1
|
Shen F, Wei J, Hui Y, Ouyang L, Feng H, Wu L, Yu X, Zhao Z, Jin Z, Zhou W. High-transition-temperature paraffin integration in IFAST device for efficient and robust nucleic acid extraction and detection. Biosens Bioelectron 2025; 278:117314. [PMID: 40054157 DOI: 10.1016/j.bios.2025.117314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/29/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
Infectious diseases are prevalent in resource-limited regions with restricted access to health care. Nucleic acid testing is the gold standard for pathogen diagnosis. However, traditional methods are resource-intensive, which limits their use in point-of-care settings. Microfluidic technologies, such as the immiscible phase filtration-assisted system (IFAST) using paramagnetic particles (PMPs), simplify nucleic acid extraction but face barrier stability issues. The interface between the aqueous and oil phases in current IFAST systems is destabilized under the conditions required for efficient RNA extraction. These conditions include the use of reagents containing high concentrations of surfactants and organic solvents, as well as thermal treatment, which reduces the operational stability, reproducibility, and compatibility of the current IFAST systems. We developed a high-transition-temperature (HTT) paraffin-embedded IFAST-based device to improve barrier stability and extraction efficiency. HTT paraffin remains semi-solid at 65 °C, providing a robust barrier during the thermal lysis and RT-LAMP processes. At 75 °C, the device maintained compartment integrity and reduced carryover during the nucleic acid-bound magnetic particle transfer. Testing with SARS-CoV-2 samples showed detection of as little as 1 copy/μL of the viral genome without false positives. By integrating RNA extraction and colorimetric RT-LAMP detection, this device provided rapid on-site testing, advancing accessible and effective disease management in regions that require rapid diagnostics.
Collapse
Affiliation(s)
- Fengshan Shen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jitao Wei
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Hui
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liwei Ouyang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hongtao Feng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lie Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuefeng Yu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Zhao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zongwen Jin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wenhua Zhou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Miranda A, Baptista B, Figueira M, Sousa F, Maia CJ, Socorro S, Cruz C. Sensitive fluorescent detection of SARS-CoV-2 RNA using an enzymatic-based method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125766. [PMID: 39879958 DOI: 10.1016/j.saa.2025.125766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Rapid, quantitative, and sensitive detection of viral oligonucleotides can help to diagnose the infection before symptoms occur, monitor disease progression, and identify viral subtypes. A one-pot, simple, rapid hairpin-mediated nicking enzymatic signal amplification (HNESA) method was previously developed for nucleic acids detection. In the present work, this method was applied for the detection of SARS-CoV-2 RNA by designing an assistant probe (AP) that contains the complementary sequence for the target, the sequence of hybridization with the loop region of the molecular beacon (MB), and the recognition site of the nicking endonuclease Nt.BstNBI. MB sequences (MB1 and MB2) were also designed and optimized in length and nucleotide composition. MB2 significantly amplified the fluorescence signal of the target sequence. The linear range was from 0.1 to 1 nM with a detection limit of 170.6 pM. Results can be obtained within 45 min, considering that the cyclic amplification involves only one AP and one MB. Based on this, the use of HNESA for diagnosing viral diseases, such as SARS-CoV-2, could be a complementary approach to polymerase chain reaction (PCR), and it is a technique that is quick, efficient and has high sensitivity.
Collapse
Affiliation(s)
- André Miranda
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama 6201-001 Covilhã, Portugal
| | - Bruno Baptista
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama 6201-001 Covilhã, Portugal
| | - Marília Figueira
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique 6200-506 Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique 6200-506 Covilhã, Portugal
| | - Cláudio J Maia
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique 6200-506 Covilhã, Portugal
| | - Silvia Socorro
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique 6200-506 Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama 6201-001 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama 6201-001 Covilhã, Portugal.
| |
Collapse
|
3
|
Chen Y, Xia W, Pan Z, Lu F, Liu Y, Cao M, He N. Development of a Cell-Free, Toehold Switch-Based Biosensor for Rapid and Sensitive Zika Virus Detection. Anal Chem 2025; 97:3486-3494. [PMID: 39924741 DOI: 10.1021/acs.analchem.4c05808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The need for rapid and sensitive diagnostic tools is emphasized by the significant impact of infectious diseases on global health. This study presents a cell-free biosensor utilizing toehold switch technology, combined with nucleic acid sequence-based amplification (NASBA), for high specificity and sensitivity in Zika virus detection. The toehold switch, a denovo-designed regulator of gene expression, forms the crux of our detection system, offering a versatile and programmable approach to nucleic acid-based diagnostics. The cell-free system based on Escherichia coli extract served as the platform for sensor expression, enabling real-time monitoring and optimization of the reaction conditions for minimal background leakage and maximal activation efficiency. The performance of the toehold switch sensor was rigorously evaluated through a series of tests, revealing that switch S23 demonstrated the most promising activation effects and sequence specificity. Notably, the integration of NASBA technology significantly enhanced the detection sensitivity, achieving a remarkable limit of 2.9 aM, thus addressing the intrinsic limitation of toehold switches in detecting low-abundance targets. The detection system's low cost, simplicity, and adaptability to various pathogens render it a valuable asset in the global health toolkit. This study presents a significant advancement in the field of synthetic biology, offering a robust, sensitive, and rapid diagnostic solution for Zika virus detection.
Collapse
Affiliation(s)
- Yongbin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Wenhao Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Ziwei Pan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| |
Collapse
|
4
|
Liu L, Dollery SJ, Tobin GJ, Lu G, Du K. Cleavable energy transfer labeled oligonucleotide probe for enhanced isothermal amplification detection and nano digital chip-based readout. NANOSCALE 2025; 17:1381-1391. [PMID: 39639742 PMCID: PMC11750181 DOI: 10.1039/d4nr03142c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Quantitative analysis of human papillomavirus (HPV)-infected cervical cancer is essential for early diagnosis and timely treatment of cervical cancer. Here, we introduce a novel energy transfer-labeled oligonucleotide probe to enhance the loop-mediated isothermal amplification (LAMP) assay for highly sensitive and specific detection of HPV 16. Conducted as a single-step assay within a digital nanofluidic chip featuring numerous reaction reservoirs, our method facilitates target amplification under isothermal conditions. Targeting an HPV 16 gene, our chip demonstrates the capability to detect HPV DNA at concentrations as low as 1 fM, spanning a dynamic range of five orders of magnitude. Importantly, our nano digital chip enables for highly quantitative detection at low concentrations, with the correlation between target concentration and the number of microwells exhibiting fluorescence signals. Furthermore, we have developed a computer vision method for automated and 100% accurate quantification of target concentrations. This research holds promising applications in clinical diagnosis and is poised for seamless integration into both hospital and point-of-care settings.
Collapse
Affiliation(s)
- Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | | | - Gregory J Tobin
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD, USA
| | - Guoyu Lu
- Intelligent Vision and Sensing Lab, University of Georgia, Athens, GA, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
5
|
Raza MA, Ashraf MA, Amjad MN, Din GU, Shen B, Hu Y. The peculiar characteristics and advancement in diagnostic methodologies of influenza A virus. Front Microbiol 2025; 15:1435384. [PMID: 39839109 PMCID: PMC11747045 DOI: 10.3389/fmicb.2024.1435384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Influenza A virus (IAV) is a significant public health concern, causing seasonal outbreaks and occasional pandemics. These outbreaks result from changes in the virus's surface proteins which include hemagglutinin and neuraminidase. Influenza A virus has a vast reservoir, including wild birds, pigs, horses, domestic and marine animals. It has over 130 subtypes based on differences in hemagglutinin and neuraminidase protein. IAV affects all age groups but impacts young children more especially during the colder season. Despite the development of vaccines and antiviral drugs, IAV is still a major cause of respiratory illnesses and deaths. Surveillance of IAV is crucial to detect new strains and assess vaccine effectiveness. Detection of IAV relies on methods like hemagglutination assay, PCR, cell culturing, and immunochromatography-based tests. Precise and early detection of IAV strain is crucial for quick treatment using antiviral drugs and unraveling epidemiological patterns to curb epidemics and pandemics on time. Advancements in diagnostic methodologies have enabled us to detect the IAV at early stages by overcoming the limitations of previously used diagnostic tests, further preparing us to combat future epidemics more effectively. This review article discusses the traditional and advanced diagnosis methods for detecting IAV.
Collapse
Affiliation(s)
- Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Yao S, Wu T, Wang C, Zhang T, Huang R, Bai C, Zhou P. Establishment and Application of a New Radiation Biodosimetric Method Based on the Quantitative RPA-SHERLOCK Amplification Technology. Radiat Res 2025; 203:26-36. [PMID: 39542013 DOI: 10.1667/rade-24-00157.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Biodosimetry is a key diagnostic tool for radiation exposure, risk assessment and treatment planning of acute radiation sickness. To effectively respond to a large-scale radiological incident, there is a need for the development of biodosimetric methods with fast, portable, and convenient operating advantages. We employed the recombinase polymerase amplification specific high-sensitivity enzymatic reporter unlocking (RPA-SHERLOCK) technology to establish a method for fast radiation dose assessment by measuring the expression level of radiation-inducible genes. Moreover, we proposed for the first time the principle of quantitative detection of curve slopes based on this method. Using this new method, changes in mRNA expression were confirmed in a number of radiation-sensitive genes (XPC, CDKN1A, and ATM) in human lymphocytes after irradiation. The standard curve of the dose-effect relationship was established, which can be used to quickly determine the exposed dose of the irradiated samples. Compared with traditional detection methods such as RT-qPCR, this method was found to be more convenient, fast and easy to operate. With the same amount of template input as RT-qPCR, the detection time of this method can be shortened to less than 20 min. The detection instrument required by this method is also more portable than a qPCR system.
