1
|
Nile M, Folwaczny M, Kessler A, Wichelhaus A, Janjic Rankovic M, Baumert U. Development of a Custom Fluid Flow Chamber for Investigating the Effects of Shear Stress on Periodontal Ligament Cells. Cells 2024; 13:1751. [PMID: 39513858 PMCID: PMC11545369 DOI: 10.3390/cells13211751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The periodontal ligament (PDL) is crucial for maintaining the integrity and functionality of tooth-supporting structures. Mechanical forces applied to the tooth during orthodontic tooth movement generate pore pressure gradients, leading to interstitial fluid movement within the PDL. The generated fluid shear stress (FSS) stimulates the remodeling of PDL and alveolar bone. Herein, we present the construction of a parallel fluid-flow apparatus to determine the effect of FSS on PDL cells. The chamber was designed and optimized using computer-aided and computational fluid dynamics software. The chamber was formed by PDMS using a negative molding technique. hPDLCs from two donors were seeded on microscopic slides and exposed to FSS of 6 dyn/cm2 for 1 h. The effect of FSS on gene and protein expression was determined using RT-qPCR and Western blot. FSS upregulated genes responsible for mechanosensing (FOS), tissue formation (RUNX2, VEGFA), and inflammation (PTGS2/COX2, CXCL8/IL8, IL6) in both donors, with donor 2 showing higher gene upregulation. Protein expression of PTGS2/COX2 was higher in donor 2 but not in donor 1. RUNX2 protein was not expressed in either donor after FSS. In summary, FSS is crucial in regulating gene expression linked to PDL remodeling and inflammation, with donor variability potentially affecting outcomes.
Collapse
Affiliation(s)
- Mustafa Nile
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (A.W.); (M.J.R.)
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (M.F.); (A.K.)
| | - Andreas Kessler
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (M.F.); (A.K.)
- Department of Prosthetic Dentistry, Faculty of Medicine, Center for Dental Medicine, Medical Center-University of Freiburg, University of Freiburg, 79106 Freiburg, Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (A.W.); (M.J.R.)
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (A.W.); (M.J.R.)
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (A.W.); (M.J.R.)
| |
Collapse
|
2
|
Favero G, Gianò M, Franco C, Pinto D, van Noorden CJ, Rinaldi F, Rezzani R. Relation Between Reactive Oxygen Species Production and Transient Receptor Potential Vanilloid1 Expression in Human Skin During Aging. J Histochem Cytochem 2024; 72:157-171. [PMID: 38440794 PMCID: PMC10956443 DOI: 10.1369/00221554241236537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Skin sensitivity and impaired epidermal barrier function are associated with aging and are at least partly due to increased production of reactive oxygen species (ROS). Transient receptor potential vanilloid1 (TRPV1) is expressed in keratinocytes, fibroblasts, mast cells, and endothelial cells in skin. We investigated in skin biopsies of adult and elderly donors whether TRPV1 expression is involved in the skin aging process. We found that aging skin showed a strongly reduced epidermal thickness, strongly increased oxidative stress, protease expression, and mast cell degranulation and strongly increased TRPV1 expression both in epidermis and dermis. Based on our findings, the aging-related changes observed in the epidermis of the skin level are associated with increased ROS production, and hypothesized alterations in TRPV1 expression are mechanistically linked to this process.
Collapse
Affiliation(s)
- Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs - ARTO”, University of Brescia, Brescia, Italy
| | - Marzia Gianò
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Caterina Franco
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubliana, Slovenia
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs - ARTO”, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| |
Collapse
|
3
|
Viodé A, Fournier C, Camuzat A, Fenaille F, Latouche M, Elahi F, Le Ber I, Junot C, Lamari F, Anquetil V, Becher F. New Antibody-Free Mass Spectrometry-Based Quantification Reveals That C9ORF72 Long Protein Isoform Is Reduced in the Frontal Cortex of Hexanucleotide-Repeat Expansion Carriers. Front Neurosci 2018; 12:589. [PMID: 30210275 PMCID: PMC6122177 DOI: 10.3389/fnins.2018.00589] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a fatal neurodegenerative disease characterized by behavioral and language disorders. The main genetic cause of FTD is an intronic hexanucleotide repeat expansion (G4C2)n in the C9ORF72 gene. A loss of function of the C9ORF72 protein associated with the allele-specific reduction of C9ORF72 expression is postulated to contribute to the disease pathogenesis. To better understand the contribution of the loss of function to the disease mechanism, we need to determine precisely the level of reduction in C9ORF72 long and short isoforms in brain tissue from patients with C9ORF72 mutations. In this study, we developed a sensitive and robust mass spectrometry (MS) method for quantifying C9ORF72 isoform levels in human brain tissue without requiring antibody or affinity reagent. An optimized workflow based on surfactant-aided protein extraction and pellet digestion was established for optimal recovery of the two isoforms in brain samples. Signature peptides, common or specific to the isoforms, were targeted in brain extracts by multiplex MS through the parallel reaction monitoring mode on a Quadrupole-Orbitrap high resolution mass spectrometer. The assay was successfully validated and subsequently applied to frontal cortex brain samples from a cohort of FTD patients with C9ORF72 mutations and neurologically normal controls without mutations. We showed that the C9ORF72 short isoform in the frontal cortices is below detection threshold in all tested individuals and the C9ORF72 long isoform is significantly decreased in C9ORF72 mutation carriers.
