1
|
Mucci F, Arone A, Gurrieri R, Weiss F, Russomanno G, Marazziti D. Third-Generation Antipsychotics: The Quest for the Key to Neurotrophism. Life (Basel) 2025; 15:391. [PMID: 40141736 PMCID: PMC11944073 DOI: 10.3390/life15030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Antipsychotic drugs (APs) have profoundly changed the treatment landscape for psychiatric disorders, yet their impact on neuroplasticity and neurotrophism remains only partially understood. While second-generation antipsychotics (SGAs) are associated with a better side effect profile than their predecessors, the emergence of third-generation antipsychotics (TGAs)-such as brexpiprazole, cariprazine, lurasidone, iloperidone, lumateperone, pimavanserin, and roluperidone-has prompted renewed interest in their potential neuroprotective and pro-cognitive effects. This review attempts to carefully examine the evidence on the neurotrophic properties of TGAs and their role in modulating brain plasticity by analyzing studies published between 2010 and 2024. Although data remain limited and focused primarily on earlier SGAs, emerging findings suggest that some TGAs may exert positive effects on neuroplastic processes, including the modulation of brain-derived neurotrophic factors (BDNFs) and synaptic architecture. However, robust clinical data on their long-term effects and comparative efficacy are lacking; therefore, further research is necessary to validate their role in preventing neurodegenerative changes and improving cognitive outcomes in patients with psychiatric conditions.
Collapse
Affiliation(s)
- Federico Mucci
- Department of Psychiatry, Lucca Zone, Azienda USL Toscana Nord Ovest, 55100 Lucca, Italy;
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Riccardo Gurrieri
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Francesco Weiss
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Gerardo Russomanno
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (A.A.); (R.G.); (F.W.); (G.R.)
| |
Collapse
|
2
|
Dwyer DS. Converging evidence for functional connections between the lithium response and PI3K-Akt signaling. Transl Psychiatry 2024; 14:458. [PMID: 39487122 PMCID: PMC11530542 DOI: 10.1038/s41398-024-03160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Affiliation(s)
- Donard S Dwyer
- Departments of Psychiatry and Behavioral Medicine, and Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, Shreveport, LA, USA.
| |
Collapse
|
3
|
Huang P, Ran J, Zhu W, Dai W, Tang Y, Lian P, Huang X, Li R. PCSK9 dysregulates cholesterol homeostasis and triglyceride metabolism in olanzapine-induced hepatic steatosis via both receptor-dependent and receptor-independent pathways. FASEB J 2024; 38:e23464. [PMID: 38358343 DOI: 10.1096/fj.202301748r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Schizophrenia, affecting approximately 1% of the global population, is often treated with olanzapine. Despite its efficacy, olanzapine's prolonged use has been associated with an increased risk of cardiovascular diseases and nonalcoholic fatty liver disease (NAFLD); however, the underlying mechanism remains unclear. Proprotein convertase subtilisin kexin type 9 (PCSK9) plays a crucial role in lipid metabolism and is involved in NAFLD pathogenesis via an unknown mechanism. This study aims to investigate the role of PCSK9 in olanzapine-induced NAFLD. C57BL/6J mice and HepG2 and AML12 cell lines were treated with varying concentrations of olanzapine to examine the effects of olanzapine on PCSK9 and lipid metabolism. PCSK9 levels were manipulated using recombinant proteins, plasmids, and small interfering RNAs in vitro, and the effects on hepatic lipid accumulation and gene expression related to lipid metabolism were assessed. Olanzapine treatment significantly increased PCSK9 levels in both animal and cell line models, correlating with elevated lipid accumulation. PCSK9 manipulation demonstrated its central role in mediating hepatic steatosis through both receptor-dependent pathways (impacting NPC1L1) and receptor-independent pathways (affecting lipid synthesis, uptake, and cholesterol biosynthesis). Interestingly, upregulation of SREBP-1c, rather than SREBP-2, was identified as a key driver of PCSK9 increase in olanzapine-induced NAFLD. Our findings establish PCSK9 as a pivotal factor in olanzapine-induced NAFLD, influencing both receptor-related and metabolic pathways. This highlights PCSK9 inhibitors as potential therapeutic agents for managing NAFLD in schizophrenia patients treated with olanzapine.
Collapse
Affiliation(s)
- Piaopiao Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanli Ran
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenqiang Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Dai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Yaxin Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pingan Lian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiansheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rong Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Mısır E, Akay GG. Synaptic dysfunction in schizophrenia. Synapse 2023:e22276. [PMID: 37210696 DOI: 10.1002/syn.22276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Schizophrenia is a chronic disease presented with psychotic symptoms, negative symptoms, impairment in the reward system, and widespread neurocognitive deterioration. Disruption of synaptic connections in neural circuits is responsible for the disease's development and progression. Because deterioration in synaptic connections results in the impaired effective processing of information. Although structural impairments of the synapse, such as a decrease in dendritic spine density, have been shown in previous studies, functional impairments have also been revealed with the development of genetic and molecular analysis methods. In addition to abnormalities in protein complexes regulating exocytosis in the presynaptic region and impaired vesicle release, especially, changes in proteins related to postsynaptic signaling have been reported. In particular, impairments in postsynaptic density elements, glutamate receptors, and ion channels have been shown. At the same time, effects on cellular adhesion molecular structures such as neurexin, neuroligin, and cadherin family proteins were detected. Of course, the confusing effect of antipsychotic use in schizophrenia research should also be considered. Although antipsychotics have positive and negative effects on synapses, studies indicate synaptic deterioration in schizophrenia independent of drug use. In this review, the deterioration in synapse structure and function and the effects of antipsychotics on the synapse in schizophrenia will be discussed.
Collapse
Affiliation(s)
- Emre Mısır
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Güvem Gümüş Akay
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
- Faculty of Medicine, Department of Physiology, Ankara University, Ankara, Turkey
- Brain Research Center (AÜBAUM), Ankara University, Ankara, Turkey
- Department of Cellular Neuroscience and Advanced Microscopic Neuroimaging, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| |
Collapse
|
5
|
Yuhas Y, Ashkenazi S, Berent E, Weizman A. Clozapine Suppresses the Gene Expression and the Production of Cytokines and Up-Regulates Cyclooxygenase 2 mRNA in Human Astroglial Cells. Brain Sci 2022; 12:1703. [PMID: 36552163 PMCID: PMC9775287 DOI: 10.3390/brainsci12121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia (SCZ) is a chronic neurodevelopmental psychotic disorder. The immune system and neuroinflammation seem to play a central role in the pathophysiology of SCZ. Clozapine is an effective atypical antipsychotic used for treatment-resistant SCZ. Life-threatening side effects, such as myocarditis, limit its use. We investigated the immunomodulatory effects of clozapine in an astroglial model of neuroinflammation. We thus assessed the effect of clozapine on the production of inflammatory mediators in human-derived astroglial (A172) cells, stimulated with a cytokine mix (TNFα, IL-1β, IFNγ). RT-PCR and ELISA analyses demonstrated that clozapine suppressed gene expression and production of TNFα, IL-1β and IL-8 and increased COX2 mRNA 24 h after stimulation. Clozapine inhibited Akt phosphorylation induced by the cytokine mix at 10 min and 40 min, as assessed by Western blot analysis with anti-pT308Akt antibody. Pretreatment with the Akt inhibitor MK-2206 increased COX2 gene expression in cytokine-stimulated cells, suggesting that Akt inhibition may be involved in COX2 gene expression upregulation. Clozapine may possess dual beneficial effects: inhibiting astroglial production of proinflammatory cytokines, thus attenuating neuroinflammation, and upregulating COX2 expression that may be relevant to improvement of neural functioning while accounting for some of its detrimental effects. Patients with TRS and neuroinflammatory markers may benefit particularly from clozapine treatment.
Collapse
Affiliation(s)
- Yael Yuhas
- Laboratory of Pediatric Infectious Diseases, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva 4941492, Israel
| | - Shai Ashkenazi
- Laboratory of Pediatric Infectious Diseases, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva 4941492, Israel
| | - Eva Berent
- Laboratory of Pediatric Infectious Diseases, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva 4941492, Israel
| | - Abraham Weizman
- Laboratory of Molecular and Biological Psychiatry, Felsenstein Medical Research Center, Petach Tikva 4941492, Israel
- Department of Psychiatry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Research Unit, Geha Mental Health Center, Petach Tikva 4941492, Israel
| |
Collapse
|
6
|
Hu M, Wang R, Chen X, Zheng M, Zheng P, Boz Z, Tang R, Zheng K, Yu Y, Huang XF. Resveratrol prevents haloperidol-induced mitochondria dysfunction through the induction of autophagy in SH-SY5Y cells. Neurotoxicology 2021; 87:231-242. [PMID: 34688786 DOI: 10.1016/j.neuro.2021.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Haloperidol is a commonly used antipsychotic drug and may increase neuronal oxidative stress associated with the side effects, including tardive dyskinesia and neurite withdraw. Autophagy plays a protective role in response to the accumulated reactive oxygen species (ROS) induced mitochondria damage. Resveratrol is an antioxidant compound having neuroprotective effects; however, it is unknown if resveratrol may stimulate autophagy and decrease mitochondria damage induced by haloperidol. HYPOTHESIS We hypothesis that resveratrol stimulates the autophagic process and protects mitochondria lesion induced by haloperidol. METHODS MitoSOX™ Red Mitochondrial Superoxide Indicator and MitoTracker™ Green FM staining were used to measure the amount of the mitochondria ROS production and mitochondria mass in human SH-SY5Y cells treated with haloperidol and/or resveratrol. Autophagic related dyes and Western blot were applied to study the autophagic process and related protein expression. Besides, tandem monomeric mRFP-GFP-LC3 was used to investigate the fusion of autophagosome and lysosome. Transmission electron microscopy was used to investigate the mitochondrial and autophagic ultrastructures with or without haloperidol and resveratrol treatment. RESULTS Haloperidol administration significantly increased mitochondria ROS and mitochondrial mass, indicating the increase of mitochondria dysfunction. Although haloperidol increased the autophagosomes and lysosome formation, the autophagosome-lysosome fusion and degradation were impaired. This was because we found an increased p62 after haloperidol treatment, an indication of autophagy incompletion. Importantly, resveratrol promoted the degradation of p62, upregulated the formation of autophagolysosome, and reversed haloperidol-induced mitochondria damage. CONCLUSION These results collectively suggest that resveratrol may be introduced as a protective compound against haloperidol-induced mitochondria impairment and aberrant autophagy.
