. Activation of microglia and neuroinflammation has been demonstrated in various neurodegenerative diseases as well as other pathologies of the brain. The present study aimed to investigate the role of microglial activation and neuroinflammation in acrylamide neurotoxicity. Male 10-week-old Wistar rats were exposed to acrylamide by gavage at 0, 0.2, 2, or 20 mg/kg BW, once per day for 5 weeks. The results showed that 5-week exposure to acrylamide induced inflammatory responses in the cerebral cortex, evident by upregulated mRNA and protein expression of pro-inflammatory cytokines IL-1β, IL-6, and IL-18. Acrylamide also induced activation of microglia, indicated by increased expression of microglial markers, CD11b and CD40, and increased CD11b/c-positive microglial area and microglial process length. In vitro studies using BV-2 microglial cells confirmed microglial inflammatory response, as evident by time- (0-36 h; 50 μM) and dose- (0-500 μM; 24 h) dependent increase in mRNA expression of IL-1β and IL-18, as well as the inflammatory marker iNOS. Furthermore, acrylamide-induced upregulation of pro-inflammatory cytokines was mediated through the NLRP3 inflammasome pathway, as evident by increased expression of NLRP3, caspase 1, and ASC in the rat cerebral cortex, and by the inhibitory effects of NLRP3 inflammasome inhibitor on the acrylamide-induced upregulation of NLRP3, caspase 1, IL-1β, and IL-18 in BV-2 microglia.
Collapse
|
25
|
Milich LM, Ryan CB, Lee JK. The origin, fate, and contribution of macrophages to spinal cord injury pathology. Acta Neuropathol 2019; 137:785-797. [PMID: 30929040 PMCID: PMC6510275 DOI: 10.1007/s00401-019-01992-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
Virtually all phases of spinal cord injury pathogenesis, including inflammation, cell proliferation and differentiation, as well as tissue remodeling, are mediated in part by infiltrating monocyte-derived macrophages. It is now clear that these infiltrating macrophages have distinct functions from resident microglia and are capable of mediating both harmful and beneficial effects after injury. These divergent effects have been largely attributed to environmental cues, such as specific cytokines, that influence the macrophage polarization state. In this review, we also consider the possibility that different macrophage origins, including the spleen, bone marrow, and local self-renewal, may also affect macrophage fate, and ultimately their function that contribute to the complex pathobiology of spinal cord injury.
Collapse
Affiliation(s)
- Lindsay M Milich
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Christine B Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
26
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Reichert F, Rotshenker S. Galectin-3 (MAC-2) Controls Microglia Phenotype Whether Amoeboid and Phagocytic or Branched and Non-phagocytic by Regulating the Cytoskeleton. Front Cell Neurosci 2019; 13:90. [PMID: 30930748 PMCID: PMC6427835 DOI: 10.3389/fncel.2019.00090] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/22/2019] [Indexed: 11/13/2022] Open
Abstract
Myelin surrounding central nervous system (CNS) axons breaks down in multiple sclerosis (MS) and following traumatic axonal injury. Myelin-debris so produced is harmful to repair since it impedes remyelination in MS and the regeneration of traumatized axons. These devastating outcomes are largely due to inefficient removal by phagocytosis of myelin-debris by microglia. Therefore, revealing mechanisms that control phagocytosis is vital. We previously showed that in phagocytosis, filopodia and lamellipodia extend/engulf and then retract/internalize myelin-debris. Moreover, cofilin activates phagocytosis by advancing the remodeling of actin filaments (i.e., existing filaments disassemble and new filaments assemble in a new configuration), causing filopodia/lamellipodia to protrude, and furthermore, Galectin-3 (formally named MAC-2) activates phagocytosis by enhancing K-Ras.GTP/PI3K signaling that leads to actin/myosin-based contraction, causing filopodia/lamellipodia to retract. To understand further how Galectin-3 controls phagocytosis we knocked-down (KD) Galectin-3 expression in cultured primary microglia using Galectin-3 small-hairpin RNA (Gal-3-shRNA). KD Galectin-3 protein levels reduced phagocytosis extensively. Further, inhibiting nucleolin (NCL) and nucleophosmin (NPM), which advance K-Ras signaling as does Galectin-3, also reduced phagocytosis. Strikingly and unexpectedly, knocking down Galectin-3 resulted in a dramatic transformation of microglia morphology from “amoeboid-like” to “branched-like,” rearrangement of actin filaments and inactivation of cofilin. Thus, Galectin-3 may control microglia morphology and phagocytosis by regulating the activation state of cofilin, which, in turn, affects how actin filaments organize and how stable they are. Furthermore, our current and previous findings together suggest that Galectin-3 activates phagocytosis by targeting the cytoskeleton twice: first, by advancing cofilin activation, causing filopodia/lamellipodia to extend/engulf myelin-debris. Second, by advancing actin/myosin-based contraction through K-Ras.GTP/PI3K signaling, causing filopodia/lamellipodia to retract/internalize myelin-debris.