Collapse
Affiliation(s)
- Shibo Yao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Tao Wu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cui Wang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Tinghui Zhang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| |
Collapse
|
7
|
Olie SE, Andersen CØ, van de Beek D, Brouwer MC. Molecular diagnostics in cerebrospinal fluid for the diagnosis of central nervous system infections. Clin Microbiol Rev 2024; 37:e0002124. [PMID: 39404267 PMCID: PMC11629637 DOI: 10.1128/cmr.00021-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
SUMMARYCentral nervous system (CNS) infections can be caused by various pathogens, including bacteria, viruses, fungi, and parasites. Molecular diagnostic methods are pivotal for identifying the different causative pathogens of these infections in clinical settings. The efficacy and specificity of these methods can vary per pathogen involved, and in a substantial part of patients, no pathogen is identified in the cerebrospinal fluid (CSF). Over recent decades, various molecular methodologies have been developed and applied to patients with CNS infections. This review provides an overview of the accuracy of nucleic acid amplification methods in CSF for a diverse range of pathogens, examines the potential value of multiplex PCR panels, and explores the broad-range bacterial and fungal PCR/sequencing panels. In addition, it evaluates innovative molecular approaches to enhance the diagnosis of CNS infections.
Collapse
Affiliation(s)
- Sabine E. Olie
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Christian Ø. Andersen
- Statens Serum Institute, Diagnostic Infectious Disease Preparedness, Copenhagen, Denmark
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C. Brouwer
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Zhao Y, Dai J, Zhang Z, Chen J, Chen Y, Hu C, Chen X, Guo A. CRISPR-Cas13a-Based Lateral Flow Assay for Detection of Bovine Leukemia Virus. Animals (Basel) 2024; 14:3262. [PMID: 39595314 PMCID: PMC11590953 DOI: 10.3390/ani14223262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL), which presents worldwide prevalence. BLV caused substantial economic loss in China around the 1980s; then, it could not be detected for some time, until recently. Due to its latent and chronic characteristics, the efficient and accurate detection of BLV is of utmost significance to the timely implementation of control measures. Therefore, this study harnessed the recombinase-aided amplification (RAA), clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 13a (Cas13a) technology, and lateral flow (LF) strips to develop an efficient method for detection of BLV. In this method, isothermal amplification of the targeted pol gene is performed at 37 °C with a detection threshold of 1 copy/µL, and the procedure is completed in 100 min. This assay demonstrated high selectivity for BLV, as indicated by the absence of a cross-reaction with six common bovine pathogens. Remarkably, 100 blood samples from dairy cows were tested in parallel with a conventional quantitative polymerase chain reaction (qPCR) and this method and the results showed 100% agreement. Furthermore, this method exhibited good repeatability. In conclusion, in this study, we established a sensitive and specific method for BLV detection, which shows promise for application in BLV surveillance.
Collapse
Affiliation(s)
- Yuxi Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwen Dai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China;
| | - Zhen Zhang
- Henan Seed Industry Development Center, Zhengzhou 450045, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Sidireddi SH, Park JW, Gonzalez M, Sétamou M, Kunta M. Loop-Mediated Isothermal Amplification Assay for the Detection of Citrus Canker Causing Bacterial Variant, Xanthomonas citri pv. citri A w Strain. Int J Mol Sci 2024; 25:11590. [PMID: 39519140 PMCID: PMC11546398 DOI: 10.3390/ijms252111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Citrus canker, a highly transmissible bacterial disease, has three major types, with Asiatic canker (Canker A), caused by Xanthomonas citri pv. citri (Xcc A), being the most widespread and severe, affecting most citrus varieties. Xcc A has two mild variants, Xcc A* and Aw with a limited host range, reported in Southwest Asia and Florida, respectively. Since 2015, the canker caused by Xcc Aw has been being reported in the Rio Grande Valley of South Texas where the Texas commercial citrus industry is located. In 2016, a more severe Canker A was reported in the upper Texas gulf coast region, north of the Rio Grande Valley, posing a potential threat to the Texas citrus industry. Given that existing diagnostic methods cannot reliably distinguish Xcc Aw from Xcc A, we developed a loop-mediated isothermal amplification (LAMP) assay specific to Xcc Aw (LAMP-Aw) for rapid, field-based identification of this bacterial variant. The detection limit of LAMP-Aw was ~4.52 Log10 copies of the target molecule. This study also evaluated the field applicability of the LAMP-Aw assay by coupling the LAMP-Aw assay with a lateral flow immunoassay system.
Collapse
Affiliation(s)
| | - Jong-Won Park
- Citrus Center, Texas A&M University Kingsville, Weslaco, TX 78599, USA; (S.H.S.); (M.G.); (M.S.)
| | | | | | - Madhurababu Kunta
- Citrus Center, Texas A&M University Kingsville, Weslaco, TX 78599, USA; (S.H.S.); (M.G.); (M.S.)
| |
Collapse
|
10
|
Doganay MT, Roman E, Hujer AM, Bonomo RA, Deeks SG, Kuritzkes DR, Draz MS. AMPLON: Amplifying DNA with Multiarm Priming and Looping Optimization of Nucleic Acid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311634. [PMID: 38657970 PMCID: PMC11239297 DOI: 10.1002/adma.202311634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Nucleic acid amplification, the bedrock of biotechnology and molecular diagnostics, surges in applications-especially isothermal approaches-heightening the demand for advanced and precisely engineered methods. Here, a novel approach for amplifying DNA with multiarm priming and looping optimization of nucleic acid (AMPLON) is presented. AMPLON relies on a novel polymeric material with unique set of multiarm polyethylene glycol-DNA primers for efficient DNA amplification under isothermal conditions. Each arm carries single-stranded DNA complementing the sense or antisense sequence of the target DNA. The amplification reaction begins with antisense arms binding to the target DNA, forming a template for sense-carrying arms to direct multiarm large DNA amplicon synthesis through successive DNA looping and unlooping steps. Using human immunodeficiency virus type 1 (HIV-1) as a model clinical target, AMPLON exhibits high sensitivity, detecting target concentrations as low as 100 copies mL-1. Compared to a quantitative real-time polymerase chain reaction assay using sensitive primers, AMPLON reliably identifies HIV-1 RNA in plasma samples (n = 20) with a significant agreement rate of 95%. With its ability to achieve highly specific and sensitive target amplification within 30 min, AMPLON holds immense potential to transform the field of nucleic acid research and unleashing new possibilities in medicine and biotechnology.
Collapse
Affiliation(s)
- Mert Tunca Doganay
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ethan Roman
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Andrea M. Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Daniel R. Kuritzkes
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, USA
| | - Mohamed S. Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44106, USA
| |
Collapse
|
11
|
Roy SD, Ramasamy S, Obbineni JM. An evaluation of nucleic acid-based molecular methods for the detection of plant viruses: a systematic review. Virusdisease 2024; 35:357-376. [PMID: 39071869 PMCID: PMC11269559 DOI: 10.1007/s13337-024-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 07/30/2024] Open
Abstract
Precise and timely diagnosis of plant viruses is a prerequisite for the implementation of efficient management strategies, considering factors like globalization of trade and climate change facilitating the spread of viruses that lead to agriculture yield losses of billions yearly worldwide. Symptomatic diagnosis alone may not be reliable due to the diverse symptoms and confusion with plant abiotic stresses. It is crucial to detect plant viruses accurately and reliably and do so with little time. A complete understanding of the various detection methods is necessary to achieve this. Enzyme-linked immunosorbent assay (ELISA), has become more popular as a method for detecting viruses but faces limitations such as antibody availability, cost, sample volume, and time. Advanced techniques like polymerase chain reaction (PCR) have surpassed ELISA with its various sensitive variants. Over the last decade, nucleic acid-based molecular methods have gained popularity and have quickly replaced other techniques, such as serological techniques for detecting plant viruses due to their specificity and accuracy. Hence, this review enables the reader to understand the strengths and weaknesses of each molecular technique starting with PCR and its variations, along with various isothermal amplification followed by DNA microarrays, and next-generation sequencing (NGS). As a result of the development of new technologies, NGS is becoming more and more accessible and cheaper, and it looks possible that this approach will replace others as a favoured approach for carrying out regular diagnosis. NGS is also becoming the method of choice for identifying novel viruses. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00863-0.
Collapse
Affiliation(s)
- Subha Deep Roy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | | | - Jagan M. Obbineni
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
12
|
Zhang Z, Zhang Z, Wang C, Zhai X, Wang W, Chen X, Zhang T. Detection method for reverse transcription recombinase-aided amplification of avian influenza virus subtypes H5, H7, and H9. BMC Vet Res 2024; 20:203. [PMID: 38755641 PMCID: PMC11097555 DOI: 10.1186/s12917-024-04040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Avian influenza virus (AIV) not only causes huge economic losses to the poultry industry, but also threatens human health. Reverse transcription recombinase-aided amplification (RT-RAA) is a novel isothermal nucleic acid amplification technology. This study aimed to improve the detection efficiency of H5, H7, and H9 subtypes of AIV and detect the disease in time. This study established RT-RAA-LFD and real-time fluorescence RT-RAA (RF-RT-RAA) detection methods, which combined RT-RAA with lateral flow dipstick (LFD) and exo probe respectively, while primers and probes were designed based on the reaction principle of RT-RAA. RESULTS The results showed that RT-RAA-LFD could specifically amplify H5, H7, and H9 subtypes of AIV at 37 °C, 18 min, 39 °C, 20 min, and 38 °C, 18 min, respectively. The sensitivity of all three subtypes for RT-RAA-LFD was 102 copies/µL, which was 10 ∼100 times higher than that of reverse transcription polymerase chain reaction (RT-PCR) agarose electrophoresis method. RF-RT-RAA could specifically amplify H5, H7, and H9 subtypes of AIV at 40 °C, 20 min, 38 °C, 16 min, and 39 °C, 17 min, respectively. The sensitivity of all three subtypes for RF-RT-RAA was 101 copies/µL, which was consistent with the results of real-time fluorescence quantification RT-PCR, and 100 ∼1000 times higher than that of RT-PCR-agarose electrophoresis method. The total coincidence rate of the two methods and RT-PCR-agarose electrophoresis in the detection of clinical samples was higher than 95%. CONCLUSIONS RT-RAA-LFD and RF-RT-RAA were successfully established in this experiment, with quick response, simple operation, strong specificity, high sensitivity, good repeatability, and stability. They are suitable for the early and rapid diagnosis of Avian influenza and they have positive significance for the prevention, control of the disease, and public health safety.