Collapse
Affiliation(s)
- Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China; Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Ruiqi Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xi Chen
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peng Zheng
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Zehra Boz
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China; Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia.
| |
Collapse
|
7
|
Retinal structural changes in mood disorders: The optical coherence tomography to better understand physiopathology? Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110080. [PMID: 32827610 DOI: 10.1016/j.pnpbp.2020.110080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mood disorders are particularly common, disabling conditions. Diagnosis can be difficult as it may involve different pathophysiological assumptions. This could explain why such disorders are resistant to treatment. The retina is part of the central nervous system and shares a common embryonic origin with the brain. Optical coherence tomography (OCT) is an imaging technique for analysing the different layers of the retina. We reviewed studies that examined the retina with OCT in mood disorders. METHODS We conducted Pubmed search and additional manual research based on the bibliography in each of selected articles. We found and analysed 11 articles relevant to our subject. RESULTS This literature review confirms that it is possible to use OCT to detect neurodegeneration and neuroinflammation in mood disorders. Their impact is thought to depend on the duration and severity of the disease, and whether it is in acute or chronic stage. The differences seen in studies dealing with depression and those looking at bipolar disorder may reflect the particular characteristics of each disorder. A number of OCT parameters can be proposed as biomarkers of active or chronic inflammation and neurodegeneration. Markers of predisposition to an at-risk mental state are also suggested. LIMITATIONS The main limitation is selection bias, studies including more varied population would help to confirm and precise these results. CONCLUSION OCT is thus a particularly promising tool for evaluating some of the etiopathogenetic mechanisms involved in mood disorders. The combination with other approaches could help to find more specific biomarkers.
Collapse
|
8
|
Jankowska U, Skupien-Rabian B, Swiderska B, Prus G, Dziedzicka-Wasylewska M, Kedracka-Krok S. Proteome Analysis of PC12 Cells Reveals Alterations in Translation Regulation and Actin Signaling Induced by Clozapine. Neurochem Res 2021; 46:2097-2111. [PMID: 34024016 PMCID: PMC8254727 DOI: 10.1007/s11064-021-03348-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Although antipsychotics are routinely used in the treatment of schizophrenia for the last decades, their precise mechanism of action is still unclear. In this study, we investigated changes in the PC12 cells’ proteome under the influence of clozapine, risperidone, and haloperidol to identify protein pathways regulated by antipsychotics. Analysis of the protein profiles in two time points: after 12 and 24 h of incubation with drugs revealed significant alterations in 510 proteins. Further canonical pathway analysis revealed an inhibition of ciliary trophic factor signaling after treatment with haloperidol and showed a decrease in acute phase response signaling in the risperidone group. Interestingly, all tested drugs have caused changes in PC12 proteome which correspond to inhibition of cytokines: tumor necrosis factor (TNF) and transforming growth factor beta 1 (TGF-β1). We also found that the 12-h incubation with clozapine caused up-regulation of protein kinase A signaling and translation machinery. After 24 h of treatment with clozapine, the inhibition of the actin cytoskeleton signaling and Rho proteins signaling was revealed. The obtained results suggest that the mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) play a central role in the signal transduction of clozapine.
Collapse
Affiliation(s)
- Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a str, 30-387, Krakow, Poland.
| | - Bozena Skupien-Rabian
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a str, 30-387, Krakow, Poland
| | - Bianka Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | - Gabriela Prus
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| |
Collapse
|
9
|
Guo Y, Jin Y, Qu B, Zhang Y, Che J, Dong X. An updated patent review of Akt inhibitors (2016-present). Expert Opin Ther Pat 2021; 31:837-849. [PMID: 33834942 DOI: 10.1080/13543776.2021.1915291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Akt is a widely known serine threonine kinase involved in a series of critical cellular pathways like cell survival and proliferation. With the development of small-molecule Akt inhibitors, new strategies such as covalent, peptide-based, and PROTAC (Proteolysis Targeting Chimera) strategies have also been used the design of Akt inhibitors. On the other hand, due to the specificity of the Akt pathway, the use of Akt modulators in combination therapy and immunotherapy has been disclosed in the past 5 years.Areas covered: This review focuses on the patent literature covering small-molecule inhibitors of Akt kinase and their applications from 2016-present.Expert opinion: Although Akt inhibitors' progress has been somewhat slow over the past five years, new strategies still provide new opportunities for the development of Akt inhibitors. Combination with Akt pathway inhibitors for tumor therapy has also been widely disclosed in patents in the last 5 years. Notably, combination strategies of Akt inhibitors and immunotherapy have started to emerge in recent years. While the clinical indications of Akt modulators should not be limited to anti-cancer, it is still worth trying the treatment of other diseases. Within the next years, current drug development around Akt inhibitors should be fascinating.
Collapse
Affiliation(s)
- Yu Guo
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yizhen Jin
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Bingxue Qu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Zhang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, P.R. China.,Cancer Center, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
10
|
Lithium and Atypical Antipsychotics: The Possible WNT/β Pathway Target in Glaucoma. Biomedicines 2021; 9:biomedicines9050473. [PMID: 33925885 PMCID: PMC8146329 DOI: 10.3390/biomedicines9050473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is a progressive neurodegenerative disease that represents the major cause of irreversible blindness. Recent findings have shown which oxidative stress, inflammation, and glutamatergic pathway have main roles in the causes of glaucoma. Lithium is the major commonly used drug for the therapy of chronic mental illness. Lithium therapeutic mechanisms remain complex, including several pathways and gene expression, such as neurotransmitter and receptors, circadian modulation, ion transport, and signal transduction processes. Recent studies have shown that the benefits of lithium extend beyond just the therapy of mood. Neuroprotection against excitotoxicity or brain damages are other actions of lithium. Moreover, recent findings have investigated the role of lithium in glaucoma. The combination of lithium and atypical antipsychotics (AAPs) has been the main common choice for the treatment of bipolar disorder. Due to the possible side effects gradually introduced in therapy. Currently, no studies have focused on the possible actions of AAPs in glaucoma. Recent studies have shown a down regulation of the WNT/β-catenin pathway in glaucoma, associated with the overactivation of the GSK-3β signaling. The WNT/β-catenin pathway is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Lithium is correlated with upregulation the WNT/β-catenin pathway and downregulation of the GSK-3β activity. Thus, this review focuses on the possible actions of lithium and AAPs, as possible therapeutic strategies, on glaucoma and some of the presumed mechanisms by which these drugs provide their possible benefit properties through the WNT/β-catenin pathway.
Collapse
|
11
|
Dalvi P, Loganathan N, Mcilwraith EK, Tran A, Belsham DD. Hypothalamic Cell Models. CELLULAR ENDOCRINOLOGY IN HEALTH AND DISEASE 2021:27-77. [DOI: 10.1016/b978-0-12-819801-8.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Antipsychotic Drugs Reverse MK801-Inhibited Cell Migration and F-actin Condensation by Modulating the Rho Signaling Pathway in B35 Cells. Behav Neurol 2020. [DOI: 10.1155/2020/4163274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background and Aim. MK801-induced psychotic symptoms and also the Ras homolog family member A (RhoA) expression and cell division control protein 42 (cdc42) mRNA modulation in the rat brain have been investigated. Antipsychotic drugs (APDs) have been reported to induce Rho GDP-dissociation inhibitor (RhoGDI) pathway regulation related to cytoskeleton reorganization in neuronal cells. It will be necessary to clarify the effects of APDs on MK801-induced RhoGDI signaling regulation in neuronal cells. Methods. B35 neuronal cells were treated with MK801 for 7 days then treated with MK801 in combination with haloperidol or clozapine for a further 7 days. Cell migration, F-actin condensation, and RhoGDI signaling regulation were examined to investigate the regulatory effects of MK801, haloperidol, and clozapine in B35 neuronal cells. Results. MK801 reduced B35 cell migration, whereas both haloperidol and clozapine reversed the reduction in cell migration induced by MK801. Haloperidol and clozapine restored F-actin condensation after it was diminished by MK801 in B35 cell nuclei. MK801 increased the RhoGDI1 and RhoA expression, which was diminished by the addition of haloperidol and clozapine. MK801 reduced the CDC42 expression, which was restored by haloperidol and clozapine. MK801 reduced the Rho-associated coiled-coil containing protein kinase 1 (ROCK1), profilin1 (PFN1), and neuronal Wiskott–Aldrich Syndrome protein (N-WASP) expression, which was further reduced by haloperidol and clozapine. MK801 also increased the phosphorylated myosin light chain 2 (p-MLC2), postsynaptic density protein 95 (PSD-95), and c-jun expression, which was decreased by haloperidol and clozapine. p21 (RAC1-) activated kinase 1 (PAK1) expression was not affected by MK801.
Collapse
|
13
|
Sultana R, Shrestha A, Lee CC, Ogundele OM. Disc1 Carrier Mice Exhibit Alterations in Neural pIGF-1Rβ and Related Kinase Expression. Front Cell Neurosci 2020; 14:94. [PMID: 32431597 PMCID: PMC7214624 DOI: 10.3389/fncel.2020.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Mutation of the disc1 gene underlies a broad range of developmental neuropsychiatric defects, including schizophrenia, depression, and bipolar disorder. The pathophysiological phenotypes linked with disc1 mutation are due to the truncation of the DISC1 primary protein structure. This leads to a defective post-synaptic scaffolding and kinase—GSK3β and Erk1/2—signaling. As a result, synaptic function and maintenance are significantly impaired in the disc1 mutant brain. Among several other pathways, GSK3β and Erk1/2 are involved in insulin-like growth factor 1 receptor (IGF-1Rβ) kinase signaling. Although disc1 mutation alters these kinases, it is unclear if the mutation impacts IGF-1R expression and activity in the brain. Here, we demonstrate that the expression of active IGF-1Rβ (pIGF-1Rβ) is altered in the hippocampus and prefrontal cortex (PFC) of disc1 mutant mice and vary with the dose of the mutation (homozygous and heterozygous). The expression of pIGF-1Rβ decreased significantly in 129S (hom, disc1−/−) brains. In contrast, 129S:B6 (het, disc1+/−) brains were characterized by an increase in pIGF-1Rβ when compared with the C57BL/6 (disc1+/+) level. The decrease in pIGF-1Rβ level for the 129S brains was accompanied by the loss of Akt activity (S473 pAkt) and decreased Ser9 phosphorylation of GSK3β (increased basal GSK3β). Additionally, hippocampal and cortical pErk1/2 activity increased in the 129S hippocampus and cortex. Although 129S:B6 recorded alterations in pIGF-1Rβ-pAkt-GSK3β (like 129S), there was no observable change in pErk1/2 activity for the heterozygote (disc1+/−) mutant. In addition to GSK3β inhibition, we conclude that pIGF-1R, pAkt, and pErk1/2 are potential targets in disc1−/− mutant brain. On the other hand, pIGF-1R and pAkt can be further explored in disc1+/− brain.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Amita Shrestha
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
14
|
Kowalchuk C, Kanagasundaram P, Belsham DD, Hahn MK. Antipsychotics differentially regulate insulin, energy sensing, and inflammation pathways in hypothalamic rat neurons. Psychoneuroendocrinology 2019; 104:42-48. [PMID: 30802709 DOI: 10.1016/j.psyneuen.2019.01.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Second generation antipsychotic (AP)s remain the gold-standard treatment for schizophrenia and are widely used on- and off-label for other psychiatric illnesses. However, these agents cause serious metabolic side-effects. The hypothalamus is the primary brain region responsible for whole body energy regulation, and disruptions in energy sensing (e.g. insulin signaling) and inflammation in this brain region have been implicated in the development of insulin resistance and obesity. To elucidate mechanisms by which APs may be causing metabolic dysregulation, we explored whether these agents can directly impact energy sensing and inflammation in hypothalamic neurons. METHODS The rat hypothalamic neuronal cell line, rHypoE-19, was treated with olanzapine (0.25-100 uM), clozapine (2.5-100 uM) or aripiprazole (5-20 uM). Western blots measured the energy sensing protein AMPK, components of the insulin signaling pathway (AKT, GSK3β), and components of the MAPK pathway (ERK1/2, JNK, p38). Quantitative real-time PCR was performed to determine changes in the mRNA expression of interleukin (IL)-6, IL-10 and brain derived neurotrophic factor (BDNF). RESULTS Olanzapine (100 uM) and clozapine (100, 20 uM) significantly increased pERK1/2 and pJNK protein expression, while aripiprazole (20 uM) only increased pJNK. Clozapine (100 uM) and aripiprazole (5 and 20 uM) significantly increased AMPK phosphorylation (an orexigenic energy sensor), and inhibited insulin-induced phosphorylation of AKT. Olanzapine (100 uM) treatment caused a significant increase in IL-6 while aripiprazole (20 uM) significantly decreased IL-10. Olanzapine (100 uM) and aripiprazole (20 uM) increased BDNF expression. CONCLUSIONS We demonstrate that antipsychotics can directly regulate insulin, energy sensing, and inflammatory pathways in hypothalamic neurons. Increased MAPK activation by all antipsychotics, alongside olanzapine-associated increases in IL-6, and aripiprazole-associated decreases in IL-10, suggests induction of pro-inflammatory pathways. Clozapine and aripiprazole inhibition of insulin-stimulated pAKT and increases in AMPK phosphorylation (an orexigenic energy sensor) suggests impaired insulin action and energy sensing. Conversely, olanzapine and aripiprazole increased BDNF, which would be expected to be metabolically beneficial. Overall, our findings suggest differential effects of antipsychotics on hypothalamic neuroinflammation and energy sensing.