Collapse
Affiliation(s)
- Fanny Reichert
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Shlomo Rotshenker
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
28
|
Caillaud M, Richard L, Vallat JM, Desmoulière A, Billet F. Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res 2019; 14:24-33. [PMID: 30531065 PMCID: PMC6263011 DOI: 10.4103/1673-5374.243699] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peripheral nerves are particularly vulnerable to injuries and are involved in numerous pathologies for which specific treatments are lacking. This review summarizes the pathophysiological features of the most common traumatic nerve injury in humans and the different animal models used in nerve regeneration studies. The current knowledge concerning Wallerian degeneration and nerve regrowth is then described. Finally, the involvement of intraneural vascularization in these processes is addressed. As intraneural vascularization has been poorly studied, histological experiments were carried out from rat sciatic nerves damaged by a glycerol injection. The results, taken together with the data from literature, suggest that revascularization plays an important role in peripheral nerve regeneration and must therefore be studied more carefully.
Collapse
Affiliation(s)
- Martial Caillaud
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, Limoges, France
| | - Laurence Richard
- University Hospital of Limoges, Department of Neurology, "Reference Center for Rare Peripheral Neuropathies", Department of Neurology, Limoges, France
| | - Jean-Michel Vallat
- University Hospital of Limoges, Department of Neurology, "Reference Center for Rare Peripheral Neuropathies", Department of Neurology, Limoges, France
| | - Alexis Desmoulière
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, Limoges, France
| | - Fabrice Billet
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, Limoges, France
| |
Collapse
|
29
|
Human IgM antibody rHIgM22 promotes phagocytic clearance of myelin debris by microglia. Sci Rep 2018; 8:9392. [PMID: 29925848 PMCID: PMC6010437 DOI: 10.1038/s41598-018-27559-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
In multiple sclerosis (MS), demyelinated CNS lesions fail to sufficiently remyelinate, despite the presence of oligodendrocyte precursor cells (OPCs) capable of differentiating into mature oligodendrocytes. MS lesions contain damaged myelin debris that can inhibit OPC maturation and hinder repair. rHIgM22 is an experimental human recombinant IgM antibody that promotes remyelination in animal models and is being examined in patients with MS. rHIgM22 binds to CNS myelin and partially rescues OPC process outgrowth on myelin. Since rHIgM22 does not affect OPC process outgrowth in vitro on permissive substrate, we examined the possibility that it acts by enhancing phagocytic clearance of myelin debris by microglia. In this study, we tested if rHIgM22 binding could tag myelin for microglial phagocytosis. A mouse microglial cell line and primary rat microglia were treated with myelin and rHIgM22 and assayed for myelin phagocytosis. We found that: 1) rHIgM22 stimulates myelin phagocytosis in a dose-dependent manner; 2) rHIgM22-mediated myelin phagocytosis requires actin polymerization; and 3) rHIgM22-stimulation of myelin phagocytosis requires activity of rHIgM22 Fc domain and activation of Complement Receptor 3. Since myelin inhibits OPC differentiation, stimulation of phagocytic clearance of damaged myelin may be an important means by which rHIgM22 promotes remyelination.
Collapse
|
30
|
Scott-Hewitt NJ, Folts CJ, Hogestyn JM, Piester G, Mayer-Pröschel M, Noble MD. Heterozygote galactocerebrosidase (GALC) mutants have reduced remyelination and impaired myelin debris clearance following demyelinating injury. Hum Mol Genet 2018; 26:2825-2837. [PMID: 28575206 DOI: 10.1093/hmg/ddx153] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies are identifying multiple genetic risk factors for several diseases, but the functional role of these changes remains mostly unknown. Variants in the galactocerebrosidase (GALC) gene, for example, were identified as a risk factor for Multiple Sclerosis (MS); however, the potential biological relevance of GALC variants to MS remains elusive. We found that heterozygote GALC mutant mice have reduced myelin debris clearance and diminished remyelination after a demyelinating insult. We found no histological or behavioral differences between adult wild-type and GALC +/- animals under normal conditions. Following exposure to the demyelinating agent cuprizone, however, GALC +/- animals had significantly reduced remyelination during recovery. In addition, the microglial phagocytic response and elevation of Trem2, both necessary for clearing damaged myelin, were markedly reduced in GALC +/- animals. These altered responses could be corrected in vitro by treatment with NKH-477, a compound discovered as protective in our previous studies on Krabbe disease, which is caused by mutations in both GALC alleles. Our data are the first to show remyelination defects in individuals with a single mutant GALC allele, suggesting such carriers may have increased vulnerability to myelin damage following injury or disease due to inefficient myelin debris clearance. We thus provide a potential functional link between GALC variants and increased MS susceptibility, particularly due to the failure of remyelination associated with progressive MS. Finally, this work demonstrates that genetic variants identified through genome-wide association studies may contribute significantly to complex diseases, not by driving initial symptoms, but by altering repair mechanisms.