Collapse
Affiliation(s)
- Zongshu Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Zichuang Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chunguang Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xianghe Zhai
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wenjing Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xi Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Tie Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
13
|
Torres-Salvador F, Ojeda J, Castro C, Gerasimova Y, Chumbimuni-Torres K. A Single Electrochemical Biosensor Designed to Detect Any Virus. Anal Chem 2024; 96:5752-5756. [PMID: 38560822 PMCID: PMC11459061 DOI: 10.1021/acs.analchem.3c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Viruses are the primary cause of many infectious diseases in both humans and animals. Various testing methods require an amplification step of the viral RNA sample before detection, with quantitative reverse transcription polymerase chain reaction (RT-qPCR) being one of the most widely used along with lesser-known methods like Nucleic Acid Sequence-Based Amplification (NASBA). NASBA offers several advantages, such as isothermal amplification and high selectivity for specific sequences, making it an attractive option for low-income facilities. In this research, we employed a single electrochemical biosensor (E-Biosensor) designed for potentially detecting any virus by modifying the NASBA protocol. In this modified protocol, a reverse primer is designed with an additional 22-nucleotide sequence (tag region) at the 5'-end, which is added to the NASBA process. This tag region becomes part of the final amplicon generated by NASBA. It can hybridize with a single specific E-Biosensor probe set, enabling subsequent virus detection. Using this approach, we successfully detected three different viruses with a single E-Biosensor design, demonstrating the platform's potential for virus detection.
Collapse
Affiliation(s)
| | - Julio Ojeda
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, US
| | - Cynthia Castro
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, US
| | - Yulia Gerasimova
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, US
| | | |
Collapse
|
14
|
Chi R, Lin PY, Jhuo YS, Cheng FY, Ho JAA. Colorimetric detection of African swine fever (ASF)-associated microRNA based on rolling circle amplification and salt-induced gold nanoparticle aggregation. Talanta 2024; 267:125159. [PMID: 37738746 DOI: 10.1016/j.talanta.2023.125159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/24/2023]
Abstract
African swine fever (ASF) is a severe viral disease with a high mortality rate in domestic and wild pigs, for which no effective vaccine and antiviral drugs are available. The great infectivity of the ASF virus highlights the need for sensitive, simple, and on-site detection assays of ASF. We herein developed a colorimetric sensing strategy for the detection of an ASF-associated miRNA, based on isothermal rolling circle amplification (RCA) and salt-induced gold nanoparticle aggregation. Ssc-miR-451 was selected as the target ASF biomarker due to its high expression in ASF virus-infected pigs. With a red-purple-blue color shifting, this biosensing platform offers convenient detection of ssc-miR-451 with a UV-Vis spectrometer or the naked eye. The proposed assay exhibits a dose-response relationship between the optical absorbance ratio (A525/A640) and the amounts of ssc-miR-451, with a detection limit calculated as 3.56 fmol (equivalent to 11.86 pM in 300 μL reaction mixture). This assay's coefficient of variation (CV%) was determined to be less than 5.95%, revealing its reproducibility is satisfactory. In addition, the newly developed method was successfully applied in the detection of spiked ssc-miR-451 in pig serum samples. In light of its simplicity, convenience (colorimetric), sensitivity, and energy efficiency (isothermal amplification), this biosensing strategy presents great potential to be applied in the local swine industry and pig farming for screening of viral diseases affecting pigs.
Collapse
Affiliation(s)
- Rong Chi
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan
| | - Pei-Ying Lin
- Department of Biochemical Science and Technology, National Taiwan University, 10617, Taipei, Taiwan
| | - Yi-Syuan Jhuo
- Department of Chemistry, Chinese Culture University, 11114, Taipei, Taiwan
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, 11114, Taipei, Taiwan
| | - Ja-An Annie Ho
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, 10617, Taipei, Taiwan; Center for Emerging Materials and Advanced Devices, National Taiwan University, 10617, Taipei, Taiwan; Center for Biotechnology, National Taiwan University, 10617, Taipei, Taiwan.
| |
Collapse
|
15
|
Hokazono E, Fukumoto S, Uchiumi T, Osawa S. Pyrophosphate detection method using 5-Br-PAPS to detect nucleic acid amplification - Application to LAMP method. Anal Biochem 2024; 684:115371. [PMID: 37940014 DOI: 10.1016/j.ab.2023.115371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Genetic testing has been increasingly used in several fields. In many applications, nucleic acid amplification technology is required. However, current methods to detect nucleic acid amplification require expensive reagents and special equipment or exhibit limited sensitivity, which hinders their use. To address this issue, this study reports an assay method for detecting occurrence of acid amplification in post-amplification samples using pyrophosphate, a highly sensitive byproduct of nucleic acid amplification. The method proposed requires two reagents and an automated analyzer. First, hydrogen peroxide is derived from pyrophosphate, an indicator of nucleic acid amplification, and the oxidizing power of hydrogen peroxide is used to produce Fe (III) from Fe (II). The specific metal chelator 5-Br-PAPS forms a complex with the trivalent iron produced, resulting in a highly sensitive coloration. The within-run reproducibility of our method (n = 20) was less than 3.67% at each concentration tested, and the detection limit was 0.075 μmol/L, sufficient for quantitative analysis. The technique described could detect pyrophosphate in a sample that was amplified using the loop-mediated isothermal amplification method after only 10 min. Therefore, the proposed method has the potential to be a new, rapid, and simple detection technique for amplified nucleic acids.
Collapse
Affiliation(s)
- Eisaku Hokazono
- Division of Medical Sciences and Technology Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Japan.
| | - Saori Fukumoto
- Division of Medical Sciences and Technology Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Japan
| | - Takeshi Uchiumi
- Division of Medical Sciences and Technology Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Japan
| | - Susumu Osawa
- Research Center for Micro Blood Analysis, Leisure, Inc., Japan
| |
Collapse
|
16
|
Fu X, Wang Q, Ma B, Zhang B, Sun K, Yu X, Ye Z, Zhang M. Advances in Detection Techniques for the H5N1 Avian Influenza Virus. Int J Mol Sci 2023; 24:17157. [PMID: 38138987 PMCID: PMC10743243 DOI: 10.3390/ijms242417157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Avian influenza is caused by avian influenza virus infection; the H5N1 avian influenza virus is a highly pathogenic subtype, affecting poultry and human health. Since the discovery of the highly pathogenic subtype of the H5N1 avian influenza virus, it has caused enormous losses to the poultry farming industry. It was recently found that the H5N1 avian influenza virus tends to spread among mammals. Therefore, early rapid detection methods are highly significant for effectively preventing the spread of H5N1. This paper discusses the detection technologies used in the detection of the H5N1 avian influenza virus, including serological detection technology, immunological detection technology, molecular biology detection technology, genetic detection technology, and biosensors. Comparisons of these detection technologies were analyzed, aiming to provide some recommendations for the detection of the H5N1 avian influenza virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (X.F.); (Q.W.); (B.M.); (B.Z.); (K.S.); (X.Y.); (Z.Y.)
| |
Collapse
|
17
|
Copeland CE, Kwon YC. Suitability evaluation of toehold switch and EXPAR for cell-free MicroRNA biosensor development. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:83-89. [PMID: 39416922 PMCID: PMC11446392 DOI: 10.1016/j.biotno.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 10/19/2024]
Abstract
The development of a robust and cost-effective sensing platform for microRNA (miRNA) is of paramount importance in detecting and monitoring various diseases. Current miRNA detection methods are marred by low accuracy, high cost, and instability. The toehold switch riboregulator has shown promising results in detecting viral RNAs integrated with the freeze-dried cell-free system (CFS). This study aimed to leverage the toehold switch technology and portability to detect miRNA in the CFS and to incorporate the exponential amplification reaction (EXPAR) to bring the detection to clinically relevant levels. We assessed various EXPAR DNA templates under different conditions to enhance the accuracy of the sensing platform. Furthermore, different structures of toehold switches were tested with either high-concentration synthetic miRNA or EXPAR product to assess sensitivity. Herein, we elucidated the mechanisms of the toehold switch and EXPAR, presented the findings of these optimizations, and discussed the potential benefits and drawbacks of their combined use.
Collapse
Affiliation(s)
- Caroline E. Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Yong-Chan Kwon
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
- Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| |
Collapse
|
18
|
Li P, Lin Q, Xiong H, Kong J, Ye X, Fang X. Innovative Highly Specific Nucleic Acid Isothermal Detection Assay Based on the Polymerization-Coupled Endonuclease Activity of Prokaryotic DNA Polymerase I. Anal Chem 2023; 95:15755-15762. [PMID: 37824574 DOI: 10.1021/acs.analchem.3c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
In this study, we developed an innovative highly specific nucleic acid isothermal detection assay based on prokaryotic DNA polymerase I with exquisitely designed fluorescent probes, achieving high sensitivity and 100% specificity within 30 min. The fluorescent nucleic acid probe was designed and constructed based on the specific flap cleavage endonuclease activity of prokaryotic DNA polymerase I (including the Bst, Bsu, Bsm, and Klenow DNA polymerases). The flap endonuclease activity depends on the length of the flap DNA and polymerization activity, which greatly reduces the false-positive rate caused by primer dimerization. This robust assay was also validated by the detection of rotavirus with great specificity and sensitivity. It could be a great alternative to qPCR in the field of point-of-care detection of pathogens.