Collapse
Affiliation(s)
- Chantel Kowalchuk
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Pruntha Kanagasundaram
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
15
|
Agarwal SM, Kowalchuk C, Castellani L, Costa-Dookhan KA, Caravaggio F, Asgariroozbehani R, Chintoh A, Graff-Guerrero A, Hahn M. Brain insulin action: Implications for the treatment of schizophrenia. Neuropharmacology 2019; 168:107655. [PMID: 31152767 DOI: 10.1016/j.neuropharm.2019.05.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022]
Abstract
Insulin action in the central nervous system is a major regulator of energy balance and cognitive processes. The development of central insulin resistance is associated with alterations in dopaminergic reward systems and homeostatic signals affecting food intake, glucose metabolism, body weight and cognitive performance. Emerging evidence has highlighted a role for antipsychotics (APs) to modulate central insulin-mediated pathways. Although APs remain the cornerstone treatment for schizophrenia they are associated with severe metabolic complications and fail to address premorbid cognitive deficits, which characterize the disorder of schizophrenia. In this review, we first explore how the hypothesized association between schizophrenia and CNS insulin dysregulation aligns with the use of APs. We then investigate the proposed relationship between CNS insulin action and AP-mediated effects on metabolic homeostasis, and different domains of psychopathology, including cognition. We briefly discuss a potential role of CNS insulin signaling to explain the hypothesized, but somewhat controversial association between therapeutic efficacy and metabolic side effects of APs. Finally, we propose how this knowledge might inform novel treatment strategies to target difficult to treat domains of schizophrenia. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Chantel Kowalchuk
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Kenya A Costa-Dookhan
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando Caravaggio
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Araba Chintoh
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Margaret Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Kowalchuk C, Castellani LN, Chintoh A, Remington G, Giacca A, Hahn MK. Antipsychotics and glucose metabolism: how brain and body collide. Am J Physiol Endocrinol Metab 2019; 316:E1-E15. [PMID: 29969315 DOI: 10.1152/ajpendo.00164.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since the serendipitous discovery of the first antipsychotic (AP) drug in the 1950s, APs remain the cornerstone of treatment for schizophrenia. A shift over the past two decades away from first-generation, conventional APs to so-called "atypical" (or 2nd/3rd generation) APs parallels acknowledgment of serious metabolic side-effects associated in particular with these newer agents. As will be reviewed, AP drugs and type 2 diabetes are now inextricably linked, contributing to the three- to fivefold increased risk of type 2 diabetes observed in schizophrenia. However, this association is not straightforward. Biological and lifestyle-related illness factors contribute to the association between type 2 diabetes and metabolic disease independently of AP treatment. In addition, APs have a well-established weight gain propensity which could also account for elevated risk of insulin resistance and type 2 diabetes. However, compelling preclinical and clinical evidence now suggests that these drugs can rapidly and directly influence pathways of glucose metabolism independently of weight gain and even in absence of psychiatric illness. Mechanisms of these direct effects remain poorly elucidated but may involve central and peripheral antagonism of neurotransmitters implicated not only in the therapeutic effects of APs but also in glucose homeostasis, possibly via effects on the autonomic nervous system. The clinical relevance of studying "direct" effects of these drugs on glucose metabolism is underscored by the widespread use of these medications, both on and off label, for a growing number of mental illnesses, extending safety concerns well beyond schizophrenia.
Collapse
Affiliation(s)
- Chantel Kowalchuk
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
| | | | - Araba Chintoh
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Department of Psychiatry, University of Toronto , Toronto, Ontario , Canada
| | - Gary Remington
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
- Department of Psychiatry, University of Toronto , Toronto, Ontario , Canada
| | - Adria Giacca
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
- Banting and Best Diabetes Centre, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
- Department of Medicine, University of Toronto , Toronto, Ontario Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
- Department of Psychiatry, University of Toronto , Toronto, Ontario , Canada
- Banting and Best Diabetes Centre, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
17
|
Park SW, Seo MK, McIntyre RS, Mansur RB, Lee Y, Lee JH, Park SC, Huh L, Lee JG. Effects of olanzapine and haloperidol on mTORC1 signaling, dendritic outgrowth, and synaptic proteins in rat primary hippocampal neurons under toxic conditions. Neurosci Lett 2018; 686:59-66. [PMID: 30149032 DOI: 10.1016/j.neulet.2018.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022]
Abstract
Recent studies have demonstrated that antipsychotic drugs may activate mammalian target of rapamycin complex 1 (mTORC1) signaling in neurons. However, the relationship between mTORC1 signaling activation and currently prescribed antipsychotic drugs remains incompletely understood. The purpose of this study was to determine whether alterations in the level of mTORC1 signaling occur after rat primary hippocampal neurons are treated with olanzapine and haloperidol under toxic conditions. Additionally, we investigated whether these drugs affect dendritic outgrowth and synaptic protein expression through the mTORC1 signaling pathway. We measured changes in mTORC1-mediated and synaptic proteins by Western blotting assay under toxic conditions induced by B27 deprivation. Dendritic outgrowth was determined by a neurite assay. Olanzapine significantly increased the phosphorylated levels of mTORC1, its downstream effectors, and its upstream activators. The increased mTORC1 phosphorylation induced by olanzapine was significantly blocked by specific PI3K, MEK, or mTORC1 inhibitors. Olanzapine also increased dendritic outgrowth and synaptic proteins levels; all of these effects were blocked by rapamycin. However, haloperidol had none of these effects. We demonstrated that olanzapine, but not haloperidol, activated the mTORC1 signaling pathway and increased dendritic outgrowth and synaptic proteins by activating mTORC1 signaling in rat primary hippocampal neurons. These findings suggest that olanzapine affects neuroplasticity by activating mTORC1 signaling.
Collapse
Affiliation(s)
- Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea; Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea; Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Jae-Hon Lee
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Seon-Cheol Park
- Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Lyang Huh
- Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea; Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea; Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea.
| |
Collapse
|
18
|
Hashimoto K. Essential Role of Keap1-Nrf2 Signaling in Mood Disorders: Overview and Future Perspective. Front Pharmacol 2018; 9:1182. [PMID: 30386243 PMCID: PMC6198170 DOI: 10.3389/fphar.2018.01182] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Depression is one of the most common mood disorders with a high rate of relapse. Accumulating evidence suggests that the transcription factor Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1)-Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) system plays a key role in inflammation which is involved in depression. Preclinical studies demonstrated that the protein expressions of Keap1 and Nrf2 in the prefrontal cortex (PFC), CA3 and dentate gyrus (DG) of hippocampus in mice with depression-like phenotype were lower than control mice. In the learned helplessness paradigm, the protein levels of Keap1 and Nrf2 in the PFC and DG of hippocampus from rats with depression-like phenotype were also lower than control and resilient rats. Furthermore, rodents with depression-like phenotype have higher levels of pro-inflammatory cytokines. Interestingly, Nrf2 knock-out (KO) mice exhibit depression-like phenotype, and higher serum levels of pro-inflammatory cytokines compared with wild-type mice. Furthermore, Nrf2 KO mice have lower expression of brain-derived neurotrophic factor (BDNF) in the PFC, and CA3 and DG of hippocampus compared to wild-type mice. 7,8-Dihydroxyflavone, a TrkB agonist, showed antidepressant effects in Nrf2 KO mice, by stimulating BDNF-TrkB in the PFC, CA3, and DG. Pretreatment with sulforaphane, a naturally occurring Nrf2 activator, prevented depression-like phenotype in mice after inflammation, or chronic social defeat stress. Interestingly, dietary intake of 0.1% glucoraphanin (a precursor of sulforaphane) containing food during juvenile and adolescent stages of mice could prevent depression-like phenotype in adulthood after chronic social defeat stress. Moreover, the protein expressions of Keap1 and Nrf2 in the parietal cortex from major depressive disorder and bipolar disorder were lower than controls. These findings suggest that Keap1-Nrf2 system plays a key role in the stress resilience which is involved in the pathophysiology of mood disorders. It is, therefore, possible that dietary intake of cruciferous vegetables including glucoraphanin (or SFN) may prevent or minimize relapse from remission, induced by stress and/or inflammation in depressed patients. In the review, the author would like to discuss the role of Keap1-Nrf2 system in mood disorders.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
19
|
Jóźwiak-Bębenista M, Jasińska-Stroschein M, Kowalczyk E. Involvement of vascular endothelial growth factor (VEGF) and mitogen-activated protein kinases (MAPK) in the mechanism of neuroleptic drugs. Pharmacol Rep 2018; 70:1032-1039. [PMID: 30144664 DOI: 10.1016/j.pharep.2018.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Recent evidence suggests that the mitogen activated protein kinase (MAPK)-associated signaling pathway in the frontal cortical areas demonstrates abnormal activity in cases of schizophrenia. Moreover, schizophrenia patients often display alterations in the regional cellular energy metabolism and blood flow of the brain; these are shown to parallel changes in angiogenesis primarily mediated by vascular endothelial growth factor (VEGF). METHODS The present study examines the differential effects of time-dependent treatment with haloperidol, olanzapine and amisulpride (20μM) on VEGF and MAPK mRNA expression and VEGF level, using the T98 cell line as an example of nerve cells. For the purposes of comparison, the effect of neuroprotective pituitary adenylate cyclase-activating polypeptide (PACAP) on the expression of VEGF mRNA and secretion were also evaluated in this cell model. RESULTS RT-PCR analysis revealed that all the tested neuroleptics increased VEGF mRNA expression after 72-h incubation; however, only haloperidol and olanzapine also increased the level of VEGF detected by ELISA, and they demonstrated significantly stronger effects than PACAP. Haloperidol and olanzapine, but not amisulpride, decreased MAPK14 mRNA expression in T98G cells after 72-h incubation. CONCLUSION The obtained results suggest that haloperidol and olanzapine can trigger the MAPK and VEGF signaling pathway, which may contribute to their neuroprotective mechanism of action.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland.