Collapse
Affiliation(s)
- Nicole J Scott-Hewitt
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Christopher J Folts
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jessica M Hogestyn
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Gavin Piester
- Department of Biochemistry, University of Rochester, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mark D Noble
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
31
|
Scott-Hewitt NJ, Folts CJ, Noble MD. Heterozygous carriers of galactocerebrosidase mutations that cause Krabbe disease have impaired microglial function and defective repair of myelin damage. Neural Regen Res 2018; 13:393-401. [PMID: 29623914 PMCID: PMC5900492 DOI: 10.4103/1673-5374.228712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review addresses two puzzling findings related to mutations in galactocerebrosidase (GALC) that cause Krabbe disease (KD), a severe lysosomal storage disorder characterized by extensive myelin damage in children with mutations in both GALC alleles. First, heterozygous carriers of KD-causing mutations, which include the biological parents of children with KD, exhibit increased risk for developing other diseases. Second, variants in the GALC locus increase the risk of developing multiple sclerosis (MS), another disease characterized by extensive myelin damage. What explains these correlations? In studies on cuprizone-induced myelin damage in heterozygous (GALC+/–) mice carrying one copy of a mutation that causes KD-like disease, the extent of damage was similar in GALC+/– and wild-type (WT) mice. In contrast, GALC+/- mice had striking defects in repair of cuprizone-induced damage. We further found unexpected microglial defects in myelin debris clearance and in the ability to up-regulate the Trem2 microglial protein critical for debris uptake. These defects were rescued by exposure to a lysosomal re-acidifying drug discovered in our studies on KD, and which provides multiple clinically relevant benefits in the twitcher (GALC+/–) mouse model of KD. Thus, heterozygous GALC mutations cause effects on biological function that may help to understand the increased disease risk in heterozygous carriers of such mutations and to understand why GALC variations increase the risk of MS. Our findings indicate that while some genetic risk factors may contribute to complex diseases by increasing the risk of tissue damage, others may do so by compromising tissue repair.
Collapse
Affiliation(s)
- Nicole J Scott-Hewitt
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Christopher J Folts
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mark D Noble
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
32
|
Ouyang QQ, Zhao S, Li SD, Song C. Application of Chitosan, Chitooligosaccharide, and Their Derivatives in the Treatment of Alzheimer's Disease. Mar Drugs 2017; 15:E322. [PMID: 29112116 PMCID: PMC5706020 DOI: 10.3390/md15110322] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Classic hypotheses of Alzheimer's disease (AD) include cholinergic neuron death, acetylcholine (ACh) deficiency, metal ion dynamic equilibrium disorder, and deposition of amyloid and tau. Increased evidence suggests neuroinflammation and oxidative stress may cause AD. However, none of these factors induces AD independently, but they are all associated with the formation of Aβ and tau proteins. Current clinical treatments based on ACh deficiency can only temporarily relieve symptoms, accompanied with many side-effects. Hence, searching for natural neuroprotective agents, which can significantly improve the major symptoms and reverse disease progress, have received great attention. Currently, several bioactive marine products have shown neuroprotective activities, immunomodulatory and anti-inflammatory effects with low toxicity and mild side effects in laboratory studies. Recently, chitosan (CTS), chitooligosaccharide (COS) and their derivatives from exoskeletons of crustaceans and cell walls of fungi have shown neuroprotective and antioxidative effects, matrix metalloproteinase inhibition, anti-HIV and anti-inflammatory properties. With regards to the hypotheses of AD, the neuroprotective effect of CTS, COS, and their derivatives on AD-like changes in several models have been reported. CTS and COS exert beneficial effects on cognitive impairments via inhibiting oxidative stress and neuroinflammation. They are also a new type of non-toxic β-secretase and AChE inhibitor. As neuroprotective agents, they could reduce the cell membrane damage caused by copper ions and decrease the content of reactive oxygen species. This review will focus on their anti-neuroinflammation, antioxidants and their inhibition of β-amyloid, acetylcholinesterase and copper ions adsorption. Finally, the limitations and future work will be discussed.
Collapse
Affiliation(s)
- Qian-Qian Ouyang
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China.
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shannon Zhao
- American Studies and Ethnicity, University of Southern California, Los Angeles, CA 90089, USA.
| | - Si-Dong Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
33
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
34
|
Hsieh CH, Rau CS, Kuo PJ, Liu SH, Wu CJ, Lu TH, Wu YC, Lin CW. Knockout of toll-like receptor impairs nerve regeneration after a crush injury. Oncotarget 2017; 8:80741-80756. [PMID: 29113341 PMCID: PMC5655236 DOI: 10.18632/oncotarget.20206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/12/2017] [Indexed: 01/01/2023] Open
Abstract
Background Toll-like receptors (TLRs) are involved in the initiation of Schwann cell activation and subsequent recruitment of macrophages for clearance of degenerated myelin and neuronal debris after nerve injury. The present study was designed to investigate the regenerative outcome and expression of myelination-related factors in Tlr-knockout mice following a sciatic nerve crush injury. Materials and methods A standard sciatic nerve crush injury, induced by applying constant pressure to the nerve with a No. 5 jeweler's forceps for 30 s, was performed in C57BL/6, Tlr2−/−, Tlr3−/−, Tlr4−/−, Tlr5−/−, and Tlr7−/− mice. Quantitative histomorphometric analysis of toluidine blue-stained nerve specimens and walking track analysis were performed to evaluate nerve regeneration outcomes. PCR Arrays were used to detect the expression of neurogenesis-related genes of dorsal root ganglia as well as of myelination-related genes of the distal nerve segments. Results Worse nerve regeneration after nerve crush injury was found in all Tlr-knockout mice than in C57BL/6 mice. Delayed expression of myelin genes and a different expression pattern of myelination-related neurotrophin genes and transcription factors were found in Tlr-knockout mice in comparison to C57BL/6 mice. In these TLR-mediated pathways, insulin-like growth factor 2 and brain-derived neurotrophic factor, as well as early growth response 2 and N-myc downstream-regulated gene 1, were significantly decreased in the early and late stages, respectively, of nerve regeneration after a crush injury. Conclusions Knockout of Tlr genes decreases the expression of myelination-related factors and impairs nerve regeneration after a sciatic nerve crush injury.