Collapse
Affiliation(s)
- Pintao Li
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Qiuyuan Lin
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Huiwen Xiong
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Jilie Kong
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Xin Ye
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi P. R. China
| | - Xueen Fang
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
19
|
Chen WT, Chiu PY, Chen CF. A flash signal amplification approach for ultrasensitive and rapid detection of single nucleotide polymorphisms in tuberculosis. Biosens Bioelectron 2023; 237:115514. [PMID: 37423064 DOI: 10.1016/j.bios.2023.115514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
In recent years, the demand for rapid, sensitive, and simple methods for diagnosing deoxyribonucleic acid (DNA) has grown due to the increase in the variation of infectious diseases. This work aimed to develop a flash signal amplification method coupled with electrochemical detection for polymerase chain reaction (PCR)-free tuberculosis (TB) molecular diagnosis. We exploited the slightly miscible properties of butanol and water to instantly concentrate a capture probe DNA, a single-stranded mismatch DNA, and gold nanoparticles (AuNPs) to a small volume to reduce the diffusion and reaction time in the solution. In addition, the electrochemical signal was enhanced once two strands of DNA were hybridized and bound to the surface of the gold nanoparticle at an ultra-high density. To eliminate non-specific adsorption and identify mismatched DNA, the self-assembled monolayers (SAMs) and Muts proteins were sequentially modified on the working electrode. This sensitive and specific approach can detect as low as attomolar levels of DNA targets (18 aM) and is successfully applied to detecting tuberculosis-associated single nucleotide polymorphisms (SNPs) in synovial fluid. More importantly, as this biosensing strategy can amplify the signal in only a few seconds, it possesses a great potential for point-of-care and molecular diagnosis applications.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Ping-Yeh Chiu
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan; Graduate School of Advanced Technology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
20
|
Zhang S, Duan M, Li S, Hou J, Qin T, Teng Z, Hu J, Zhang H, Xia X. Current status of recombinase polymerase amplification technologies for the detection of pathogenic microorganisms. Diagn Microbiol Infect Dis 2023; 108:116097. [PMID: 39491865 DOI: 10.1016/j.diagmicrobio.2023.116097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 11/05/2024]
Abstract
Rapid detection of pathogenic microorganisms is key to the epidemiologic identification, prevention and control of disease in the field of public health. PCR-based pathogen detection methods have been widely used because they overcome the time-consuming issues encountered in traditional culture-based methods, including the limited detecting window-phase of immunological detection. However, the requirement for precise temperature-controlled thermal cyclers severely limits the application of these methods in resource-limited areas. Recombinase polymerase amplification (RPA) is a new type of nucleic acid amplification technology that can amplify DNA or RNA at a constant temperature. It has the advantages of simple operation, high specificity and sensitivity and a short detection time. In recent years, a number of alternative methods for pathogenic microorganism detection have been developed by combining microfluidic technology with RPA. Through the design of chip structures, optimization of injection modes, and utilization of multiple detection and quantification methods, the integration of pathogen nucleic acid extraction, amplification and detection is achieved, and this approach is suitable for the rapid detection of pathogenic microorganisms in various environments. In this review, we compare different nucleic acid amplification techniques, explain the principle of RPA technology, detection methods, and applications for pathogen microorganism detection and describe future direction of RPA application. These methods increase the ability to rapidly screen pathogenic microorganisms, thus improving the management of infectious diseases in the field of public health.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingyuan Duan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shuang Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jie Hou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ting Qin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhanwei Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
21
|
Bao M, Waitkus J, Liu L, Chang Y, Xu Z, Qin P, Chen J, Du K. Micro- and nanosystems for the detection of hemorrhagic fever viruses. LAB ON A CHIP 2023; 23:4173-4200. [PMID: 37675935 DOI: 10.1039/d3lc00482a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Hemorrhagic fever viruses (HFVs) are virulent pathogens that can cause severe and often fatal illnesses in humans. Timely and accurate detection of HFVs is critical for effective disease management and prevention. In recent years, micro- and nano-technologies have emerged as promising approaches for the detection of HFVs. This paper provides an overview of the current state-of-the-art systems for micro- and nano-scale approaches to detect HFVs. It covers various aspects of these technologies, including the principles behind their sensing assays, as well as the different types of diagnostic strategies that have been developed. This paper also explores future possibilities of employing micro- and nano-systems for the development of HFV diagnostic tools that meet the practical demands of clinical settings.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Jacob Waitkus
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Yu Chang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Zhiheng Xu
- Department of Industrial Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
22
|
Wu S, Abdullah Al-Maskri AA, Li Q, Liu J, Cai S. A Novel miRNA Detection Method Using Loop-Mediated Isothermal Amplification. Int J Anal Chem 2023; 2023:6624884. [PMID: 37732283 PMCID: PMC10508998 DOI: 10.1155/2023/6624884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
A novel ligation-based loop-mediated isothermal amplification has been developed for miRNA detection. Two stem-loop structure DNA linker A/B probes which hybridized with miRNA were designed to establish a rapid and ultrasensitive miRNA-LAMP system for miRNA detection. Target miR-200a was used to template the ligation of Linker A/B probes with SplintR Ligase and used as a dumbbell-shaped amplicon. By adding BIP/FIP and Bst 2.0 DNA polymerase, the LAMP reaction was carried out, which brought greatly improved amplification efficiency. The double-stranded DNA fluorescent dye EvaGreen was added for the detection of amplification product to achieve the quantification of the target miRNA. This method can detect miRNA in a linear range of seven orders of magnitude, with a detection limit of 100 fM. Therefore, this ultrasensitive miRNA-LAMP assay provides a new path for the highly sensitive quantitative analysis of miRNA, thereby bringing convenience to clinical diagnosis and prognostic research.
Collapse
Affiliation(s)
- Saiwei Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Abdu Ahmed Abdullah Al-Maskri
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qun Li
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jiatong Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
23
|
Tanny T, Sallam M, Soda N, Nguyen NT, Alam M, Shiddiky MJA. CRISPR/Cas-Based Diagnostics in Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11765-11788. [PMID: 37506507 DOI: 10.1021/acs.jafc.3c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Pests and disease-causing pathogens frequently impede agricultural production. An early and efficient diagnostic tool is crucial for effective disease management. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated protein (Cas) have recently been harnessed to develop diagnostic tools. The CRISPR/Cas system, composed of the Cas endonuclease and guide RNA, enables precise identification and cleavage of the target nucleic acids. The inherent sensitivity, high specificity, and rapid assay time of the CRISPR/Cas system make it an effective alternative for diagnosing plant pathogens and identifying genetically modified crops. Furthermore, its potential for multiplexing and suitability for point-of-care testing at the field level provide advantages over traditional diagnostic systems such as RT-PCR, LAMP, and NGS. In this review, we discuss the recent developments in CRISPR/Cas based diagnostics and their implications in various agricultural applications. We have also emphasized the major challenges with possible solutions and provided insights into future perspectives and potential applications of the CRISPR/Cas system in agriculture.
Collapse
Affiliation(s)
- Tanzena Tanny
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Mohamed Sallam
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, Mayers Road, Nambour, QLD 4560, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| |
Collapse
|
24
|
Choi JW, Seo WH, Kang T, Kang T, Chung BG. Droplet digital recombinase polymerase amplification for multiplexed detection of human coronavirus. LAB ON A CHIP 2023; 23:2389-2398. [PMID: 37083004 DOI: 10.1039/d3lc00025g] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since the outbreak of coronavirus 2019 (COVID-19), detection technologies have been attracting a great deal of attention in molecular diagnosis applications. In particular, the droplet digital PCR (ddPCR) has become a promising tool as it offers absolute quantification of target nucleic acids with high specificity and sensitivity. In recent years, the combination of the isothermal amplification strategies has made ddPCR a popular method for on-site testing by enabling amplification at a constant temperature. However, the current isothermal ddPCR assays are still challenging due to inherent non-specific amplification. In this paper, we present a multiplexed droplet digital recombinase polymerase amplification (MddRPA) with precise initiation of the reaction. First, the reaction temperature and dynamic range of reverse transcription (RT) and RPA were characterized by real-time monitoring of fluorescence intensities. Using a droplet-based microfluidic chip, the master mix and the initiator were fractionated and rapidly mixed within well-confined droplets. Due to the high heat transfer and mass transfer of the droplets, the precise initiation of the amplification was enabled and the entire assay could be conducted within 30 min. The concentrations of target RNA in the range from 5 copies per μL to 2500 copies per μL could be detected with high linearity (R2 > 0.999). Furthermore, the multiplexed detection of three types of human coronaviruses was successfully demonstrated with high specificity (>96%). Finally, we compared the performance of the assay with a commercial RT-qPCR system using COVID-19 clinical samples. The MddRPA assay showed a 100% concordance with the RT-qPCR results, indicating its reliability and accuracy in detecting SARS-CoV-2 nucleic acids in clinical samples. Therefore, our MddRPA assay with rapid detection, precise quantification, and multiplexing capability would be an interesting method for molecular diagnosis of viral infections.