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
20
|
Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, McCormick PJ, Corsini GU, Maggio R, Scarselli M. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol Ther 2018; 192:20-41. [PMID: 29953902 DOI: 10.1016/j.pharmthera.2018.06.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The introduction of atypical antipsychotics (AAPs) since the discovery of its prototypical drug clozapine has been a revolutionary pharmacological step for treating psychotic patients as these allow a significant recovery not only in terms of hospitalization and reduction in symptoms severity, but also in terms of safety, socialization and better rehabilitation in the society. Regarding the mechanism of action, AAPs are weak D2 receptor antagonists and they act beyond D2 antagonism, involving other receptor targets which regulate dopamine and other neurotransmitters. Consequently, AAPs present a significant reduction of deleterious side effects like parkinsonism, hyperprolactinemia, apathy and anhedonia, which are all linked to the strong blockade of D2 receptors. This review revisits previous and current findings within the class of AAPs and highlights the differences in terms of receptor properties and clinical activities among them. Furthermore, we propose a continuum spectrum of "atypia" that begins with risperidone (the least atypical) to clozapine (the most atypical), while all the other AAPs fall within the extremes of this spectrum. Clozapine is still considered the gold standard in refractory schizophrenia and in psychoses present in Parkinson's disease, though it has been associated with adverse effects like agranulocytosis (0.7%) and weight gain, pushing the scientific community to find new drugs as effective as clozapine, but devoid of its side effects. To achieve this, it is therefore imperative to characterize and compare in depth the very complex molecular profile of AAPs. We also introduce relatively new concepts like biased agonism, receptor dimerization and neurogenesis to identify better the old and new hallmarks of "atypia". Finally, a detailed confrontation of clinical differences among the AAPs is presented, especially in relation to their molecular targets, and new means like therapeutic drug monitoring are also proposed to improve the effectiveness of AAPs in clinical practice.
Collapse
Affiliation(s)
- Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Valeria Verdesca
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Enrico Cini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, UK
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanni U Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
21
|
Huang XF, Song X. Effects of antipsychotic drugs on neurites relevant to schizophrenia treatment. Med Res Rev 2018; 39:386-403. [PMID: 29785841 DOI: 10.1002/med.21512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Although antipsychotic drugs are mainly used for treating schizophrenia, they are widely used for treating various psychiatric diseases in adults, the elderly, adolescents and even children. Today, about 1.2% of the worldwide population suffers from psychosis and related disorders, which translates to about 7.5 million subjects potentially targeted by antipsychotic drugs. Neurites project from the cell body of neurons and connect neurons to each other to form neural networks. Deficits in neurite outgrowth and integrity are implicated in psychiatric diseases including schizophrenia. Neurite deficits contribute to altered brain development, neural networking and connectivity as well as symptoms including psychosis and altered cognitive function. This review revealed that (1) antipsychotic drugs could have profound effects on neurites, synaptic spines and synapse, by which they may influence and regulate neural networking and plasticity; (2) antipsychotic drugs target not only neurotransmitter receptors but also intracellular signaling molecules regulating the signaling pathways responsible for neurite outgrowth and maintenance; (3) high doses and chronic administration of antipsychotic drugs may cause some loss of neurites, synaptic spines, or synapsis in the cortical structures. In addition, confounding effects causing neurite deficits may include elevated inflammatory cytokines and antipsychotic drug-induced metabolic side effects in patients on chronic antipsychotic therapy. Unraveling how antipsychotic drugs affect neurites and neural connectivity is essential for improving therapeutic outcomes and preventing aversive effects for patients on antipsychotic drug treatment.
Collapse
Affiliation(s)
- Xu-Feng Huang
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, Australia
| | - Xueqin Song
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Burghardt KJ, Seyoum B, Dass SE, Sanders E, Mallisho A, Yi Z. Association of Protein Kinase B (AKT) DNA Hypermethylation with Maintenance Atypical Antipsychotic Treatment in Patients with Bipolar Disorder. Pharmacotherapy 2018; 38:428-435. [PMID: 29484683 DOI: 10.1002/phar.2097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
STUDY OBJECTIVE Atypical antipsychotics cause insulin resistance that leads to an increased risk of diabetes mellitus and cardiovascular disease. Skeletal muscle is the primary tissue for uptake of glucose, and its dysfunction is considered one of the primary defects in the development of insulin resistance. Protein kinase B (AKT) plays an important role in overall skeletal muscle health and glucose uptake into the muscle. The objective of this study was to measure AKT isoform-specific gene methylation differences in the skeletal muscle of patients with bipolar disorder treated with atypical antipsychotic or mood stabilizer maintenance therapy. DESIGN Cross-sectional observational study. SETTING Clinical research services center at an academic center. PATIENTS Thirty patients with a confirmed diagnosis of bipolar disorder who were treated with either an atypical antipsychotic (16 patients) or mood stabilizer (14 patients) at a consistent dose for at least 3 months. INTERVENTIONS A fasting skeletal muscle biopsy was performed in the vastus lateralis in each patient. Patients also underwent fasting blood sample collection and a standard 75-g oral glucose tolerance test. MEASUREMENTS AND MAIN RESULTS Skeletal muscle DNA methylation near the promoter region for three genes, AKT1, AKT2, and AKT3, was measured by methylation-sensitive high-resolution melting. Gene methylation was analyzed based on atypical antipsychotic versus mood stabilizer maintenance therapy. Associations between gene methylation, insulin resistance, and glucose tolerance were also analyzed. In patients treated with atypical antipsychotics, AKT1 and AKT2 methylation was increased compared with patients treated with mood stabilizers (p=0.03 and p=0.02, respectively). In addition, for patients receiving atypical antipsychotics, a positive trend for AKT2 hypermethylation with increasing insulin resistance was observed, whereas for patients receiving mood stabilizers, a trend for decreased AKT2 methylation with increasing insulin resistance was observed. CONCLUSION Overall, our findings suggest that the AKT gene is differentially methylated in the skeletal muscle of patients taking atypical antipsychotics or mood stabilizer maintenance therapy. These results may direct future approaches to reduce the harmful adverse effects of atypical antipsychotic treatment.
Collapse
Affiliation(s)
- Kyle J Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Berhane Seyoum
- Division of Endocrinology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sabrina E Dass
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Elani Sanders
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Abdullah Mallisho
- Division of Endocrinology, Wayne State University School of Medicine, Detroit, Michigan
| | - Zhengping Yi
- Department of Pharmaceutical Science, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
23
|
The use of quetiapine in the treatment of major depressive disorder: Evidence from clinical and experimental studies. Neurosci Biobehav Rev 2018; 86:36-50. [DOI: 10.1016/j.neubiorev.2017.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 12/19/2022]
|
24
|
Jeon S, Kim SH, Shin SY, Lee YH. Clozapine reduces Toll-like receptor 4/NF-κB-mediated inflammatory responses through inhibition of calcium/calmodulin-dependent Akt activation in microglia. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:477-487. [PMID: 28431901 DOI: 10.1016/j.pnpbp.2017.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/25/2022]
Abstract
Clozapine is an atypical antipsychotic agent used in the treatment of schizophrenia and severe mood disorders. Accumulating evidence suggests that neuroinflammation is closely associated with the pathogenesis of various neurodegenerative diseases and psychiatric disorders. Clozapine exerts anti-inflammatory activity. However, the molecular mechanism underlying the anti-inflammatory activity of clozapine is poorly understood. In this study, we found that clozapine suppressed lipopolysaccharide (LPS)-induced phosphorylation of IκBα at Ser-32 and of p65/RelA at Ser-468, as well as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-dependent transcriptional activity in microglial cells. Clozapine downregulated LPS-induced Akt phosphorylation at Ser-473. Pharmacological Akt inhibitors ameliorated LPS-induced NF-κB activation. Removal of extracellular Ca2+ by EGTA or sequestration of intracellular Ca2+ by BAPTA-AM attenuated LPS-induced Akt phosphorylation. Treatment with calmodulin (CaM) antagonists and the CaM kinase inhibitor, KN-93, also prevented LPS-induced Akt and NF-κB activation, suggesting that Ca2+/CaM-dependent Akt activation is critical in LPS-induced NF-κB activation in microglia. These results suggest that clozapine exhibits anti-inflammatory activity through the inhibition of Ca2+/CaM/Akt-mediated NF-κB activation.
Collapse
Affiliation(s)
- Seunghyun Jeon
- Department of Biomedical Science and Technology, Graduate School of Konkuk University, Seoul 05029, Republic of Korea
| | - Se Hyun Kim
- Department of Neuropsychiatry, Dongguk University International Hospital, Dongguk University Medical School, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
25
|
Sherman SP, Bang AG. High-throughput screen for compounds that modulate neurite growth of human induced pluripotent stem cell-derived neurons. Dis Model Mech 2018; 11:dmm.031906. [PMID: 29361516 PMCID: PMC5894944 DOI: 10.1242/dmm.031906] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023] Open
Abstract
Development of technology platforms to perform compound screens of human induced pluripotent stem cell (hiPSC)-derived neurons with relatively high throughput is essential to realize their potential for drug discovery. Here, we demonstrate the feasibility of high-throughput screening of hiPSC-derived neurons using a high-content, image-based approach focused on neurite growth, a process that is fundamental to formation of neural networks and nerve regeneration. From a collection of 4421 bioactive small molecules, we identified 108 hit compounds, including 37 approved drugs, that target molecules or pathways known to regulate neurite growth, as well as those not previously associated with this process. These data provide evidence that many pathways and targets known to play roles in neurite growth have similar activities in hiPSC-derived neurons that can be identified in an unbiased phenotypic screen. The data also suggest that hiPSC-derived neurons provide a useful system to study the mechanisms of action and off-target activities of the approved drugs identified as hits, leading to a better understanding of their clinical efficacy and toxicity, especially in the context of specific human genetic backgrounds. Finally, the hit set we report constitutes a sublibrary of approved drugs and tool compounds that modulate neurites. This sublibrary will be invaluable for phenotypic analyses and interrogation of hiPSC-based disease models as probes for defining phenotypic differences and cellular vulnerabilities in patient versus control cells, as well as for investigations of the molecular mechanisms underlying human neurite growth in development and maintenance of neuronal networks, and nerve regeneration. Summary: High-throughput, small molecule screening of hiPSC-derived neurons using a high-content, image-based approach focused on neurite growth identified hit compounds, including approved drugs, which target molecules or pathways known to regulate neurite growth.