Collapse
Affiliation(s)
- Ching-Hua Hsieh
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pao-Jen Kuo
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Hsuan Liu
- Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Chia-Jung Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Hsiang Lu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chan Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Lin
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
35
|
Kopper TJ, Gensel JC. Myelin as an inflammatory mediator: Myelin interactions with complement, macrophages, and microglia in spinal cord injury. J Neurosci Res 2017; 96:969-977. [PMID: 28696010 DOI: 10.1002/jnr.24114] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) triggers chronic intraspinal inflammation consisting of activated resident and infiltrating immune cells (especially microglia/macrophages). The environmental factors contributing to this protracted inflammation are not well understood; however, myelin lipid debris is a hallmark of SCI. Myelin is also a potent macrophage stimulus and target of complement-mediated clearance and inflammation. The downstream effects of these neuroimmune interactions have the potential to contribute to ongoing pathology or facilitate repair. This depends in large part on whether myelin drives pathological or reparative macrophage activation states, commonly referred to as M1 (proinflammatory) or M2 (alternatively) macrophages, respectively. Here we review the processes by which myelin debris may be cleared through macrophage surface receptors and the complement system, how this differentially influences macrophage and microglial activation states, and how the cellular functions of these myelin macrophages and complement proteins contribute to chronic inflammation and secondary injury after SCI.
Collapse
Affiliation(s)
- Timothy J Kopper
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
36
|
Chiang PL, Chen HL, Lu CH, Chen PC, Chen MH, Yang IH, Tsai NW, Lin WC. White matter damage and systemic inflammation in Parkinson's disease. BMC Neurosci 2017; 18:48. [PMID: 28595572 PMCID: PMC5465562 DOI: 10.1186/s12868-017-0367-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 05/31/2017] [Indexed: 01/02/2023] Open
Abstract
Background Systemic inflammation and white matter (WM) alterations have been noted as effects of Parkinson’s disease (PD). This study sought to evaluate WM integrity in PD patients using diffusion tensor imaging (DTI) and to assess its relationship with systemic inflammation. Methods Sixty-six patients with PD (23 men and 43 women) and 67 healthy volunteers (29 men and 38 women) underwent blood sampling to quantify inflammatory markers and DTI scans to determine fiber integrity. The inflammatory markers included leukocyte apoptosis, as well as cellular and serum adhesion molecules, in each peripheral blood sample. DTI-related indices [including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] were derived from DTI scans. The resulting FA maps were compared using voxel-based statistics to determine differences between the PD and control groups. The differences in the DTI indices, clinical severity, and inflammatory markers were correlated. Results Exploratory group-wise comparison between the two groups revealed that the PD patients exhibited extensive DTI index differences. Low FA accompanied by high RD and MD, without significant differences in AD, suggesting a demyelination process, were found in the parietal, occipital, cerebellar, and insular WM of the PD patients. The declined DTI indices were significantly correlated with increased clinical disease severity, adhesion molecules, and leukocyte apoptosis. Conclusions Patients with PD experience WM integrity damage in vulnerable regions, and these impairments are associated with increased disease severity and systemic inflammation. The possible interactions among them may represent variant neuronal injuries and their consequent processes in PD. Electronic supplementary material The online version of this article (doi:10.1186/s12868-017-0367-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pi-Ling Chiang
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Chin Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - I-Hsiao Yang
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Nai-Wen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan.
| |
Collapse
|
37
|
Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Layé S, Leyrolle Q, Gómez-Nicola D, Domercq M, Pérez-Samartín A, Sánchez-Zafra V, Paris I, Valero J, Savage JC, Hui CW, Tremblay MÈ, Deudero JJP, Brewster AL, Anderson AE, Zaldumbide L, Galbarriatu L, Marinas A, Vivanco MDM, Matute C, Maletic-Savatic M, Encinas JM, Sierra A. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling. PLoS Biol 2016; 14:e1002466. [PMID: 27228556 PMCID: PMC4881984 DOI: 10.1371/journal.pbio.1002466] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/21/2016] [Indexed: 12/24/2022] Open
Abstract
Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders. Phagocytosis by microglia is tightly coupled to apoptosis, swiftly removing apoptotic cells and actively maintaining tissue homeostasis, but the neuronal hyperactivity associated with epilepsy disrupts the ATP gradients that drive phagocytosis, leading to the accumulation of apoptotic cells and inflammation. Phagocytosis, the engulfment and digestion of cellular debris, is at the core of the regenerative response of the damaged tissue, because it prevents the spillover of toxic intracellular contents and is actively anti-inflammatory. In the brain, the professional phagocytes are microglia, whose dynamic processes rapidly engulf and degrade cells undergoing apoptosis—programmed cell death—in physiological conditions. Thus, microglia hold the key to brain regeneration, but their efficiency as phagocytes in the diseased brain is only presumed. Here, we have discovered a generalized response of microglia to apoptotic challenge induced by excitotoxicity and inflammation, in which they boost their phagocytic efficiency to account for the increase in apoptosis. To our surprise, this apoptosis/microglial phagocytosis coupling was lost in the hippocampus from human and experimental mesial temporal lobe epilepsy (MTLE), a major neurodegenerative disorder characterized by excitotoxicity, inflammation, and seizures. This uncoupling was due to widespread ATP release during neuronal hyperactivity, which “blinded” microglia to the ATP microgradients released by apoptotic cells as “find-me” signals. The impairment of phagocytosis led to the accumulation of apoptotic cells and the build-up of a detrimental inflammatory reaction. Our data advocates for systematic assessment of the efficiency of microglial phagocytosis in brain disorders.