Collapse
Affiliation(s)
- Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| | - Won Ho Seo
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| |
Collapse
|
25
|
Cao X, Chen C, Zhu Q. Biosensors based on functional nucleic acids and isothermal amplification techniques. Talanta 2023; 253:123977. [PMID: 36201957 DOI: 10.1016/j.talanta.2022.123977] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022]
Abstract
In the past few years, with the in-depth research of functional nucleic acids and isothermal amplification techniques, their applications in the field of biosensing have attracted great interest. Since functional nucleic acids have excellent flexibility and convenience in their structural design, they have significant advantages as recognition elements in biosensing. At the same time, isothermal amplification techniques have higher amplification efficiency, so the combination of functional nucleic acids and isothermal amplification techniques can greatly promote the widespread application of biosensors. For the purpose of further improving the performance of biosensors, this review introduces several widely used functional nucleic acids and isothermal amplification techniques, as well as their classification, basic principles, application characteristics, and summarizes their important applications in the field of biosensing. We hope to provide some references for the design and construction of new tactics to enhance the detection sensitivity and detection range of biosensing.
Collapse
Affiliation(s)
- Xiuen Cao
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
26
|
Li Y, Kim H, Ju Y, Park Y, Kang T, Yong D, Park HG. Ultrasensitive Isothermal Detection of SARS-CoV-2 Based on Self-Priming Hairpin-Utilized Amplification of the G-Rich Sequence. Anal Chem 2022; 94:17448-17455. [PMID: 36480911 PMCID: PMC9743493 DOI: 10.1021/acs.analchem.2c03442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The outbreak of the novel coronavirus disease 2019 (COVID-19) pandemic induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of fatalities all over the world. Unquestionably, the effective and timely testing for infected individuals is the most imperative for the prevention of the ongoing pandemic. Herein, a new method was established for detecting SARS-CoV-2 based on the self-priming hairpin-utilized isothermal amplification of the G-rich sequence (SHIAG). In this strategy, the target RNA binding to the hairpin probe (HP) was uniquely devised to lead to the self-priming-mediated extension followed by the continuously repeated nicking and extension reactions, consequently generating abundant G-rich sequences from the intended reaction capable of producing fluorescence signals upon specifically interacting with thioflavin T (ThT). Based on the unique isothermal design concept, we successfully identified SARS-CoV-2 genomic RNA (gRNA) as low as 0.19 fM with excellent selectivity by applying only a single HP and further verified its practical diagnostic capability by reliably testing a total of 100 clinical specimens for COVID-19 with 100% clinical sensitivity and specificity. This study would provide notable insights into the design and evolution of new isothermal strategies for the sensitive and facile detection of SARS-CoV-2 under resource constraints.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemical and Biomolecular Engineering
(BK21 Four), Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of
Korea
| | - Hansol Kim
- Department of Chemical and Biomolecular Engineering
(BK21 Four), Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of
Korea
| | - Yong Ju
- Department of Chemical and Biomolecular Engineering
(BK21 Four), Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of
Korea
| | - Yeonkyung Park
- Department of Chemical and Biomolecular Engineering
(BK21 Four), Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of
Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea
Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu,
Daejeon34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan
University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do16419,
Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and
Research Institute of Bacterial Resistance, Yonsei University College of
Medicine, Seoul03722, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering
(BK21 Four), Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of
Korea
| |
Collapse
|
27
|
CRISPR-Cas-mediated diagnostics. Trends Biotechnol 2022; 40:1326-1345. [PMID: 35595574 DOI: 10.1016/j.tibtech.2022.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 01/21/2023]
Abstract
An ideal molecular diagnostic method should be sensitive, specific, low cost, rapid, portable, and easy to operate. Traditional nucleic acid detection methods based mainly on PCR technology have not only high sensitivity and specificity, but also some limitations, such as the need for expensive equipment and skilled technicians, being both time and labor intensive, and difficult to implement in some regions. However, with the continuous development of CRISPR-Cas technology and its application in molecular diagnosis, new approaches have been used for the construction of molecular diagnostic systems. In this review, we discuss recent advances in CRISPR-based molecular diagnostic technologies and highlight the revolution they bring to the field of molecular diagnostics.
Collapse
|
28
|
Maleki B, Hojati Z. A precise review on NAATs-based diagnostic assays for COVID-19: A motion in fast POC molecular tests. Eur J Clin Invest 2022; 52:e13853. [PMID: 35989561 PMCID: PMC9538879 DOI: 10.1111/eci.13853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diagnosis is one of the main strategies to deal with infectious and deadly diseases such as coronavirus disease 2019 (COVID-19). The global pandemic of COVID-19 has led to an immediate need to expand rapid diagnostic techniques. New isothermal-based methods are being developed for COVID-19 detection aiming to resolve the limitations related to the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method through immediate samples processing and minimizing false-negative or ambiguous results. Advances in nucleic acid amplification techniques (NAATs) can provide affordable and easy-to-use diagnostic platforms with high sensitivity and specificity in order to be available to the public as approved commercial kits. AIMS The development of point-of-care (POC) testing can assist in rapid clinical decision-making and mitigate burdens on health care facilities. Finally, we discussed the different diagnostic methods based on NAATs for COVID-19 in detail. Comparative parameters are addressed for all assays and Emergency Use Authorizations (EUA)-approved commercial tests are cited. CONCLUSIONS Isothermal-coupled methods and LAMP-based molecular methods have been suggested as suitable portable tests with high diagnostic speed for use in POC testing.
Collapse
Affiliation(s)
- Bahareh Maleki
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
29
|
Teimouri H, Rahimi M, Taheri M, Tabarraei A, Shahbazi M, Omidvar S, Javid N, Fazel A, Honarvar MR, Roshandel G, Abdollahi N, Yamchi A, Razavi Nikoo H. RT-LAMP in SARS-CoV-2 detection: point to improve primer designing and decrease molecular diagnosis pitfalls. Expert Rev Mol Diagn 2022; 22:1-9. [PMID: 36254603 DOI: 10.1080/14737159.2022.2136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Due to the high transmission rate of SARS-CoV-2, diagnostic tests have become tools for identifying patients. The key points were the virus genomes survey to design RT-LAMP primers; comparing the sensitivity and specificity of RT-LAMP and RT-qPCR; and determining the relationship among clinical symptoms, CT scan, RT-qPCR, and RT-LAMP results. METHODS This cohort study included 444 symptomatic patients. The specificity and sensitivity of RT-LAMP were assayed. The five statistical models, simultaneously, by RapidMiner to find the best method for detecting the virus were done through the correlation between the clinical symptoms, RT-LAMP, RT-qPCR, and CT scan results. The chi-square test by SPSS 26.0 was used to calculate kappa agreement. RESULTS The virus genome was detected in all the positive samples (198) by RT-qPCR and RT-LAMP. In addition, 246 samples were negative by RT-qPCR, while 88 were positive by RT-LAMP. Data mining analysis indicated that there were most associations between the RT-LAMP and CT scan data compared to RT-qPCR and CT scan data. CONCLUSIONS RT-LAMP could detect SARS-CoV-2 with great simplicity, speed, and cheapness. Therefore, it is logical to screen, a large number of patients by RT-LAMP, and then RT-qPCR can be used on the limited samples.
Collapse
Affiliation(s)
- Hossein Teimouri
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Rahimi
- Department of Horticulture, University of Zabol, Zabol, Iran
| | - Mahdeih Taheri
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Naeme Javid
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolreza Fazel
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Reza Honarvar
- Nutrition Science, Health Management and Social Development Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nafiseh Abdollahi
- Golestan Rheumatology Research Center, Golestan University of Medical Science, Gorgan, Iran
| | - Ahad Yamchi
- Department of Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
30
|
Improved visual detection of DNA amplification using pyridylazophenol metal sensing dyes. Commun Biol 2022; 5:999. [PMID: 36130997 PMCID: PMC9491268 DOI: 10.1038/s42003-022-03973-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Detection of nucleic acid amplification has typically required sophisticated laboratory instrumentation, but as the amplification techniques have moved away from the lab, complementary detection techniques have been implemented to facilitate point-of-care, field, and even at-home applications. Simple visual detection approaches have been widely used for isothermal amplification methods, but have generally displayed weak color changes or been highly sensitive to sample and atmospheric effects. Here we describe the use of pyridylazophenol dyes and binding to manganese ion to produce a strong visible color that changes in response to nucleic acid amplification. This detection approach is easily quantitated with absorbance, rapidly and clearly visible by eye, robust to sample effects, and notably compatible with both isothermal and PCR amplification. Nucleic acid amplification and molecular diagnostic methods are being used in an increasing number of novel applications and settings, and the ability to reliably and sensitively detect them without the need for additional instrumentation will enable even more access to these powerful techniques.