Collapse
Affiliation(s)
- Sean P Sherman
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute La Jolla, CA 92037, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute La Jolla, CA 92037, USA
| |
Collapse
|
26
|
Kaneta H, Ukai W, Tsujino H, Furuse K, Kigawa Y, Tayama M, Ishii T, Hashimoto E, Kawanishi C. Antipsychotics promote GABAergic interneuron genesis in the adult rat brain: Role of heat-shock protein production. J Psychiatr Res 2017; 92:108-118. [PMID: 28414930 DOI: 10.1016/j.jpsychires.2017.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023]
Abstract
Current antipsychotics reduce positive symptoms and reverse negative symptoms in conjunction with cognitive behavioral issues with the goal of restoring impaired occupational and social functioning. However, limited information is available on their influence on gliogenesis or their neurogenic properties in adult schizophrenia brains, particularly on GABAergic interneuron production. In the present study, we used young adult subventricular zone (SVZ)-derived progenitor cells expressing proteoglycan NG2 cultures to examine the oligodendrocyte and GABAergic interneuron genesis effects of several kinds of antipsychotics on changes in differentiation function induced by exposure to the NMDA receptor antagonist MK-801. We herein demonstrated that antipsychotics promoted or restored changes in the oligodendrocyte/GABAergic interneuron differentiation functions of NG2(+) cells induced by the exposure to MK-801, which was considered to be one of the drug-induced schizophrenia model. We also demonstrated that antipsychotics restored heat-shock protein (HSP) production in NG2(+) cells with differentiation impairment. The antipsychotics olanzapine, aripiprazole, and blonanserin, but not haloperidol increased HSP90 levels, which were reduced by the exposure to MK-801. Our results showed that antipsychotics, particularly those recently synthesized, exerted similar GABAergic interneuron genesis effects on NG2(+) neuronal/glial progenitor cells in the adult rat brain by increasing cellular HSP production, and also suggest that HSP90 may play a crucial role in the pathophysiology of schizophrenia and is a key target for next drug development.
Collapse
Affiliation(s)
- Hiroo Kaneta
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Wataru Ukai
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Hanako Tsujino
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Kengo Furuse
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Yoshiyasu Kigawa
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Masaya Tayama
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Takao Ishii
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Eri Hashimoto
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Chiaki Kawanishi
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| |
Collapse
|
27
|
Clozapine as the most efficacious antipsychotic for activating ERK 1/2 kinases: Role of 5-HT 2A receptor agonism. Eur Neuropsychopharmacol 2017; 27:383-398. [PMID: 28283227 DOI: 10.1016/j.euroneuro.2017.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 02/04/2023]
Abstract
Antipsychotics (APDs) are divided into first-generation antipsychotics (FGAs) and second-generation antipsychotics (SGAs) based on the concept that SGAs have reduced motor side effects. With this premise, this study examined in HeLa and other cell lines the effects of different APDs on the activation of ERK1/2 (Extracellular signal-regulated kinases) and AKT (Protein Kinase B) kinases, which may be affected in schizophrenia and bipolar disorder. Among the SGAs, Clozapine clearly resulted as the most effective drug inducing ERK1/2 phosphorylation with potency in the low micromolar range. Quetiapine and Olanzapine showed a maximal response of about 50% compared to Clozapine, while FGAs such as Haloperidol and Sulpiride did not have any relevant effect. Among FGAs, Chlorpromazine was able to partially activate ERK1/2 at 30% compared to Clozapine. Referring to AKT activation, Clozapine, Quetiapine and Olanzapine demonstrated a similar efficacy, while FGAs, besides Chlorpromazine, were incapable to obtain any particular biological response. In relation to ERK1/2 activation, we found that 5-HT2A serotonin receptor antagonists Ketanserin and M100907, both partially reduced Clozapine effect. In addition, we also observed an increase of potency of Clozapine effect in HeLa transfected cells with recombinant 5-HT2A receptor and in rat glioma C6 cells that express a higher amount of this receptor. This indicates that ERK1/2 stimulation induced by Clozapine could, to some extent, be mediated by 5-HT2A receptor, through a novel mechanism that is called "biased agonism", even though other cellular targets are involved. This evidence may be relevant to explain the superiority of Clozapine among the APDs.
Collapse
|
28
|
Jóźwiak-Bębenista M, Jasińska-Stroschein M, Kowalczyk E. The differential effects of neuroleptic drugs and PACAP on the expression of BDNF mRNA and protein in a human glioblastoma cell line. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Jóźwiak-Bębenista M, Kowalczyk E. Neuroleptic Drugs and PACAP Differentially Affect the mRNA Expression of Genes Encoding PAC1/VPAC Type Receptors. Neurochem Res 2016; 42:943-952. [PMID: 27900577 PMCID: PMC5375968 DOI: 10.1007/s11064-016-2127-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/17/2016] [Accepted: 11/25/2016] [Indexed: 01/19/2023]
Abstract
Several lines of evidence suggest that pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide playing an important role as a neuromodulator. It has been indicated that PACAP is associated with mental diseases, and that regulation of the PACAPergic signals could be a potential target for the treatment of such psychiatric states as schizophrenia. Recent studies have suggested that action of neuroleptic drugs is mediated not only by dopaminergic and serotonergic neurotransmission, but also via neuropeptides which may act both as neurotransmitters and as neuromodulators. The present study examines whether currently-used neuroleptics influence the action of PACAP receptors, whose expression is altered in a schizophrenic patient. Real-time polymerase chain reaction (PCR) was used to examine the effects of haloperidol, olanzapine and amisulpride on the expression of genes coding PAC1/VPAC type receptors in the T98G glioblastoma cell line, as an example of an in vitro model of glial cells. PAC1 mRNA expression fell after 24-h incubation with haloperidol or olanzapine; however the effect was not maintained after 72 h, and haloperidol even up-regulated PAC1 mRNA expression in a dose-dependent manner. All the examined drugs decreased VPAC2 mRNA expression, especially after 72-h incubation. Haloperidol (typical neuroleptic) was distinctly more potent than atypical neuroleptic drugs (olanzapine and amisulpride). In addition, PACAP increased PAC1 and VPAC2 mRNA expression. In conclusion, our findings suggest PACAP receptors may be involved in the mechanism of typical and atypical neuroleptic drugs.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland.
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| |
Collapse
|
30
|
Yao W, Zhang JC, Ishima T, Ren Q, Yang C, Dong C, Ma M, Saito A, Honda T, Hashimoto K. Antidepressant effects of TBE-31 and MCE-1, the novel Nrf2 activators, in an inflammation model of depression. Eur J Pharmacol 2016; 793:21-27. [PMID: 27815170 DOI: 10.1016/j.ejphar.2016.10.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 02/01/2023]
Abstract
The Nuclear factor (erythroid 2-derived)-like 2 (Nrf2) plays a key role in inflammation which is implicated in the pathophysiology of depression. The Nrf2 activators have antidepressant effects in animal models of depression. The present study was undertaken to examine whether TBE-31 [(±)-(4bS,8aR,10aS)-10a-ethynyl-4b,8,8-trimethyl-3,7-dioxo-3,4b,7,8,8a,9,10,10a-octahydrophenanthrene-2,6-dicarbonitrile] and MCE-1 [(±)-3-ethynyl-3-methyl-6-oxocyclohexa-1,4-dienecarbonitrile], the novel Nrf2 activators, could show antidepressant effects in inflammation model of depression. We found that TBE-31 and MCE-1 significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells, in a concentration dependent manner. The Nrf2 siRNA, but not negative control of siRNA, significantly blocked the potentiating effects of TBE-31 and MCE-1 on neurite outgrowth in PC12 cells. Furthermore, oral administration of TBE-31 or MCE-1 significantly attenuated an increase in serum levels of tumor necrosis factor-α (TNF-α) after administration of lipopolysaccharide (LPS: 0.5mg/kg). In the tail-suspension test and forced swimming test, oral administration of TBE-31 or MCE-1 significantly attenuated an increase in the immobility time after LPS (0.5mg/kg) administration. These findings suggest that the novel Nrf2 activators such as TBE-31 and MCE-1 might be potential therapeutic drugs for inflammation-related depression.
Collapse
Affiliation(s)
- Wei Yao
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Ji-Chun Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Qian Ren
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Chun Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Chao Dong
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Min Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Akira Saito
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794, United States
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794, United States
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
31
|
Faour-Nmarne C, Azab AN. Effects of olanzapine on LPS-induced inflammation in rat primary glia cells. Innate Immun 2015; 22:40-50. [PMID: 26542836 DOI: 10.1177/1753425915613425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/30/2015] [Indexed: 12/27/2022] Open
Abstract
Olanzapine (OLZ) is an atypical antipsychotic drug that also has mood-stabilizing effects. The mechanism of action of OLZ is not fully understood. Accumulating data suggest that inflammation plays a role in the pathophysiology of mental disorders and that psychotropic drugs exhibit some anti-inflammatory properties. This study was undertaken to examine the effects of OLZ on LPS-induced inflammation in rat primary glia cells. Glia cells were extracted from newborn rat brains. OLZ (1 or 50 µM) was added to culture medium at 6 or 72 h before addition of LPS for another 18 h, and levels of IL-10, prostaglandin (PG) E2, NO and TNF-α, and expression of cyclo-oxygensase (COX)-2 and inducible NO synthase (iNOS) were determined. Treatment with 50 µM OLZ (but not 1 µM) significantly decreased LPS-induced secretion of IL-10, PGE2 and TNF-α. In contrast, 50 µM OLZ significantly increased NO levels. OLZ did not alter the expression of COX-2 or iNOS in LPS-treated cells. These results suggest that OLZ differently affects the secretion of inflammatory mediators. Most of the significant effects of OLZ were obtained when 50 µM was used, which is a high and probably therapeutically irrelevant concentration. Therefore, under the conditions used in the present study OLZ seemed to lack a potent anti-inflammatory effect.