Collapse
Affiliation(s)
- Oihane Abiega
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Sol Beccari
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Irune Diaz-Aparicio
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | | | - Sophie Layé
- Université Bordeaux Segalen, Bordeaux, France
| | | | - Diego Gómez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - María Domercq
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Alberto Pérez-Samartín
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Víctor Sánchez-Zafra
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Iñaki Paris
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Jorge Valero
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Julie C. Savage
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada
- Université Laval, Département de médecine moléculaire, Québec, Canada
| | - Chin-Wai Hui
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada
- Université Laval, Département de médecine moléculaire, Québec, Canada
| | - Marie-Ève Tremblay
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada
- Université Laval, Département de médecine moléculaire, Québec, Canada
| | - Juan J. P. Deudero
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
| | - Amy L. Brewster
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
| | - Anne E. Anderson
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
| | | | | | | | | | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | | | - Juan M. Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Gordon T. Nerve Regeneration: Understanding Biology and Its Influence on Return of Function After Nerve Transfers. Hand Clin 2016; 32:103-17. [PMID: 27094884 DOI: 10.1016/j.hcl.2015.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Poor functional outcomes are frequent after peripheral nerve injuries despite the regenerative support of Schwann cells. Motoneurons and, to a lesser extent, sensory neurons survive the injuries but outgrowth of axons across the injury site is slow. The neuronal regenerative capacity and the support of regenerating axons by the chronically denervated Schwann cells progressively declines with time and distance of the injury from the denervated targets. Strategies, including brief low-frequency electrical stimulation that accelerates target reinnervation and functional recovery, and the insertion of cross-bridges between a donor nerve and a recipient denervated nerve stump, are effective in promoting functional outcomes after complete and incomplete injuries.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Plastic Reconstructive Surgery, Department of Surgery, 06.9706 Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada.
| |
Collapse
|
39
|
Healy LM, Perron G, Won SY, Michell-Robinson MA, Rezk A, Ludwin SK, Moore CS, Hall JA, Bar-Or A, Antel JP. MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:3375-84. [PMID: 26962228 DOI: 10.4049/jimmunol.1502562] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Abstract
Multifocal inflammatory lesions featuring destruction of lipid-rich myelin are pathologic hallmarks of multiple sclerosis. Lesion activity is assessed by the extent and composition of myelin uptake by myeloid cells present in such lesions. In the inflamed CNS, myeloid cells are comprised of brain-resident microglia, an endogenous cell population, and monocyte-derived macrophages, which infiltrate from the systemic compartment. Using microglia isolated from the adult human brain, we demonstrate that myelin phagocytosis is dependent on the polarization state of the cells. Myelin ingestion is significantly enhanced in cells exposed to TGF-β compared with resting basal conditions and markedly reduced in classically activated polarized cells. Transcriptional analysis indicated that TGF-β-treated microglia closely resembled M0 cells. The tyrosine kinase phagocytic receptor MerTK was one of the most upregulated among a select number of differentially expressed genes in TGF-β-treated microglia. In contrast, MerTK and its known ligands, growth arrest-specific 6 and Protein S, were downregulated in classically activated cells. MerTK expression and myelin phagocytosis were higher in CNS-derived microglia than observed in monocyte-derived macrophages, both basally and under all tested polarization conditions. Specific MerTK inhibitors reduced myelin phagocytosis and the resultant anti-inflammatory biased cytokine responses for both cell types. Defining and modulating the mechanisms that regulate myelin phagocytosis has the potential to impact lesion and disease evolution in multiple sclerosis. Relevant effects would include enhancing myelin clearance, increasing anti-inflammatory molecule production by myeloid cells, and thereby permitting subsequent tissue repair.
Collapse
Affiliation(s)
- Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Gabrielle Perron
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - So-Yoon Won
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | - Ayman Rezk
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Samuel K Ludwin
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland A1B 3V6, Canada; and
| | - Jeffery A Hall
- Department of Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Amit Bar-Or
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada;
| |
Collapse
|
40
|
Xu C, Bai L, Chen Y, Fan C, Hu Z, Xu H, Jiang B. Effect of mutated defensin NP-1 on sciatic nerve regeneration after transection—A pivot study. Neurosci Lett 2016; 617:283-7. [DOI: 10.1016/j.neulet.2015.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022]
|
41
|
An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice. Proc Natl Acad Sci U S A 2015; 112:14319-24. [PMID: 26578778 DOI: 10.1073/pnas.1513698112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of complement is a key determinant of neuropathology and disability after traumatic brain injury (TBI), and inhibition is neuroprotective. However, systemic complement is essential to fight infections, a critical complication of TBI. We describe a targeted complement inhibitor, comprising complement receptor of the Ig superfamily (CRIg) fused with complement regulator CD59a, designed to inhibit membrane attack complex (MAC) assembly at sites of C3b/iC3b deposition. CRIg and CD59a were linked via the IgG2a hinge, yielding CD59-2a-CRIg dimer with increased iC3b/C3b binding avidity and MAC inhibitory activity. CD59-2a-CRIg inhibited MAC formation and prevented complement-mediated lysis in vitro. CD59-2a-CRIg dimer bound C3b-coated surfaces with submicromolar affinity (KD). In experimental TBI, CD59-2a-CRIg administered posttrauma homed to sites of injury and significantly reduced MAC deposition, microglial accumulation, mitochondrial stress, and axonal damage and enhanced neurologic recovery compared with placebo controls. CD59-2a-CRIg inhibited MAC-induced inflammasome activation and IL-1β production in microglia. Given the important anti-infection roles of complement opsonization, site-targeted inhibition of MAC should be considered to promote recovery postneurotrauma.