Collapse
Affiliation(s)
- Arthur Viodé
- Service de Pharmacologie et Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Université Paris Saclay, Gif-sur-Yvette, France
| | - Clémence Fournier
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Èpinière, ICM, Sorbonne Université, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Agnès Camuzat
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Èpinière, ICM, Sorbonne Université, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - François Fenaille
- Service de Pharmacologie et Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Université Paris Saclay, Gif-sur-Yvette, France
| | | | - Morwena Latouche
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Èpinière, ICM, Sorbonne Université, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Fanny Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Isabelle Le Ber
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Èpinière, ICM, Sorbonne Université, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France.,National Reference Center for Rare or Early Dementias, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Christophe Junot
- Service de Pharmacologie et Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Université Paris Saclay, Gif-sur-Yvette, France
| | - Foudil Lamari
- Assistance Publique - Hôpitaux de Paris, Service de Biochimie Métabolique, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Paris, France.,GRC 13 Neurométabolisme - UPMC, Sorbonne Université, Paris, France
| | - Vincent Anquetil
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Èpinière, ICM, Sorbonne Université, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - François Becher
- Service de Pharmacologie et Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Université Paris Saclay, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Jaksevicius A, Carew M, Mistry C, Modjtahedi H, Opara EI. Inhibitory Effects of Culinary Herbs and Spices on the Growth of HCA-7 Colorectal Cancer Cells and Their COX-2 Expression. Nutrients 2017; 9:nu9101051. [PMID: 28934138 PMCID: PMC5691668 DOI: 10.3390/nu9101051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023] Open
Abstract
It is unclear if the anti-inflammatory properties of culinary herbs and spices (CHS) are linked to their ability to inhibit Colorectal cancer cell (CRC) growth. Furthermore, their therapeutic potential with regards to CRC is unknown. The aim of this study was to establish if the inhibition of HCA-7 CRC cell growth by a selection of culinary herbs and spices (CHS) is linked to the inhibition of the cells’ cyclooxygenase-2 (COX-2 )expression, and to investigate their therapeutic potential. CHS inhibited the growth of Human colon adenocarcinoma-7 (HCA-7) cells; the order of potency was turmeric, bay leaf, ginger, sage, and rosemary; their combinations had a synergistic or additive effect on cell growth inhibition. CHS also inhibited COX-2 expression and activity; this action was comparable to that of the specific COX-2 inhibitor Celecoxib. Coincident with COX-2 inhibition was the accumulation of cells in the sub G1 phase of the HCA-7’s cell cycle and, using bay leaf and turmeric, the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP). This latter effect showed that the effect of these CHS on growth arrest was irreversible, and was comparable to that of the caspase activator Etoposide. This study provides evidence of a link between the inhibition of HCA-7 growth, and its COX-2 expression, by CHS, and their therapeutic potential.
Collapse
Affiliation(s)
- Andrius Jaksevicius
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| | - Mark Carew
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| | - Calli Mistry
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| | - Helmout Modjtahedi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| | - Elizabeth I Opara
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| |
Collapse
|
5
|
Carroll CC, O'Connor DT, Steinmeyer R, Del Mundo JD, McMullan DR, Whitt JA, Ramos JE, Gonzales RJ. The influence of acute resistance exercise on cyclooxygenase-1 and -2 activity and protein levels in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2013; 305:R24-30. [PMID: 23637134 DOI: 10.1152/ajpregu.00593.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the activity and content of cyclooxygenase (COX)-1 and -2 in response to acute resistance exercise (RE) in human skeletal muscle. Previous work suggests that COX-1, but not COX-2, is the primary COX isoform elevated with resistance exercise in human skeletal muscle. COX activity, however, has not been assessed after resistance exercise in humans. It was hypothesized that RE would increase COX-1 but not COX-2 activity. Muscle biopsies were taken from the vastus lateralis of nine young men (25 ± 1 yr) at baseline (preexercise), 4, and 24 h after a single bout of knee extensor RE (three sets of 10 repetitions at 70% of maximum). Tissue lysate was assayed for COX-1 and COX-2 activity. COX-1 and COX-2 protein levels were measured via Western blot analysis. COX-1 activity increased at 4 h (P < 0.05) compared with preexercise, but returned to baseline at 24 h (PRE: 60 ± 10, 4 h: 106 ± 22, 24 h: 72 ± 8 nmol PGH2·g total protein(-1)·min(-1)). COX-2 activity was elevated at 4 and 24 h after RE (P < 0.05, PRE: 51 ± 7, 4 h: 100 ± 19, 24 h: 98 ± 14 nmol PGH2·g total protein(-1)·min(-1)). The protein level of COX-1 was not altered (P > 0.05) with acute RE. In contrast, COX-2 protein levels were nearly 3-fold greater (P > 0.05) at 4 h and 5-fold greater (P = 0.06) at 24 h, compared with preexercise. In conclusion, COX-1 activity increases transiently with exercise independent of COX-1 protein levels. In contrast, both COX-2 activity and protein levels were elevated with exercise, and this elevation persisted to at least 24 h after RE.