Collapse
Affiliation(s)
- Caroline Faour-Nmarne
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abed N Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
32
|
Jaehne EJ, Ramshaw H, Xu X, Saleh E, Clark SR, Schubert KO, Lopez A, Schwarz Q, Baune BT. In-vivo administration of clozapine affects behaviour but does not reverse dendritic spine deficits in the 14-3-3ζ KO mouse model of schizophrenia-like disorders. Pharmacol Biochem Behav 2015; 138:1-8. [DOI: 10.1016/j.pbb.2015.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
|
33
|
Citrome L, Stensbøl TB, Maeda K. The preclinical profile of brexpiprazole: what is its clinical relevance for the treatment of psychiatric disorders? Expert Rev Neurother 2015; 15:1219-29. [PMID: 26402059 DOI: 10.1586/14737175.2015.1086269] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brexpiprazole is a serotonin-dopamine activity modulator in clinical development for schizophrenia, adjunctive treatment of major depressive disorder, agitation in Alzheimer's disease and post-traumatic stress disorder. It is a partial agonist at 5-HT1A and D2 receptors with similar potency, and an antagonist at 5-HT2A and adrenergic α1B/2C receptors. Compared with aripiprazole, brexpiprazole is more potent at 5-HT1A receptors and displays less intrinsic activity at D2 receptors. This unique serotonin and dopamine modulatory activity has shown robust antipsychotic, antidepressant-like and anxiolytic activities, and limited extrapyramidal symptom liability with pro-cognitive efficacy in animal models. Phase III clinical trials have been successfully completed in schizophrenia and adjunctive use in major depressive disorder, with the US FDA approval obtained for these uses; Phase III studies in Alzheimer's disease and post-traumatic stress disorder are ongoing.
Collapse
Affiliation(s)
| | | | - Kenji Maeda
- c 3 Qs' Research Institute, Otsuka Pharmaceutical Co., Ltd. Tokushima, Japan
| |
Collapse
|
34
|
Leibrock C, Hierlmeier M, Lang UE, Lang F. Subtle Impact of Akt1 and Akt3 on Exploratory Behavior in Gene Targeted Mice. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2015. [DOI: 10.1027/2151-2604/a000218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. The present study explored the impact of Akt1 and Akt3 on behavior. Akt1 (akt1-/-) and Akt3 (akt3-/-) knockout mice were compared to wild type (wt) mice. The akt1-/- mice, akt3-/- mice, and wt mice were similar in most parameters of the open-field test. However, the distance traveled in the center area was slightly but significantly less in akt3-/- mice than in wt mice. In the light/dark transition test akt1-/- mice had significantly lower values than wt mice and akt3-/- mice for distance traveled, number of rearings, rearing time in the light area, as well as time spent and distance traveled in the entrance area. They were significantly different from akt3-/- mice in the distance traveled, visits, number of rearings, rearing time in the light area, as well as time spent, distance traveled, number of rearings, and rearing time in the entrance area. In the O-maze the time spent, and the visits to open arms, as well as the number of protected and unprotected headdips were significantly less in akt1-/- mice than in wt mice, whereas the time spent in closed arms was significantly more in akt1-/- mice than in wt mice. Protected and unprotected headdips were significantly less in akt3-/- mice than in wt mice. In closed area, akt3-/- mice traveled a significantly larger distance at larger average speed than akt1-/- mice. No differences were observed between akt1-/- mice, akt3-/- mice and wt-type mice in the time of floating during the forced swimming test. In conclusion, akt1-/- mice and less so akt3-/ mice display subtle changes in behavior.
Collapse
Affiliation(s)
| | | | - Undine E. Lang
- Department of Psychiatry, University of Basel, Switzerland
| | - Florian Lang
- Department of Physiology I, University of Tuebingen, Germany
| |
Collapse
|
35
|
Lang UE, Ackermann TF, Wolfer D, Schubert F, Sohr R, Hörtnagl H, Lang F, Gallinat J. Phosphoinositide-Dependent Protein Kinase 1 (PDK1). ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2015. [DOI: 10.1027/2151-2604/a000217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract. Phosphatidylinositol-3-kinase (PI3K) signaling influences susceptibility to virus infections, anoxia, obstetric complications, and cancer; which are changed in patients with schizophrenia and their first degree relatives. Therefore PI3K signaling might have impact on the pathophysiology of schizophrenia. PI3K signaling crucially involves phosphoinositide-dependent protein kinase (PDK1). Increased anxiety behavior is observed in PDK1 hypomorphic mice. Here we show enhanced prevalence of schizophrenia in carriers of the PDK1 CC genotype in human beings. Moreover, decreased parietal P300 amplitude, which is a well-studied schizophrenic endophenotype, was observed in PDK1 CC carriers. Glutamate and glutamine concentrations are increased in the frontal lobe of PDK1 dysmorphic mice and human CC individuals. Our results demonstrate that the PDK1 CC genotype is associated with increased risk to develop schizophrenia, a typical endophenotype profile observed in the disease and modified neurotransmitter concentrations in brain regions associated with the disease.
Collapse
Affiliation(s)
- Undine E. Lang
- Department of Psychiatry and Psychotherapy, University of Basel, Switzerland
| | | | - David Wolfer
- Institute of Anatomy, University of Zurich and Department of Biology, ETH Zurich, Switzerland
| | | | - Reinhard Sohr
- Department of Pharmacology, Charité University Medicine Berlin, Germany
| | - Heide Hörtnagl
- Department of Pharmacology, University of Innsbruck, Austria
| | - Florian Lang
- Department of Physiology I, University of Tuebingen, Germany
| | - Juergen Gallinat
- Department of Psychiatry and Psychotherapy, University Hospital Hamburg, Germany
| |
Collapse
|
36
|
mTORC2/rictor signaling disrupts dopamine-dependent behaviors via defects in striatal dopamine neurotransmission. J Neurosci 2015; 35:8843-54. [PMID: 26063917 PMCID: PMC4461689 DOI: 10.1523/jneurosci.0887-15.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Disrupted neuronal protein kinase B (Akt) signaling has been associated with dopamine (DA)-related neuropsychiatric disorders, including schizophrenia, a devastating mental illness. We hypothesize that proper DA neurotransmission is therefore dependent upon intact neuronal Akt function. Akt is activated by phosphorylation of two key residues: Thr308 and Ser473. Blunted Akt phosphorylation at Ser473 (pAkt-473) has been observed in lymphocytes and postmortem brains of schizophrenia patients, and psychosis-prone normal individuals. Mammalian target of rapamycin (mTOR) complex 2 (mTORC2) is a multiprotein complex that is responsible for phosphorylation of Akt at Ser473 (pAkt-473). We demonstrate that mice with disrupted mTORC2 signaling in brain exhibit altered striatal DA-dependent behaviors, such as increased basal locomotion, stereotypic counts, and exaggerated response to the psychomotor effects of amphetamine (AMPH). Combining in vivo and ex vivo pharmacological, electrophysiological, and biochemical techniques, we demonstrate that the changes in striatal DA neurotransmission and associated behaviors are caused, at least in part, by elevated D2 DA receptor (D2R) expression and upregulated ERK1/2 activation. Haloperidol, a typical antipsychotic and D2R blocker, reduced AMPH hypersensitivity and elevated pERK1/2 to the levels of control animals. By viral gene delivery, we downregulated mTORC2 solely in the dorsal striatum of adult wild-type mice, demonstrating that striatal mTORC2 regulates AMPH-stimulated behaviors. Our findings implicate mTORC2 signaling as a novel pathway regulating striatal DA tone and D2R signaling.
Collapse
|
37
|
Ishima T, Futamura T, Ohgi Y, Yoshimi N, Kikuchi T, Hashimoto K. Potentiation of neurite outgrowth by brexpiprazole, a novel serotonin-dopamine activity modulator: a role for serotonin 5-HT1A and 5-HT2A receptors. Eur Neuropsychopharmacol 2015; 25:505-11. [PMID: 25687838 DOI: 10.1016/j.euroneuro.2015.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 12/13/2014] [Accepted: 01/28/2015] [Indexed: 01/25/2023]
Abstract
Brexpiprazole, a novel atypical antipsychotic drug, is currently being tested in clinical trials for treatment of psychiatric disorders, such as schizophrenia and major depressive disorder. The drug is known to act through a combination of partial agonistic activity at 5-hydroxytryptamine (5-HT)1A, and dopamine D2 receptors, and antagonistic activity at 5-HT2A receptors. Accumulating evidence suggests that antipsychotic drugs act by promoting neurite outgrowth. In this study, we examined whether brexpiprazole affected neurite outgrowth in cell culture. We found that brexpiprazole significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells, in a concentration dependent manner. The selective 5-HT1A receptor antagonist, WAY-100,635, was able to block the effects of brexpiprazole on neurite outgrowth, unlike the selective dopamine D2 receptor antagonist, raclopride. Furthermore, the selective 5-HT2A receptor antagonist M100907, but not DOI (5-HT2A receptor agonist), significantly potentiated NGF-induced neurite outgrowth. Moreover, xestospongin C and 2-aminoethoxydiphenyl borate (2-APB), both specific inhibitors of inositol 1,4,5-triphosphate (IP3) receptors, significantly blocked the effects of brexpiprazole. These findings suggest that brexpiprazole-induced neurite outgrowth is mediated through 5-HT1A and 5-HT2A receptors, and subsequent Ca(2+) signaling via IP3 receptors.
Collapse
Affiliation(s)
- Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Takashi Futamura
- Qs׳ Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Yuta Ohgi
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan; Qs׳ Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Noriko Yoshimi
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan; Qs׳ Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Tetsuro Kikuchi
- Qs׳ Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
38
|
Jeon S, Kim Y, Chung IW, Kim YS. Clozapine induces chloride channel-4 expression through PKA activation and modulates CDK5 expression in SH-SY5Y and U87 cells. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:168-73. [PMID: 25246152 DOI: 10.1016/j.pnpbp.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/22/2014] [Accepted: 09/11/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Second-generation antipsychotic drugs, such as clozapine, were reported to enhance neurite outgrowth by nerve growth factor in PC12 cells. The authors previously showed that chloride channel 4 (CLC-4) is responsible for nerve growth factor-induced neurite outgrowth in neuronal cells. In this study, we examined whether clozapine induces CLC-4 in neuroblastoma and glioma cells. METHODS The effect of clozapine on CLC-4 expression was examined in neuroblastoma (SH-SY5Y) and glioma (U87) cells. To investigate the signaling pathway responsible for clozapine-induced CLC-4 expression, the phosphorylation of cAMP response element-binding protein (CREB), which binds CRE in the promoter of the human CLC-4 gene, was examined. To identify the target of clozapine induced CLC-4, CLC-4 siRNA was introduced to neuroblastoma and glioma cells for functional knockdown. RESULTS We observed that clozapine increased CLC-4 expression in both SH-SY5Y and U87 cells. Clozapine induced CREB phosphorylation, but in the presence of inhibitor of protein kinase A (an upstream kinase of CREB) clozapine-induced CLC-4 expression was suppressed. Finally, we found that CLC-4 knockdown suppressed clozapine-induced cyclin-dependent kinase 5 (CDK5) expression in SH-SY5Y and U-87 cells suggesting CDK5 as potential molecular target of clozapine induced CLC-4 expression. CONCLUSIONS The results of the present study suggest that clozapine's therapeutic effect may include the induction of CLC-4 which is dependent on CREB activation via PKA. We also found that functional knockdown of CLC-4 resulted in reduction of CDK5 expression, which may also be implicated in clozapine's therapeutic effect.