Collapse
|
42
|
Chen SH, Oyarzabal EA, Hong JS. Critical role of the Mac1/NOX2 pathway in mediating reactive microgliosis-generated chronic neuroinflammation and progressive neurodegeneration. Curr Opin Pharmacol 2015; 26:54-60. [PMID: 26498406 DOI: 10.1016/j.coph.2015.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023]
Abstract
As average life expectancy rises throughout the world, neurodegenerative diseases have emerged as one of the greatest global public heath challenges in modern times. Substantial efforts have been made in researching neurodegenerative diseases over the last few decades, yet their predominantly sporadic nature has made uncovering their etiologies challenging. Mounting evidence has suggested that factors like damage-associated molecular patterns (DAMPs) released by stressed and dying neurons are likely involved in disease pathology and in stimulating chronic activation of microglia that contributes to neuronal oxidative stress and degeneration. This review focuses on how the microglial integrin receptor Mac1 and its downstream effector NADPH oxidase (NOX2) contribute to maintaining chronic neuroinflammation and are crucial in inflammation-driven neurotoxicity in neurodegenerative diseases. Our hope is to provide new insights on novel targets and therapies that could slow or even halt neurodegeneration.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Esteban A Oyarzabal
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; Neurobiology Curriculum, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
43
|
Weinstein JR, Quan Y, Hanson JF, Colonna L, Iorga M, Honda SI, Shibuya K, Shibuya A, Elkon KB, Möller T. IgM-Dependent Phagocytosis in Microglia Is Mediated by Complement Receptor 3, Not Fcα/μ Receptor. THE JOURNAL OF IMMUNOLOGY 2015; 195:5309-17. [PMID: 26500348 DOI: 10.4049/jimmunol.1401195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/29/2015] [Indexed: 12/11/2022]
Abstract
Microglia play an important role in receptor-mediated phagocytosis in the CNS. In brain abscess and other CNS infections, invading bacteria undergo opsonization with Igs or complement. Microglia recognize these opsonized pathogens by Fc or complement receptors triggering phagocytosis. In this study, we investigated the role of Fcα/μR, the less-studied receptor for IgM and IgA, in microglial phagocytosis. We showed that primary microglia, as well as N9 microglial cells, express Fcα/μR. We also showed that anti-Staphylococcus aureus IgM markedly increased the rate of microglial S. aureus phagocytosis. To unequivocally test the role of Fcα/μR in IgM-mediated phagocytosis, we performed experiments in microglia from Fcα/μR(-/-) mice. Surprisingly, we found that IgM-dependent phagocytosis of S. aureus was similar in microglia derived from wild-type or Fcα/μR(-/-) mice. We hypothesized that IgM-dependent activation of complement receptors might contribute to the IgM-mediated increase in phagocytosis. To test this, we used immunologic and genetic inactivation of complement receptor 3 components (CD11b and CD18) as well as C3. IgM-, but not IgG-mediated phagocytosis of S. aureus was reduced in wild-type microglia and macrophages following preincubation with an anti-CD11b blocking Ab. IgM-dependent phagocytosis of S. aureus was also reduced in microglia derived from CD18(-/-) and C3(-/-) mice. Taken together, our findings implicate complement receptor 3 and C3, but not Fcα/μR, in IgM-mediated phagocytosis of S. aureus by microglia.