Collapse
|
31
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes in foods-From culture identification to whole-genome characteristics. Food Sci Nutr 2022; 10:2825-2854. [PMID: 36171778 PMCID: PMC9469866 DOI: 10.1002/fsn3.2910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen, which is able to persist in the food production environments. The presence of these bacteria in different niches makes them a potential threat for public health. In the present review, the current information on the classical and alternative methods used for isolation and identification of L. monocytogenes in food have been described. Although these techniques are usually simple, standardized, inexpensive, and are routinely used in many food testing laboratories, several alternative molecular-based approaches for the bacteria detection in food and food production environments have been developed. They are characterized by the high sample throughput, a short time of analysis, and cost-effectiveness. However, these methods are important for the routine testing toward the presence and number of L. monocytogenes, but are not suitable for characteristics and typing of the bacterial isolates, which are crucial in the study of listeriosis infections. For these purposes, novel approaches, with a high discriminatory power to genetically distinguish the strains during epidemiological studies, have been developed, e.g., whole-genome sequence-based techniques such as NGS which provide an opportunity to perform comparison between strains of the same species. In the present review, we have shown a short description of the principles of microbiological, alternative, and modern methods of detection of L. monocytogenes in foods and characterization of the isolates for epidemiological purposes. According to our knowledge, similar comprehensive papers on such subject have not been recently published, and we hope that the current review may be interesting for research communities.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Beata Lachtara
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| |
Collapse
|
32
|
Hsieh SA, Shamsaei D, Eitzmann DR, Anderson JL. Digital Droplet Loop-Mediated Isothermal Amplification Featuring a Molecular Beacon Assay, 3D Printed Droplet Generation, and Smartphone Imaging for Sequence-Specific DNA Detection. Anal Chem 2022; 94:11949-11956. [PMID: 35973866 DOI: 10.1021/acs.analchem.2c02979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleic acid detection is widely used in the amplification and quantitation of nucleic acids from biological samples. While polymerase chain reaction (PCR) enjoys great popularity, expensive thermal cyclers are required for precise temperature control. Loop-mediated isothermal amplification (LAMP) enables highly sensitive, rapid, and low-cost amplification of nucleic acids at constant temperatures. LAMP detection often relies on double-stranded DNA-binding dyes or metal indicators that lack sequence selectivity. Molecular beacons (MBs) are hairpin-shaped oligonucleotide probes whose sequence specificity in LAMP provides the capability of differentiating between single-nucleotide polymorphisms (SNPs). Digital droplet LAMP (ddLAMP) enables a large number of independent LAMP reactions to be performed and provides quantification of target DNA sequences. However, a major challenge with ddLAMP is the requirement of expensive droplet generators to form homogeneous microdroplets. In this study, we demonstrate for the first time that a three-dimensional (3D) printed droplet generation platform can be coupled to a LAMP assay featuring MBs as sequence-specific probes. The low-cost 3D printed droplet generator system was designed, and its customizability was demonstrated in the formation of monodisperse ddLAMP assay-in-oil microdroplets. Additionally, a smartphone-based imaging system is demonstrated to increase accessibility for point-of-care applications. The MB-ddLAMP assay is shown to discriminate between two SNPs at various amplification temperatures to afford a useful platform for sequence-specific, sensitive, and accurate DNA quantification. This work expands the utility of MBs to ddLAMP for quantitative studies in the detection of SNPs and exploits the customizability of 3D printing technologies to optimize the homogeneity, size, and volume of oil-in-water microdroplets.
Collapse
Affiliation(s)
- Shu-An Hsieh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Danial Shamsaei
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Derek R Eitzmann
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
33
|
Tsai YS, Wang CH, Tsai HP, Shan YS, Lee GB. Electromagnetically-driven integrated microfluidic platform using reverse transcription loop-mediated isothermal amplification for detection of severe acute respiratory syndrome coronavirus 2. Anal Chim Acta 2022; 1219:340036. [PMID: 35715135 PMCID: PMC9167649 DOI: 10.1016/j.aca.2022.340036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
Abstract
Rapid, sensitive and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of great need for effective quarantining and treatment. Real-time reverse-transcription polymerase chain reaction requiring thermocyling has been commonly used for diagnosis of SARS-CoV-2 though it may take two to 4 h before lengthy sample pretreatment process and require bulky apparatus and well-trained personnel. Since multiple reverse transcription loop-mediated isothermal amplification (multiple RT-LAMP) process without thermocycling is sensitive, specific and fast, an electromagnetically-driven microfluidic chip (EMC) was developed herein to lyse SARS-CoV-2 viruses, extract their RNAs, and perform qualitative analysis of three marker genes by on-chip multiple RT-LAMP in an automatic format within 82 min at a limit of detection of only ∼5000 copies per reaction (i.e. 200 virus/ μL). This compact EMC may be especially promising for SARS-CoV-2 diagnostics in resource-limited countries.
Collapse
Affiliation(s)
- Yu-Shiuan Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan; Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
34
|
Zeng H, Zhang P, Jiang X, Duan C, Yu Y, Wu Q, Yang X. Rapid RNA detection through intra-enzyme chain replacement-promoted Cas13a cascade cyclic reaction without amplification. Anal Chim Acta 2022; 1217:340009. [PMID: 35690427 DOI: 10.1016/j.aca.2022.340009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
The clinical methods to detect RNA viruses and disease-related RNAs suffer from time-consuming processes, high false-positive rates, or limited sensitivity. Here, we propose a strategy for rapid RNA detection through intra-enzyme chain replacement-mediated Cas13a cascade cyclic reaction without target amplification. A hairpin RNA mediator (a cleavage substrate for target-activated Cas13a) and a guiding RNA recognized by the cleavage product through intra-enzyme chain replacement were designed and optimized. Upon the recognition and binding of the target RNA to the Cas13a/CrRNA complex, Cas13a is initially activated to cleave the mediator, and the cleavage products recognize the corresponding Cas13a/CrRNA complex by intra-enzyme chain replacement and initiate the circular cascade of Cas13a cleavage and activation. The accumulated active Cas13a cleaves fluorescent reporter probe for achieving target RNA detection. This "mix & read" RNA detection at room temperature was performed in total 30 min. Using miRNA-21 as the target, the changes in fluorescence intensity were linearly correlated to the concentrations from 10 fM to 50 pM with the detection limit of 75 aM, while no significant changes in fluorescence intensity were detected for non-targets. This method applied to the clinical sputum respiratory syncytial virus-positive samples gave results consistent with those from the clinical fluorescence immunoassay. Thus, intra-enzyme chain replacement-promoted Cas13a cascade cyclic reaction for detection of RNA viruses in the "mix & read" mode at room temperature is rapid, simple, convenient, and efficient for RNA detection and can be adapted to point-of-care testing for high throughput screening of RNA virus infections.
Collapse
Affiliation(s)
- Hongwei Zeng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Penghui Zhang
- Clinical Laboratory Center, Ministry of Education Key Laboratory of Child Development Diseases and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, PR China
| | - Xue Jiang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Changyuan Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yang Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qiaoming Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaolan Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
35
|
Rahman MR, Majumder TR, Apu MAI, Paul AK, Afrose A, Dash BK. CRISPR-Based Programmable Nucleic Acid-Binding Protein Technology Can Specifically Detect Fatal Tropical Disease-Causing Pathogens. J Trop Med 2022; 2022:5390685. [PMID: 36199433 PMCID: PMC9529443 DOI: 10.1155/2022/5390685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Diagnostic approaches capable of ultrasensitive pathogen detection from low-volume clinical samples, running without any sophisticated instrument and laboratory setup, are easily field-deployable, inexpensive, and rapid, and are considered ideal for monitoring disease progression and surveillance. However, standard pathogen detection methods, including culture and microscopic observation, antibody-based serologic tests, and primarily polymerase chain reaction (PCR)-oriented nucleic acid screening techniques, have shortcomings that limit their widespread use in responding to outbreaks and regular diagnosis, especially in remote resource-limited settings (RLSs). Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based programmable technology has emerged to challenge the unmet criteria of conventional methods. It consists of CRISPR-associated proteins (Cas) capable of targeting virtually any specific RNA or DNA genome based on the guide RNA (gRNA) sequence. Furthermore, the discovery of programmable trans-cleavage Cas proteins like Cas12a and Cas13 that can collaterally damage reporter-containing single-stranded DNA or RNA upon formation of target Cas-gRNA complex has strengthened this technology with enhanced sensitivity. Current advances, including automated multiplexing, ultrasensitive single nucleotide polymorphism (SNP)-based screening, inexpensive paper-based lateral flow readouts, and ease of use in remote global settings, have attracted the scientific community to introduce this technology in nucleic acid-based precise detection of bacterial and viral pathogens at the point of care (POC). This review highlights CRISPR-Cas-based molecular technologies in diagnosing several tropical diseases, namely malaria, zika, chikungunya, human immunodeficiency virus and acquired immunodeficiency syndrome (HIV-AIDS), tuberculosis (TB), and rabies.
Collapse
Affiliation(s)
- Md. Rashidur Rahman
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Toma Rani Majumder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Aminul Islam Apu
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Alok K. Paul
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Afrina Afrose
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh
| | - Biplab Kumar Dash
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
36
|
Chip-Based and Wearable Tools for Isothermal Amplification and Electrochemical Analysis of Nucleic Acids. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The determination of nucleic acids has become an analytical diagnostic method with many applications in fields such as biomedical sciences, environmental monitoring, forensic identification, and food safety. Among the different methods for nucleic acid analysis, those based on the polymerase chain reaction (PCR) are nowadays considered the gold standards. Isothermal amplification methods are an interesting alternative, especially in the design of chip-based architectures. Biosensing platforms hold great promise for the simple and rapid detection of nucleic acids since they can be embedded in lab-on-a-chip tools to perform nucleic acid extraction, amplification, and detection steps. Electrochemical transduction schemes are particularly interesting in the design of small and portable devices due to miniaturization, low-energy consumption, and multianalyte detection capability. The aim of this review is to summarize the different applications of isothermal amplification methods combined with electrochemical biosensing techniques in the development of lab-on-a-chip tools and wearable sensors. Different isothermal amplification methods are revised, and examples of different applications are discussed. Finally, a discussion on patented devices is also included.