Collapse
Affiliation(s)
- Songhee Jeon
- Dongguk University Research Institute of Biotechnology, 27-3, Phildong 3, Joong-gu, Seoul, 100-715
| | - Yeni Kim
- Department of Child Psychiatry, National Center for Child and Adolescent Psychiatry, Seoul National Hospital, Seoul, 143-711
| | - In-Won Chung
- Department of Neuropsychiatry, Dongguk University Medical School, Dongguk University International Hospital, Goyang-si, Gyeonggi-do, 410-773; Institute of Clinical Psychopharmacology, Dongguk University International Hospital, Goyang-si, Gyeonggi-do, 410-773
| | - Yong Sik Kim
- Department of Neuropsychiatry, Dongguk University Medical School, Dongguk University International Hospital, Goyang-si, Gyeonggi-do, 410-773; Institute of Clinical Psychopharmacology, Dongguk University International Hospital, Goyang-si, Gyeonggi-do, 410-773.
| |
Collapse
|
39
|
Gonçalves P, Araújo JR, Martel F. Antipsychotics-induced metabolic alterations: focus on adipose tissue and molecular mechanisms. Eur Neuropsychopharmacol 2015; 25:1-16. [PMID: 25523882 DOI: 10.1016/j.euroneuro.2014.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/14/2014] [Accepted: 11/13/2014] [Indexed: 12/19/2022]
Abstract
The use of antipsychotic drugs for the treatment of mood disorders and psychosis has increased dramatically over the last decade. Despite its consumption being associated with beneficial neuropsychiatric effects in patients, atypical antipsychotics (which are the most frequently prescribed antipsychotics) use is accompanied by some secondary adverse metabolic effects such as weight gain, dyslipidemia and glucose intolerance. The molecular mechanisms underlying these adverse effects are not fully understood but have been suggested to involve a dysregulation of adipose tissue homeostasis. As such, the aim of this paper is to review and discuss the role of adipose tissue in the development of secondary adverse metabolic effects induced by atypical antipsychotics. Data analyzed in this article suggest that atypical antipsychotics may increase adipose tissue (particularly visceral adipose tissue) lipogenesis, differentiation/hyperplasia, pro-inflammatory mediator secretion and insulin resistance and decrease adipose tissue lipolysis. Consequently, patients receiving antipsychotic medication could be at risk of developing obesity, type 2 diabetes and cardiovascular disease. A better knowledge of the impact of these drugs on adipose tissue homeostasis may unveil strategies to develop novel antipsychotic drugs with less adverse metabolic effects and to develop adjuvant therapies (e.g. behavioral and nutritional therapies) to neuropsychiatric patients receiving antipsychotic medication.
Collapse
Affiliation(s)
- Pedro Gonçalves
- INSERM (French Institute of Health and Medical Research), Unit 1151, INEM (Research Center in Molecular Medicine), Faculty of Medicine of Paris Descartes University, Paris, France
| | - João Ricardo Araújo
- INSERM (French Institute of Health and Medical Research), Unit 786, Molecular Microbial Pathogenesis Unit, Institut Pasteur, Paris, France
| | - Fátima Martel
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
40
|
Smith GC, McEwen H, Steinberg JD, Shepherd PR. The activation of the Akt/PKB signalling pathway in the brains of clozapine-exposed rats is linked to hyperinsulinemia and not a direct drug effect. Psychopharmacology (Berl) 2014; 231:4553-60. [PMID: 24800899 DOI: 10.1007/s00213-014-3608-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/21/2014] [Indexed: 01/01/2023]
Abstract
The second generation antipsychotic drug clozapine is a much more effective therapy for schizophrenia than first generation compounds, but the reasons for this are poorly understood. We have previously shown that one distinguishing feature of clozapine is its ability to raise glucagon levels in animal models and thus causes prolonged hyperinsulinemia without inducing hypoglycaemia. Previous studies have provided evidence that defects in Akt/PKB and GSK3 signalling can contribute to development of psychiatric diseases. Clozapine is known to activate Akt/PKB in the brain, and some studies have indicated that this is due to a direct effect of the drug on the neurons. However, we provide strong evidence that elevated insulin levels induced by clozapine are in fact the real cause of the drug's effects on Akt/PKB and GSK3 in the brain. This suggests that the elevated levels of insulin induced by clozapine may contribute to this drug's therapeutic efficacy.
Collapse
Affiliation(s)
- G C Smith
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand,
| | | | | | | |
Collapse
|
41
|
Ozcelik-Eroglu E, Ertugrul A, Oguz KK, Has AC, Karahan S, Yazici MK. Effect of clozapine on white matter integrity in patients with schizophrenia: a diffusion tensor imaging study. Psychiatry Res 2014; 223:226-35. [PMID: 25012780 DOI: 10.1016/j.pscychresns.2014.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 02/20/2014] [Accepted: 06/13/2014] [Indexed: 01/02/2023]
Abstract
Several diffusion tensor imaging (DTI) studies have reported disturbed white matter integrity in various brain regions in patients with schizophrenia, whereas only a few studied the effect of antipsychotics on DTI measures. The aim of this study was to investigate the effect of 12 weeks of clozapine treatment on DTI findings in patients with schizophrenia, and to compare the findings with those in unaffected controls. The study included 16 patients with schizophrenia who were assessed with the Positive and Negative Syndrome Scale, a neurocognitive test battery, and DTI at baseline and 12 weeks after the initiation of clozapine treatment. Eight unaffected controls were assessed once with the neurocognitive test battery and DTI. Voxel-wise analysis of DTI data was performed via tract-based spatial statistics (TBSS). Compared with the control group, the patient group exhibited lower fractional anisotropy (FA) in 16 brain regions, including the bilateral superior longitudinal fasciculi, inferior fronto-occipital fasciculi, superior and inferior parietal lobules, cingulate bundles, cerebellum, middle cerebellar peduncles, and left inferior longitudinal fasciculus, whereas the patients had higher FA in six regions, including the right parahippocampus, left anterior thalamic radiation, and right posterior limb of the internal capsule before clozapine treatment. After 12 weeks of treatment with clozapine, white matter FA was increased in widespread brain regions. In two of the regions where FA had initially been lower in patients compared with controls (left inferior fronto-occipital fasciculus and superior parietal lobule), clozapine appeared to increase FA. An improvement in semantic fluency was correlated with the increase in FA value in the left inferior fronto-occipital fasciculus. An increase in FA following 12 weeks of treatment with clozapine suggests that this treatment alters white matter microstructural integrity in patients with schizophrenia previously treated with typical and/or atypical antipsychotics and, in some locations, reverses a previous deficit.
Collapse
Affiliation(s)
- Elcin Ozcelik-Eroglu
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Aygun Ertugrul
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Kader Karli Oguz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey; National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
| | - Arzu Ceylan Has
- National Magnetic Resonance Research Center, Bilkent University, Ankara, Turkey
| | - Sevilay Karahan
- Department of Biostatistics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mumin Kazim Yazici
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
42
|
Dwyer DS, Aamodt E, Cohen B, Buttner EA. Drug elucidation: invertebrate genetics sheds new light on the molecular targets of CNS drugs. Front Pharmacol 2014; 5:177. [PMID: 25120487 PMCID: PMC4112795 DOI: 10.3389/fphar.2014.00177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/09/2014] [Indexed: 02/02/2023] Open
Abstract
Many important drugs approved to treat common human diseases were discovered by serendipity, without a firm understanding of their modes of action. As a result, the side effects and interactions of these medications are often unpredictable, and there is limited guidance for improving the design of next-generation drugs. Here, we review the innovative use of simple model organisms, especially Caenorhabditis elegans, to gain fresh insights into the complex biological effects of approved CNS medications. Whereas drug discovery involves the identification of new drug targets and lead compounds/biologics, and drug development spans preclinical testing to FDA approval, drug elucidation refers to the process of understanding the mechanisms of action of marketed drugs by studying their novel effects in model organisms. Drug elucidation studies have revealed new pathways affected by antipsychotic drugs, e.g., the insulin signaling pathway, a trace amine receptor and a nicotinic acetylcholine receptor. Similarly, novel targets of antidepressant drugs and lithium have been identified in C. elegans, including lipid-binding/transport proteins and the SGK-1 signaling pathway, respectively. Elucidation of the mode of action of anesthetic agents has shown that anesthesia can involve mitochondrial targets, leak currents, and gap junctions. The general approach reviewed in this article has advanced our knowledge about important drugs for CNS disorders and can guide future drug discovery efforts.
Collapse
Affiliation(s)
- Donard S. Dwyer
- Department of Psychiatry–Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-ShreveportShreveport, LA, USA
| | - Eric Aamodt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-ShreveportShreveport, LA, USA
| | - Bruce Cohen
- Department of Psychiatry, Harvard Medical SchoolBoston, MA, USA
- Mailman Research Center, McLean HospitalBelmont, MA, USA
| | - Edgar A. Buttner
- Mailman Research Center, McLean HospitalBelmont, MA, USA
- Department of Neurology–Department of Psychiatry, McLean Hospital, Harvard Medical SchoolBelmont, MA, USA
| |
Collapse
|
43
|
Wesseling H, Guest PC, Lee CM, Wong EH, Rahmoune H, Bahn S. Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders. Mol Autism 2014; 5:38. [PMID: 25061506 PMCID: PMC4109791 DOI: 10.1186/2040-2392-5-38] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022] Open
Abstract
Background Over the last decade, the transgenic N-methyl-D-aspartate receptor (NMDAR) NR1-knockdown mouse (NR1neo−/−) has been investigated as a glutamate hypofunction model for schizophrenia. Recent research has now revealed that the model also recapitulates cognitive and negative symptoms in the continuum of other psychiatric diseases, particularly autism spectrum disorders (ASD). As previous studies have mostly focussed on behavioural readouts, a molecular characterisation of this model will help to identify novel biomarkers or potential drug targets. Methods Here, we have used multiplex immunoassay analyses to investigate peripheral analyte alterations in serum of NR1neo−/− mice, as well as a combination of shotgun label-free liquid chromatography mass spectrometry, bioinformatic pathway analyses, and a shotgun-based 40-plex selected reaction monitoring (SRM) assay to investigate altered molecular pathways in the frontal cortex and hippocampus. All findings were cross compared to identify translatable findings between the brain and periphery. Results Multiplex immunoassay profiling led to identification of 29 analytes that were significantly altered in sera of NR1neo−/− mice. The highest magnitude changes were found for neurotrophic factors (VEGFA, EGF, IGF-1), apolipoprotein A1, and fibrinogen. We also found decreased levels of several chemokines. Following this, LC-MSE profiling led to identification of 48 significantly changed proteins in the frontal cortex and 41 in the hippocampus. In particular, MARCS, the mitochondrial pyruvate kinase, and CamKII-alpha were affected. Based on the combination of protein set enrichment and bioinformatic pathway analysis, we designed orthogonal SRM-assays which validated the abnormalities of proteins involved in synaptic long-term potentiation, myelination, and the ERK-signalling pathway in both brain regions. In contrast, increased levels of proteins involved in neurotransmitter metabolism and release were found only in the frontal cortex and abnormalities of proteins involved in the purinergic system were found exclusively in the hippocampus. Conclusions Taken together, this multi-platform profiling study has identified peripheral changes which are potentially linked to central alterations in synaptic plasticity and neuronal function associated with NMDAR-NR1 hypofunction. Therefore, the reported proteomic changes may be useful as translational biomarkers in human and rodent model drug discovery efforts.