Collapse
Affiliation(s)
- Jonathan R Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195;
| | - Yi Quan
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Josiah F Hanson
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Lucrezia Colonna
- Division of Rheumatology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195; and
| | - Michael Iorga
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Shin-ichiro Honda
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuko Shibuya
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Shibuya
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Keith B Elkon
- Division of Rheumatology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195; and
| | - Thomas Möller
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| |
Collapse
|
44
|
Wang Y, Reis C, Applegate R, Stier G, Martin R, Zhang JH. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke. Exp Neurol 2015; 272:26-40. [PMID: 25900056 DOI: 10.1016/j.expneurol.2015.04.009] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/06/2015] [Accepted: 04/11/2015] [Indexed: 11/17/2022]
Abstract
In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on those recently reported methodological and mechanistic discoveries in the realm of ischemic conditioning. Due to the varied time differences of ischemic conditioning in different animal models and clinical trials, it is important to define optimal timing to achieve the best conditioning induced neuroprotection. This brings not only an opportunity in the treatment of stroke, but challenges as well, as data is just becoming available and the procedures are not yet optimized. The purpose of this review is to shed light on exploiting these ischemic conditioning modalities to protect the cerebrovascular system against diverse injuries and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Physiology, Jinan University School of Medicine, Guangzhou, China
| | - Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Richard Applegate
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, USA; Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
45
|
Klein D, Groh J, Weishaupt A, Martini R. Endogenous antibodies contribute to macrophage-mediated demyelination in a mouse model for CMT1B. J Neuroinflammation 2015; 12:49. [PMID: 25879857 PMCID: PMC4364634 DOI: 10.1186/s12974-015-0267-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/17/2015] [Indexed: 01/02/2023] Open
Abstract
Background We could previously identify components of both the innate and the adaptive immune system as disease modifiers in the pathogenesis of models for Charcot-Marie-Tooth (CMT) neuropathies type 1B and 1X. As part of the adaptive immune system, here we investigated the role of antibodies in a model for CMT1B. Methods Antibodies were localized and characterized in peripheral nerves of the CMT1B model by immunohistochemistry and Western blot analysis. Experimental ablation of antibodies was performed by cross breeding the CMT1B models with mutants deficient in B-lymphocytes (JHD−/− mutants). Ameliorated demyelination by antibody deficiency was reverted by intravenous injection of mouse IgG fractions. Histopathological analysis was performed by immunocytochemistry and light and quantitative electron microscopy. Results We demonstrate that in peripheral nerves of a mouse model for CMT1B, endogenous antibodies strongly decorate endoneurial tubes of peripheral nerves. These antibodies comprise IgG and IgM subtypes and are preferentially, but not exclusively, associated with nerve fiber aspects nearby the nodes of Ranvier. In the absence of antibodies, the early demyelinating phenotype is substantially ameliorated. Reverting the neuropathy by reconstitution with murine IgG fractions identified accumulating antibodies as potentially pathogenic at this early stage of disease. Conclusions Our study demonstrates that in a mouse model for CMT1B, endogenous antibodies contribute to early macrophage-mediated demyelination and disease progression. Thus, both the innate and adaptive immune system are mutually interconnected in a genetic model for demyelination. Since in Wallerian degeneration antibodies have also been shown to be involved in myelin phagocytosis, our study supports our view that inherited demyelination and Wallerian degeneration share common mechanisms, which are detrimental when activated under nonlesion conditions.
Collapse
Affiliation(s)
- Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| | - Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| | - Andreas Weishaupt
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| |
Collapse
|
46
|
Wood MD, Mackinnon SE. Pathways regulating modality-specific axonal regeneration in peripheral nerve. Exp Neurol 2015; 265:171-5. [PMID: 25681572 DOI: 10.1016/j.expneurol.2015.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/08/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Following peripheral nerve injury, the distal nerve is primed for regenerating axons by generating a permissive environment replete with glial cells, cytokines, and neurotrophic factors to encourage axonal growth. However, increasing evidence demonstrates that regenerating axons within peripheral nerves still encounter axonal-growth inhibitors, such as chondroitin sulfate proteoglycans. Given the generally poor clinical outcomes following peripheral nerve injury and reconstruction, the use of pharmacological therapies to augment axonal regeneration and overcome inhibitory signals has gained considerable interest. Joshi et al. (2014) have provided evidence for preferential or modality-specific (motor versus sensory) axonal growth and regeneration due to inhibitory signaling from Rho-associated kinase (ROCK) pathway regulation. By providing inhibition to the ROCK signaling pathway through Y-27632, they demonstrate that motor neurons regenerating their axons are impacted to a greater extent compared to sensory neurons. In light of this evidence, we briefly review the literature regarding modality-specific axonal regeneration to provide context to their findings. We also describe potential and novel barriers, such as senescent Schwann cells, which provide additional axonal-growth inhibitory factors for future consideration following peripheral nerve injury.
Collapse
Affiliation(s)
- Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, Guo L, Bai P, Sun D, Fan J, He X, Young W, Ren Y. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia 2014; 63:635-51. [PMID: 25452166 DOI: 10.1002/glia.22774] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023]
Abstract
Macrophage activation and persistent inflammation contribute to the pathological process of spinal cord injury (SCI). It was reported that M2 macrophages were induced at 3-7 days after SCI but M2 markers were reduced or eliminated after 1 week. By contrast, M1 macrophage response is rapidly induced and then maintained at injured spinal cord. However, factors that modulate macrophage phenotype and function are poorly understood. We developed a model to distinguish bone-marrow derived macrophages (BMDMs) from residential microglia and explored how BMDMs change their phenotype and functions in response to the lesion-related factors in injured spinal cord. Infiltrating BMDMs expressing higher Mac-2 and lower CX3CR1 migrate to the epicenter of injury, while microglia expressing lower Mac-2 but higher CX3CR1 distribute to the edges of lesion. Myelin debris at the lesion site switches BMDMs from M2 phenotype towards M1-like phenotype. Myelin debris activates ATP-binding cassette transporter A1 (ABCA1) for cholesterol efflux in response to myelin debris loading in vitro. However, this homeostatic mechanism in injured site is overwhelmed, leading to the development of foamy macrophages and lipid plaque in the lesion site. The persistence of these cells indicates a pro-inflammatory environment, associated with enhanced neurotoxicity and impaired wound healing. These foamy macrophages have poor capacity to phagocytose apoptotic neutrophils resulting in uningested neutrophils releasing their toxic contents and further tissue damage. In conclusion, these data demonstrate for the first time that myelin debris generated in injured spinal cord modulates macrophage activation. Lipid accumulation following macrophage phenotype switch contributes to SCI pathology.