Collapse
|
37
|
Schneider L, Tripathi A. Sequence to size-based separation using microfluidic electrophoresis for targeted cell-free DNA analysis. Anal Biochem 2022; 649:114691. [DOI: 10.1016/j.ab.2022.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/06/2022] [Accepted: 04/08/2022] [Indexed: 11/01/2022]
|
38
|
Wang F, Wang Y, Liu X, Wang L, Wang K, Xu C, Huang G, Gao X. Rapid, Simple, and Highly Specific Detection of Streptococcus pneumoniae With Visualized Recombinase Polymerase Amplification. Front Cell Infect Microbiol 2022; 12:878881. [PMID: 35719347 PMCID: PMC9201913 DOI: 10.3389/fcimb.2022.878881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Streptococcus pneumoniae is a major pathogen that causes microbiological illness in humans. The introduction of polyvalent vaccines has resulted in a significant decrease in pneumococcal-related mortality. However, pneumococcal infections continue to be a leading cause of death in children under the age of 5 and adults over the age of 65 worldwide. A speedy and highly sensitive diagnostic tool is necessary for routine adoption to adequately manage patients and control the spread of infection. In this study, we investigated a new nucleic acid amplification technique, isothermal recombinase polymerase amplification (RPA), which amplifies DNA at 37°C under isothermal conditions with high specificity, efficiency, and rapidity. Using the autolysin gene lytA as the molecular diagnostic target, an RPA primer-probe combination was designed and optimized for the detection of S. pneumoniae. This RPA reaction produced amplification products labeled with specific chemical markers, to be detected with gold-nanoparticle-based lateral flow strips (LFS), reducing the reliance on equipment and trained personnel. The high specificity of the RPA-LFS technique was demonstrated with the specific detection of 22 strains of S. pneumoniae but not 25 closely related pathogenic bacteria. The assay showed good sensitivity, and detected S. pneumoniae down to 3.32 colony-forming units/μL. When used on clinical samples, the assay provided accurate and consistent results compared with PCR. The compliance with the culture-biochemistry method was 98.18% and the kappa index was 0.977. These results reveal that the RPA–LFS test significantly improved S. pneumoniae identification, particularly in resource-limited areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenglai Xu
- *Correspondence: Chenglai Xu, ; Guanhong Huang, ; Xuzhu Gao,
| | - Guanhong Huang
- *Correspondence: Chenglai Xu, ; Guanhong Huang, ; Xuzhu Gao,
| | - Xuzhu Gao
- *Correspondence: Chenglai Xu, ; Guanhong Huang, ; Xuzhu Gao,
| |
Collapse
|
39
|
Soudier P, Rodriguez Pinzon D, Reif-Trauttmansdorff T, Hijazi H, Cherrière M, Goncalves Pereira C, Blaise D, Pispisa M, Saint-Julien A, Hamlet W, Nguevo M, Gomes E, Belkhelfa S, Niarakis A, Kushwaha M, Grigoras I. Toehold switch based biosensors for sensing the highly trafficked rosewood Dalbergia maritima. Synth Syst Biotechnol 2022; 7:791-801. [PMID: 35415278 PMCID: PMC8976095 DOI: 10.1016/j.synbio.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/05/2023] Open
Abstract
Nucleic acid sensing is a 3 decades old but still challenging area of application for different biological sub-domains, from pathogen detection to single cell transcriptomics analysis. The many applications of nucleic acid detection and identification are mostly carried out by PCR techniques, sequencing, and their derivatives used at large scale. However, these methods’ limitations on speed, cost, complexity and specificity have motivated the development of innovative detection methods among which nucleic acid biosensing technologies seem promising. Toehold switches are a particular class of RNA sensing devices relying on a conformational switch of secondary structure induced by the pairing of the detected trigger RNA with a de novo designed synthetic sensing mRNA molecule. Here we describe a streamlined methodology enabling the development of such a sensor for the RNA-mediated detection of an endangered plant species in a cell-free reaction system. We applied this methodology to help identify the rosewood Dalbergia maritima, a highly trafficked wood, whose protection is limited by the capacity of the authorities to distinguish protected logs from other unprotected but related species. The streamlined pipeline presented in this work is a versatile framework enabling cheap and rapid development of new sensors for custom RNA detection.
Collapse
|
40
|
Narahari T, Dahmer J, Sklavounos A, Kim T, Satkauskas M, Clotea I, Ho M, Lamanna J, Dixon C, Rackus DG, Silva SJRD, Pena L, Pardee K, Wheeler AR. Portable sample processing for molecular assays: application to Zika virus diagnostics. LAB ON A CHIP 2022; 22:1748-1763. [PMID: 35357372 DOI: 10.1039/d1lc01068a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper introduces a digital microfluidic (DMF) platform for portable, automated, and integrated Zika viral RNA extraction and amplification. The platform features reconfigurable DMF cartridges offering a closed, humidified environment for sample processing at elevated temperatures, as well as programmable control instrumentation with a novel thermal cycling unit regulated using a proportional integral derivative (PID) feedback loop. The system operates on 12 V DC power, which can be supplied by rechargeable battery packs for remote testing. The DMF system was optimized for an RNA processing pipeline consisting of the following steps: 1) magnetic-bead based RNA extraction from lysed plasma samples, 2) RNA clean-up, and 3) integrated, isothermal amplification of Zika RNA. The DMF pipeline was coupled to a paper-based, colorimetric cell-free protein expression assay for amplified Zika RNA mediated by toehold switch-based sensors. Blinded laboratory evaluation of Zika RNA spiked in human plasma yielded a sensitivity and specificity of 100% and 75% respectively. The platform was then transported to Recife, Brazil for evaluation with infectious Zika viruses, which were detected at the 100 PFU mL-1 level from a 5 μL sample (equivalent to an RT-qPCR cycle threshold value of 32.0), demonstrating its potential as a sample processing platform for miniaturized diagnostic testing.
Collapse
Affiliation(s)
- Tanya Narahari
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Joshua Dahmer
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Alexandros Sklavounos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Taehyeong Kim
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Monika Satkauskas
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Ioana Clotea
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Man Ho
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Julian Lamanna
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Christopher Dixon
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Darius G Rackus
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Severino Jefferson Ribeiro da Silva
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Institute (FIOCRUZ Pernambuco), Av. Professor Moraes Rego, s/n - Cidade Universitária, Recife, PE, CEP 50.740-465, Brazil
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Institute (FIOCRUZ Pernambuco), Av. Professor Moraes Rego, s/n - Cidade Universitária, Recife, PE, CEP 50.740-465, Brazil
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8 Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
41
|
Waheed W, Saylan S, Hassan T, Kannout H, Alsafar H, Alazzam A. A deep learning-driven low-power, accurate, and portable platform for rapid detection of COVID-19 using reverse-transcription loop-mediated isothermal amplification. Sci Rep 2022; 12:4132. [PMID: 35260715 PMCID: PMC8903312 DOI: 10.1038/s41598-022-07954-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
This paper presents a deep learning-driven portable, accurate, low-cost, and easy-to-use device to perform Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) to facilitate rapid detection of COVID-19. The 3D-printed device-powered using only a 5 Volt AC-DC adapter-can perform 16 simultaneous RT-LAMP reactions and can be used multiple times. Moreover, the experimental protocol is devised to obviate the need for separate, expensive equipment for RNA extraction in addition to eliminating sample evaporation. The entire process from sample preparation to the qualitative assessment of the LAMP amplification takes only 45 min (10 min for pre-heating and 35 min for RT-LAMP reactions). The completion of the amplification reaction yields a fuchsia color for the negative samples and either a yellow or orange color for the positive samples, based on a pH indicator dye. The device is coupled with a novel deep learning system that automatically analyzes the amplification results and pays attention to the pH indicator dye to screen the COVID-19 subjects. The proposed device has been rigorously tested on 250 RT-LAMP clinical samples, where it achieved an overall specificity and sensitivity of 0.9666 and 0.9722, respectively with a recall of 0.9892 for Ct < 30. Also, the proposed system can be widely used as an accurate, sensitive, rapid, and portable tool to detect COVID-19 in settings where access to a lab is difficult, or the results are urgently required.
Collapse
Affiliation(s)
- Waqas Waheed
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Sueda Saylan
- System on Chip Center (SOCC), Khalifa University, Abu Dhabi, UAE
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
| | - Taimur Hassan
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
- Center for Cyber-Physical Systems (C2PS), EECS Department, Khalifa University, Abu Dhabi, UAE
| | - Hussain Kannout
- Center for Biotechnology (BTC), Khalifa University, Abu Dhabi, UAE
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University, Abu Dhabi, UAE
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Anas Alazzam
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE.
- System on Chip Center (SOCC), Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
42
|
Cell-Free Paper-Based Analysis of Gut Microbiota and Host Biomarkers. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2433:351-374. [PMID: 34985756 DOI: 10.1007/978-1-0716-1998-8_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The gut microbiome and its interactions with the host have been shown to affect several aspects of human health and disease. Investigations to elucidate these mechanisms typically involve sequence analysis of fecal samples. To support these studies, we present methods to design RNA toehold switch sensors to detect microbial and host transcripts. The sensors are embedded in paper-based, cell-free reactions that enable affordable and rapid analysis of microbiome samples.
Collapse
|
43
|
Suther C, Stoufer S, Zhou Y, Moore MD. Recent Developments in Isothermal Amplification Methods for the Detection of Foodborne Viruses. Front Microbiol 2022; 13:841875. [PMID: 35308332 PMCID: PMC8930189 DOI: 10.3389/fmicb.2022.841875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
Foodborne and enteric viruses continue to impose a significant public health and economic burden globally. As many of these viruses are highly transmissible, the ability to detect them portably, sensitively, and rapidly is critical to reduce their spread. Although still considered a gold standard for detection of these viruses, real time polymerase chain reaction (PCR)-based technologies have limitations such as limited portability, need for extensive sample processing/extraction, and long time to result. In particular, the limitations related to the susceptibility of real time PCR methods to potential inhibitory substances present in food and environmental samples is a continuing challenge, as the need for extensive nucleic acid purification prior to their use compromises the portability and rapidity of such methods. Isothermal amplification methods have been the subject of much investigation for these viruses, as these techniques have been found to be comparable to or better than established PCR-based methods in portability, sensitivity, specificity, rapidity, and simplicity of sample processing. The purpose of this review is to survey and compare reports of these isothermal amplification methods developed for foodborne and enteric viruses, with a special focus on the performance of these methods in the presence of complex matrices.