Collapse
Affiliation(s)
- Chad C Carroll
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lange A, Gustke H, Glassmeier G, Heine M, Zangemeister-Wittke U, Schwarz JR, Schumacher U, Lange T. Neuronal differentiation by indomethacin and IBMX inhibits proliferation of small cell lung cancer cells in vitro. Lung Cancer 2011; 74:178-87. [PMID: 21511354 DOI: 10.1016/j.lungcan.2011.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 03/03/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Small cell lung cancer (SCLC) is one of the most aggressive malignancies implying a very poor prognosis for patients even under therapy. Since it is known that SCLC cells exhibit neurone-like characteristics, we investigated whether a neuronal induction medium (NID) consisting of indomethacin (200 μM), 3-isobutyl-1-methylxanthine (IBMX, 500 μM) and insulin (5 μg/ml) induces neuronal differentiation and by this reduces malignancy of SCLC in vitro. METHODS Anti-proliferative effects were tested by incubating five SCLC cell lines (OH1, OH3, SW2, H69 and H82) with NID for 72 h (XTT-assay). Afterwards, anti-proliferative as well as cytotoxic effects (lactate dehydrogenase [LDH] assay, electron microscopy) of a range of drug concentrations (indomethacin 6.25-800 μM, IBMX 15.625-2000 μM and combinations of both) regarding H82 and SW2 were analysed. We further investigated the presence of cyclooxygenase- (COX-) 1 and 2 (IHC, Western blot) as well as levels of COX-2 before and after treatment. Neuronal differentiation was evaluated by morphological analyses (electron microscopy), detection of CD 56 and CD 171 (FACS) and recording Na(+) and K(+) currents (patch clamp). RESULTS Proliferation of all cell lines was inhibited significantly in a dose dependent manner (linear regression), whereas SW2 and H82 were most sensitive. Treatment with insulin alone had no effect at all. Cytotoxic effects were only observed after incubation with high concentrations of indomethacin (H82) and combined treatment (SW2). COX-1 and 2 were detectable in H82 and SW2, whereas the level of COX-2 remained unaffected under treatment. By electron microscopy, we could not observe distinct neurone-like morphological changes after 72 h of treatment. However, the majority of H82 and SW2 cells expressed both CD 56 (NCAM) and CD 171 (L1), showing an increase of NCAM and L1 intensity at the cell surface after 7 and 14 days of treatment. We further demonstrated an up-regulation of neurone-specific Na(+) currents as well as a significant down-regulation of herg K(+) currents after NID treatment. CONCLUSION Our findings demonstrate significant anti-proliferative, non-toxic effects of indomethacin and IBMX on SCLC cells in vitro. Treated SCLC cells further possess increased neuronal characteristics in vitro, possibly leading to a reduced malignant potential.