Collapse
Affiliation(s)
- Xi Wang
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Jersey; Institute of Neurosciences, the Fourth Military Medical University, Xian, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
García-Mateo N, Ganfornina MD, Montero O, Gijón MA, Murphy RC, Sanchez D. Schwann cell-derived Apolipoprotein D controls the dynamics of post-injury myelin recognition and degradation. Front Cell Neurosci 2014; 8:374. [PMID: 25426024 PMCID: PMC4227524 DOI: 10.3389/fncel.2014.00374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/21/2014] [Indexed: 01/29/2023] Open
Abstract
Management of lipids, particularly signaling lipids that control neuroinflammation, is crucial for the regeneration capability of a damaged nervous system. Knowledge of pro- and anti-inflammatory signals after nervous system injury is extensive, most of them being proteins acting through well-known receptors and intracellular cascades. However, the role of lipid binding extracellular proteins able to modify the fate of lipids released after injury is not well understood. Apolipoprotein D (ApoD) is an extracellular lipid binding protein of the Lipocalin family induced upon nervous system injury. Our previous study shows that axon regeneration is delayed without ApoD, and suggests its participation in early events during Wallerian degeneration. Here we demonstrate that ApoD is expressed by myelinating and non-myelinating Schwann cells and is induced early upon nerve injury. We show that ApoD, known to bind arachidonic acid (AA), also interacts with lysophosphatidylcholine (LPC) in vitro. We use an in vivo model of nerve crush injury, a nerve explant injury model, and cultured macrophages exposed to purified myelin, to uncover that: (i) ApoD regulates denervated Schwann cell-macrophage signaling, dampening MCP1- and Tnf-dependent macrophage recruitment and activation upon injury; (ii) ApoD controls the over-expression of the phagocytosis activator Galectin-3 by infiltrated macrophages; (iii) ApoD controls the basal and injury-triggered levels of LPC and AA; (iv) ApoD modifies the dynamics of myelin-macrophage interaction, favoring the initiation of phagocytosis and promoting myelin degradation. Regulation of macrophage behavior by Schwann-derived ApoD is therefore a key mechanism conditioning nerve injury resolution. These results place ApoD as a lipid binding protein controlling the signals exchanged between glia, neurons and blood-borne cells during nerve recovery after injury, and open the possibility for a therapeutic use of ApoD as a regeneration-promoting agent.
Collapse
Affiliation(s)
- Nadia García-Mateo
- Lazarillo Lab, Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC Valladolid, Spain
| | - Maria D Ganfornina
- Lazarillo Lab, Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC Valladolid, Spain
| | - Olimpio Montero
- Mass Spectrometry Unit, Center for Biotechnology Development (CDB), Consejo Superior de Investigaciones Científicas Valladolid, Spain
| | - Miguel A Gijón
- Department of Pharmacology, University of Colorado Denver Aurora, CO, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver Aurora, CO, USA
| | - Diego Sanchez
- Lazarillo Lab, Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC Valladolid, Spain
| |
Collapse
|
49
|
Hu X, Liou AKF, Leak RK, Xu M, An C, Suenaga J, Shi Y, Gao Y, Zheng P, Chen J. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 2014; 119-120:60-84. [PMID: 24923657 PMCID: PMC4121732 DOI: 10.1016/j.pneurobio.2014.06.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/28/2022]
Abstract
Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial 'On' or 'Off' responses to signals from other host cells as well as invading microorganisms. The integrated actions of these receptors result in tightly regulated biological functions, including cell mobility, phagocytosis, the induction of acquired immunity, and trophic factor/inflammatory mediator release. Over the last few years, significant advances have been made toward deciphering the signaling mechanisms related to these receptors and their specific cellular functions. In this review, we describe the current state of knowledge of the surface receptors involved in microglial activation, with an emphasis on their engagement of distinct functional programs and their roles in CNS injuries. It will become evident from this review that microglial homeostasis is carefully maintained by multiple counterbalanced strategies, including, but not limited to, 'On' and 'Off' receptor signaling. Specific regulation of theses microglial receptors may be a promising therapeutic strategy against CNS injuries.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| | - Anthony K F Liou
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Mingyue Xu
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Chengrui An
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Suenaga
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
50
|
Liu C, Wang J, Zhang X. The involvement of MiR-1-clathrin pathway in the regulation of phagocytosis. PLoS One 2014; 9:e98747. [PMID: 24932654 PMCID: PMC4059620 DOI: 10.1371/journal.pone.0098747] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Phagocytosis, one of the most powerful immune responses, is a complicated process regulated by many factors. However the regulation of phagocytosis mediated by microRNAs has not been extensively investigated. To address this issue, the regulation of phagocytosis by miR-1 was characterized in this study. The results showed that miR-1 played an important role in the phagocytosis regulation in shrimp in vivo. The sequence analysis indicated that miR-1 was highly conserved from invertebrates to mammals, suggesting that miR-1 might share the similar or same functions in phagocytosis of shrimp hemocytes and mammalian macrophages. The data presented that miR-1 was significantly downregulated in cancerous macrophage RAW264.7 cells compared with those in the isolated murine macrophage and in the immortalized macrophage ANA-1. The findings showed that miR-1 had a great effect on the regulation of phagocytosis in cancerous macrophage by the inhibition of clathrin heavy chain 1 (CLTC1) gene. Therefore our study presented a novel miR-1-mediated regulation of phagocytosis both in invertebrate and in vertebrate.
Collapse
Affiliation(s)
- Cuilian Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou, The People's Republic of China
| | - Jiajia Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou, The People's Republic of China
| | - Xiaobo Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou, The People's Republic of China
| |
Collapse
|