Collapse
Affiliation(s)
- Hendrik Wesseling
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | - Paul C Guest
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | - Chi-Ming Lee
- AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850, USA
| | - Erik Hf Wong
- AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850, USA
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK ; Department of Neuroscience, Erasmus Medical Center, Rotterdam, CA, 3000, The Netherlands
| |
Collapse
|
44
|
Chondroitin sulfate proteoglycans: structure-function relationship with implication in neural development and brain disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:642798. [PMID: 24955366 PMCID: PMC4052930 DOI: 10.1155/2014/642798] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix components that contain two structural parts with distinct functions: a protein core and glycosaminoglycan (GAG) side chains. CSPGs are known to be involved in important cell processes like cell adhesion and growth, receptor binding, or cell migration. It is recognized that the presence of CSPGs is critical in neuronal growth mechanisms including axon guidance following injury of nervous system components such as spinal cord and brain. CSPGs are upregulated in the central nervous system after injury and participate in the inhibition of axon regeneration mainly through their GAG side chains. Recently, it was shown that some CSPGs members like aggrecan, versican, and neurocan were strongly involved in brain disorders like bipolar disorder (BD), schizophrenia, and ADHD. In this paper, we present the chemical structure-biological functions relationship of CSPGs, both in health state and in genetic disorders, addressing methods represented by genome-wide and crystallographic data as well as molecular modeling and quantitative structure-activity relationship.
Collapse
|
45
|
Marrus N, Bell M, Luby JL. Psychotropic Medications and Their Effect on Brain Volumes in Childhood Psychopathology. ACTA ACUST UNITED AC 2014; 19:1-8. [PMID: 28701856 DOI: 10.1521/capn.2014.19.2.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Marisa Bell
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
46
|
Ishima T, Fujita Y, Hashimoto K. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur J Pharmacol 2014; 727:167-73. [PMID: 24508523 DOI: 10.1016/j.ejphar.2014.01.064] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/06/2023]
Abstract
The sigma-1 receptor chaperone located in the endoplasmic reticulum (ER) may be implicated in the mechanistic action of some antidepressants. The present study was undertaken to examine whether new antidepressant drugs interact with the sigma-1 receptor chaperone. First, we examined the effects of selective serotonin reuptake inhibitors (SSRIs) (fluvoxamine, paroxetine, sertraline, citalopram and escitalopram), serotonin and noradrenaline reuptake inhibitors (SNRIs) (duloxetine, venlafaxine, milnacipran), and mirtazapine, a noradrenaline and specific serotonergic antidepressant (NaSSA), on [(3)H](+)-pentazocine binding to rat brain membranes. Then, we examined the effects of these drugs on nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. The order of potency for drugs at the sigma-1 receptor chaperone was as follows: fluvoxamine>sertraline>fluoxetine>escitalopram>citalopram>paroxetine>duoxetine. Venlafaxine, milnacipran, and mirtazapine showed very weak affinity for this chaperone. Furthermore, fluvoxamine, fluoxetine, escitalopram, and mirtazapine significantly potentiated NGF-induced neurite outgrowth in cell assays, and the effects of all these drugs, excluding mirtazapine, were antagonized by NE-100, a selective antagonist of the sigma-1 receptor chaperone. Moreover, the effects of fluvoxamine and fluoxetine on neurite outgrowth were also antagonized by sertraline, indicating that sertraline may be an antagonist at the sigma-1 receptor chaperone. The effect of mirtazapine on neurite outgrowth was antagonized by the selective 5-hydroxytryptamine1A receptor antagonist WAY-100635. These findings suggest that activation at the sigma-1 receptor chaperone may be involved in the action of some SSRIs, such as fluvoxamine, fluoxetine and escitalopram. In contrast, mirtazapine independently potentiated neurite outgrowth in PC12 cells, indicating that this beneficial effect may mediate its pharmacological effect.
Collapse
Affiliation(s)
- Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan.
| |
Collapse
|
47
|
Pereira A, Zhang B, Malcolm P, Sugiharto-Winarno A, Sundram S. Quetiapine and aripiprazole signal differently to ERK, p90RSK and c-Fos in mouse frontal cortex and striatum: role of the EGF receptor. BMC Neurosci 2014; 15:30. [PMID: 24552586 PMCID: PMC3936900 DOI: 10.1186/1471-2202-15-30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/14/2014] [Indexed: 01/04/2023] Open
Abstract
Background Signaling pathways outside dopamine D2 receptor antagonism may govern the variable clinical profile of antipsychotic drugs (APD) in schizophrenia. One postulated mechanism causal to APD action may regulate synaptic plasticity and neuronal connectivity via the extracellular signal-regulated kinase (ERK) cascade that links G-protein coupled receptors (GPCR) and ErbB growth factor signaling, systems disturbed in schizophrenia. This was based upon our finding that the low D2 receptor affinity APD clozapine induced initial down-regulation and delayed epidermal growth factor receptor (EGFR or ErbB1) mediated activation of the cortical and striatal ERK response in vivo distinct from olanzapine or haloperidol. Here we map whether the second generation atypical APDs aripiprazole and quetiapine affect the EGFR-ERK pathway and its substrates p90RSK and c-Fos in mouse brain, given their divergent agonist and antagonist properties on dopaminergic transmission, respectively. Results In prefrontal cortex, aripiprazole triggered triphasic ERK phosphorylation that was EGFR-independent but had no significant effect in striatum. Conversely quetiapine did not alter cortical ERK signaling but elevated striatal ERK levels in an EGFR-dependent manner. Induction of ERK by aripiprazole did not affect p90RSK signaling but quetiapine decreased RSK phosphorylation within 1-hour of administration. The transcription factor c-Fos by comparison was a direct target of ERK phosphorylation induced by aripiprazole in cortex and quetiapine in striatum with protein levels in temporal alignment with that of ERK. Conclusions These data indicate that aripiprazole and quetiapine signal to specific nuclear targets of ERK, which for quetiapine occurs via an EGFR-linked mechanism, possibly indicating involvement of this system in its action.
Collapse
Affiliation(s)
- Avril Pereira
- Department of Molecular Psychopharmacology, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Kenneth Myer Building, At Genetics Lane on Royal Parade, Parkville, VIC 3010, Australia.
| | | | | | | | | |
Collapse
|
48
|
Dwyer DS, Weeks K, Aamodt EJ. Drug discovery based on genetic and metabolic findings in schizophrenia. Expert Rev Clin Pharmacol 2014; 1:773-89. [PMID: 24410607 DOI: 10.1586/17512433.1.6.773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent progress in the genetics of schizophrenia provides the rationale for re-evaluating causative factors and therapeutic strategies for this disease. Here, we review the major candidate susceptibility genes and relate the aberrant function of these genes to defective regulation of energy metabolism in the schizophrenic brain. Disturbances in energy metabolism potentially lead to neurodevelopmental deficits, impaired function of the mature nervous system and failure to maintain neurites/dendrites and synaptic connections. Current antipsychotic drugs do not specifically address these underlying deficits; therefore, a new generation of more effective medications is urgently needed. Novel targets for future drug discovery are identified in this review. The coordinated application of structure-based drug design, systems biology and research on model organisms may greatly facilitate the search for next-generation antipsychotic drugs.
Collapse
Affiliation(s)
- Donard S Dwyer
- Professor and Director of Basic Research, Departments of Psychiatry and Pharmacology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | | | |
Collapse
|
49
|
Ruan L, Lau BWM, Wang J, Huang L, Zhuge Q, Wang B, Jin K, So KF. Neurogenesis in neurological and psychiatric diseases and brain injury: from bench to bedside. Prog Neurobiol 2013; 115:116-37. [PMID: 24384539 DOI: 10.1016/j.pneurobio.2013.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 02/08/2023]
Abstract
Researchers who have uncovered the presence of stem cells in an adult's central nervous system have not only challenged the dogma that new neurons cannot be generated during adulthood, but also shed light on the etiology and disease mechanisms underlying many neurological and psychiatric disorders. Brain trauma, neurodegenerative diseases, and psychiatric disorders pose enormous burdens at both personal and societal levels. Although medications for these disorders are widely used, the treatment mechanisms underlying the illnesses remain largely elusive. In the past decade, an increasing amount of evidence indicate that adult neurogenesis (i.e. generating new CNS neurons during adulthood) may be involved in the pathology of different CNS disorders, and thus neurogenesis may be a potential target area for treatments. Although new neurons were shown to be a major player in mediating treatment efficacy of neurological and psychotropic drugs on cognitive functions, it is still debatable if the altered production of new neurons can cause the disorders. This review hence seeks to discuss pre and current clinical studies that demonstrate the functional impact adult neurogenesis have on neurological and psychiatric illnesses while examining the related underlying disease mechanisms.
Collapse
Affiliation(s)
- Linhui Ruan
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.
| | - Benson Wui-Man Lau
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Jixian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Lijie Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Kunlin Jin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; GMH Institute of CNS Regeneration, Jinan University, Guangzhou, PR China.
| |
Collapse
|
50
|
Antibodies directed to Neisseria gonorrhoeae impair nerve growth factor-dependent neurite outgrowth in Rat PC12 cells. J Mol Neurosci 2013; 52:353-65. [PMID: 24203572 DOI: 10.1007/s12031-013-0156-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/17/2013] [Indexed: 12/17/2022]
Abstract
In children born from mothers with prenatal infections with the Gram-negative bacterium Neisseria gonorrhoeae, schizophrenia risk is increased in later life. Since cortical neuropil formation is frequently impaired during this disease, actions of a rabbit polyclonal antiserum directed to N. gonorrhoeae on neurite outgrowth in nerve growth factor-stimulated PC12 cells were investigated here. It turned out that 10 μg/ml of the antiserum leads indeed to a significant reduction in neurite outgrowth, whereas an antiserum directed to Neisseria meningitidis had no such effect. Furthermore, reduction in neurite outgrowth could be reversed by the neuroleptic drugs haloperidol, clozapine, risperidone, and olanzapine. On the molecular level, the observed effects seem to include the known neuritogenic transcription factors FoxO3a and Stat3, since reduced neurite outgrowth caused by the antiserum was accompanied by a reduced phosphorylation of both factors. In contrast, restitution of neurite outgrowth by neuroleptic drugs revealed no correlation to the phosphorylation state of these factors. The present report gives a first hint that bacterial infections could indeed lead to impaired neuropil formation in vitro; however, the in vivo relevance of this finding for schizophrenia pathogenesis remains to be clarified in the future.
Collapse
|