Collapse
Affiliation(s)
- Cassandra Suther
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Sloane Stoufer
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
44
|
Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example. Biosens Bioelectron 2022; 206:114109. [PMID: 35245867 DOI: 10.1016/j.bios.2022.114109] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Achieving superhigh sensitivity is the ultimate goal for bio-detection in modern analytical science and life science. Among variable signal amplification strategies, nucleic acid amplification technologies are revolutionizing the field of bio-detection, providing greater possibilities in novel diagnosis achieving high efficiency, specificity, and cost-effectiveness. Nucleic acid amplification techniques (NAATs), such as Polymerase Chain Reaction (PCR), Rolling Circle Amplification (RCA), Loop-Mediated Isothermal Amplification (LAMP), Recombinase Polymerase Amplification (RPA), CRISPR-related amplification, and others are dominating methods employed in research and clinical settings. They each provide distinctively unique features that can offer desirable performance in terms of sensitivity, specificity, simplicity, stability, and cost. NAATs are in unmet demand in molecular diagnosis, especially in point-of-care scenario. This review will discuss the principles and recent advancements of each NAAT, respectively, revealing their strengths and challenges in achieving rapid and accurate bio-detection with a focus on point-of-care diagnosis. Furthermore, this review will explore the application of each of the technologies through the contemporary COVID-19 pandemic, analyzing their ability in point-of-care diagnosis of the COVID-19 with high sensitivity to emphasize significance of developing NAATs based methods in battling COVID-19. Finally, advantages and potentials of each NAAT in enhancements of sensitivity and specificity in bio-detection from bench side to the bedside will be discussed, aiming for full exploitation of capability of each NAAT. This review will provide novel aspects in the selection and combination of usages of various NAATs based on their distinctive characteristics and limitations. A possible advancing direction of future accurate POCT is also proposed.
Collapse
|
45
|
Ligong Z, Hongxia L, Junjie L, Lu Z, Bie X. A duplex real-time NASBA assay targeting serotype-specific gene for rapid detection of viable S. enterica serovar Paratyphi C in retail foods of animal origin. Can J Microbiol 2022; 68:259-268. [PMID: 35025610 DOI: 10.1139/cjm-2021-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salmonella enterica serovars Paratyphi C is highly adapted to humans and can cause a typhoid-like disease with high mortality rates. In this study, three serovar-specific genes were determined for S. Paratyphi C, SPC_0871,SPC_0872, and SPC_0908, by comparative genomics method. Based on SPC_0908 and xcd gene for testing Salmonella spp., we have developed a duplex real-time nucleic acid sequence-based amplification (real-time NASBA) with molecular beacon approach for simultaneous detection of viable cells of Salmonella spp. and serotype Paratyphi C. The test selectively and consistently detected 53 Salmonella spp. (representing 31 serotypes) and 18 non-Salmonella strains. Additionally, the method showed high resistance to interference by natural background flora in pork and chicken samples. The sensitivity of the established approach was determined to be 4.89 CFU/25 g in artificially contaminated pork and chicken samples after pre-enrichment. We propose this NASBA-based protocol as a potential detection method for Salmonella spp. and serotype Paratyphi C in food of animal origin.
Collapse
Affiliation(s)
- Zhai Ligong
- Anhui Science and Technology University, 177515, Bengbu, China, 233100;
| | - Liu Hongxia
- Ministry of Agriculture of China, Nanjing, China;
| | - Li Junjie
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Zhaoxin Lu
- Colleges of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| | - Xiaomei Bie
- Colleges of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| |
Collapse
|
46
|
De Falco M, De Felice M, Rota F, Zappi D, Antonacci A, Scognamiglio V. Next-generation diagnostics: augmented sensitivity in amplification-powered biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Chu H, Liu C, Liu J, Yang J, Li Y, Zhang X. Recent advances and challenges of biosensing in point-of-care molecular diagnosis. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 348:130708. [PMID: 34511726 PMCID: PMC8424413 DOI: 10.1016/j.snb.2021.130708] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 05/07/2023]
Abstract
Molecular diagnosis, which plays a major role in infectious disease screening with successful understanding of the human genome, has attracted more attention because of the outbreak of COVID-19 recently. Since point-of-care testing (POCT) can expand the application of molecular diagnosis with the benefit of rapid reply, low cost, and working in decentralized environments, many researchers and commercial institutions have dedicated tremendous effort and enthusiasm to POCT-based biosensing for molecular diagnosis. In this review, we firstly summarize the state-of-the-art techniques and the construction of biosensing systems for POC molecular diagnosis. Then, the application scenarios of POCT-based biosensing for molecular diagnosis were also reviewed. Finally, several challenges and perspectives of POC biosensing for molecular diagnosis are discussed. This review is expected to help researchers deepen comprehension and make progresses in POCT-based biosensing field for molecular diagnosis applications.
Collapse
Affiliation(s)
- Hongwei Chu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jinsen Liu
- Shenzhen ENCO Instrument Co., Ltd, Shenzhen 518000, China
| | - Jiao Yang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yingchun Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
48
|
Detection of pks Island mRNAs Using Toehold Sensors in Escherichia coli. Life (Basel) 2021; 11:life11111280. [PMID: 34833155 PMCID: PMC8625898 DOI: 10.3390/life11111280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Synthetic biologists have applied biomolecular engineering approaches toward the goal of novel biological devices and have shown progress in diverse areas of medicine and biotechnology. Especially promising is the application of synthetic biological devices towards a novel class of molecular diagnostics. As an example, a de-novo-designed riboregulator called toehold switch, with its programmability and compatibility with field-deployable devices showed promising in vitro applications for viral RNA detection such as Zika and Corona viruses. However, the in vivo application of high-performance RNA sensors remains challenging due to the secondary structure of long mRNA species. Here, we introduced ‘Helper RNAs’ that can enhance the functionality of toehold switch sensors by mitigating the effect of secondary structures around a target site. By employing the helper RNAs, previously reported mCherry mRNA sensor showed improved fold-changes in vivo. To further generalize the Helper RNA approaches, we employed automatic design pipeline for toehold sensors that target the essential genes within the pks island, an important target of biomedical research in connection with colorectal cancer. The toehold switch sensors showed fold-changes upon the expression of full-length mRNAs that apparently depended sensitively on the identity of the gene as well as the predicted local structure within the target region of the mRNA. Still, the helper RNAs could improve the performance of toehold switch sensors in many instances, with up to 10-fold improvement over no helper cases. These results suggest that the helper RNA approaches can further assist the design of functional RNA devices in vivo with the aid of the streamlined automatic design software developed here. Further, our solutions for screening and stabilizing single-stranded region of mRNA may find use in other in vivo mRNA-sensing applications such as cas13 crRNA design, transcriptome engineering, and trans-cleaving ribozymes.
Collapse
|
49
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112424. [PMID: 34834787 PMCID: PMC8621059 DOI: 10.3390/plants10112424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 05/27/2023]
Abstract
Rapid, sensitive, and timely diagnostics are essential for protecting plants from pathogens. Commonly, PCR techniques are used in laboratories for highly sensitive detection of DNA/RNA from viral, viroid, bacterial, and fungal pathogens of plants. However, using PCR-based methods for in-field diagnostics is a challenge and sometimes nearly impossible. With the advent of isothermal amplification methods, which provide amplification of nucleic acids at a certain temperature and do not require thermocyclic equipment, going beyond the laboratory has become a reality for molecular diagnostics. The amplification stage ceases to be limited by time and instruments. Challenges to solve involve finding suitable approaches for rapid and user-friendly plant preparation and detection of amplicons after amplification. Here, we summarize approaches for in-field diagnostics of phytopathogens based on different types of isothermal amplification and discuss their advantages and disadvantages. In this review, we consider a combination of isothermal amplification methods with extraction and detection methods compatible with in-field phytodiagnostics. Molecular diagnostics in out-of-lab conditions are of particular importance for protecting against viral, bacterial, and fungal phytopathogens in order to quickly prevent and control the spread of disease. We believe that the development of rapid, sensitive, and equipment-free nucleic acid detection methods is the future of phytodiagnostics, and its benefits are already visible.
Collapse
|
50
|
Dronina J, Samukaite-Bubniene U, Ramanavicius A. Advances and insights in the diagnosis of viral infections. J Nanobiotechnology 2021; 19:348. [PMID: 34717656 PMCID: PMC8556785 DOI: 10.1186/s12951-021-01081-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Viral infections are the most common among diseases that globally require around 60 percent of medical care. However, in the heat of the pandemic, there was a lack of medical equipment and inpatient facilities to provide all patients with viral infections. The detection of viral infections is possible in three general ways such as (i) direct virus detection, which is performed immediately 1-3 days after the infection, (ii) determination of antibodies against some virus proteins mainly observed during/after virus incubation period, (iii) detection of virus-induced disease when specific tissue changes in the organism. This review surveys some global pandemics from 1889 to 2020, virus types, which induced these pandemics, and symptoms of some viral diseases. Non-analytical methods such as radiology and microscopy also are overviewed. This review overlooks molecular analysis methods such as nucleic acid amplification, antibody-antigen complex determination, CRISPR-Cas system-based viral genome determination methods. Methods widely used in the certificated diagnostic laboratory for SARS-CoV-2, Influenza A, B, C, HIV, and other viruses during a viral pandemic are outlined. A comprehensive overview of molecular analytical methods has shown that the assay's sensitivity, accuracy, and suitability for virus detection depends on the choice of the number of regions in the viral open reading frame (ORF) genome sequence and the validity of the selected analytical method.
Collapse
Affiliation(s)
- Julija Dronina
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|