Collapse
Affiliation(s)
- Annika Lange
- Institute of Anatomy II: Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Trappe TA, Carroll CC, Dickinson JM, LeMoine JK, Haus JM, Sullivan BE, Lee JD, Jemiolo B, Weinheimer EM, Hollon CJ. Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults. Am J Physiol Regul Integr Comp Physiol 2010; 300:R655-62. [PMID: 21160058 DOI: 10.1152/ajpregu.00611.2010] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Evidence suggests that consumption of over-the-counter cyclooxygenase (COX) inhibitors may interfere with the positive effects that resistance exercise training has on reversing sarcopenia in older adults. This study examined the influence of acetaminophen or ibuprofen consumption on muscle mass and strength during 12 wk of knee extensor progressive resistance exercise training in older adults. Thirty-six individuals were randomly assigned to one of three groups and consumed the COX-inhibiting drugs in double-blind placebo-controlled fashion: placebo (67 ± 2 yr; n = 12), acetaminophen (64 ± 1 yr; n = 11; 4 g/day), and ibuprofen (64 ± 1 yr; n = 13; 1.2 g/day). Compliance with the resistance training program (100%) and drug consumption (via digital video observation, 94%), and resistance training intensity were similar (P > 0.05) for all three groups. Drug consumption unexpectedly increased muscle volume (acetaminophen: 109 ± 14 cm(3), 12.5%; ibuprofen: 84 ± 10 cm(3), 10.9%) and muscle strength (acetaminophen: 19 ± 2 kg; ibuprofen: 19 ± 2 kg) to a greater extent (P < 0.05) than placebo (muscle volume: 69 ± 12 cm(3), 8.6%; muscle strength: 15 ± 2 kg), when controlling for initial muscle size and strength. Follow-up analysis of muscle biopsies taken from the vastus lateralis before and after training showed muscle protein content, muscle water content, and myosin heavy chain distribution were not influenced (P > 0.05) by drug consumption. Similarly, muscle content of the two known enzymes potentially targeted by the drugs, COX-1 and -2, was not influenced (P > 0.05) by drug consumption, although resistance training did result in a drug-independent increase in COX-1 (32 ± 8%; P < 0.05). Drug consumption did not influence the size of the nonresistance-trained hamstring muscles (P > 0.05). Over-the-counter doses of acetaminophen or ibuprofen, when consumed in combination with resistance training, do not inhibit and appear to enhance muscle hypertrophy and strength gains in older adults. The present findings coupled with previous short-term exercise studies provide convincing evidence that the COX pathway(s) are involved in the regulation of muscle protein turnover and muscle mass in humans.
Collapse
Affiliation(s)
- Todd A Trappe
- Human Performance Laboratory, Ball State Univ., Muncie, IN 47306, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Burd NA, Dickinson JM, Lemoine JK, Carroll CC, Sullivan BE, Haus JM, Jemiolo B, Trappe SW, Hughes GM, Sanders CE, Trappe TA. Effect of a cyclooxygenase-2 inhibitor on postexercise muscle protein synthesis in humans. Am J Physiol Endocrinol Metab 2010; 298:E354-61. [PMID: 19934404 PMCID: PMC2822477 DOI: 10.1152/ajpendo.00423.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nonselective blockade of the cyclooxygenase (COX) enzymes in skeletal muscle eliminates the normal increase in muscle protein synthesis following resistance exercise. The current study tested the hypothesis that this COX-mediated increase in postexercise muscle protein synthesis is regulated specifically by the COX-2 isoform. Sixteen males (23 +/- 1 yr) were randomly assigned to one of two groups that received three doses of either a selective COX-2 inhibitor (celecoxib; 200 mg/dose, 600 mg total) or a placebo in double-blind fashion during the 24 h following a single bout of knee extensor resistance exercise. At rest and 24 h postexercise, skeletal muscle protein fractional synthesis rate (FSR) was measured using a primed constant infusion of [(2)H(5)]phenylalanine coupled with muscle biopsies of the vastus lateralis, and measurements were made of mRNA and protein expression of COX-1 and COX-2. Mixed muscle protein FSR in response to exercise (P < 0.05) was not suppressed by the COX-2 inhibitor (0.056 +/- 0.004 to 0.108 +/- 0.014%/h) compared with placebo (0.074 +/- 0.004 to 0.091 +/- 0.005%/h), nor was there any difference (P > 0.05) between the placebo and COX-2 inhibitor postexercise when controlling for resting FSR. The COX-2 inhibitor did not influence COX-1 mRNA, COX-1 protein, or COX-2 protein levels, whereas it did increase (P < 0.05) COX-2 mRNA (3.0 +/- 0.9-fold) compared with placebo (1.3 +/- 0.3-fold). It appears that the elimination of the postexercise muscle protein synthesis response by nonselective COX inhibitors is not solely due to COX-2 isoform blockade. Furthermore, the current data suggest that the COX-1 enzyme is likely the main isoform responsible for the COX-mediated increase in muscle protein synthesis following resistance exercise in humans.
Collapse
Affiliation(s)
- Nicholas A Burd
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cook VL, Meyer CT, Campbell NB, Blikslager AT. Effect of firocoxib or flunixin meglumine on recovery of ischemic-injured equine jejunum. Am J Vet Res 2009; 70:992-1000. [PMID: 19645580 DOI: 10.2460/ajvr.70.8.992] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether treatment of horses with firocoxib affects recovery of ischemic-injured jejunum, while providing effective analgesia. ANIMALS 18 horses. PROCEDURES Horses (n = 6 horses/group) received saline (0.9% NaCl) solution (1 mL/50 kg, IV), flunixin meglumine (1.1 mg/kg, IV, q 12 h), or firocoxib (0.09 mg/kg, IV, q 24 h) before 2 hours of jejunal ischemia. Horses were monitored via pain scores and received butorphanol for analgesia. After 18 hours, ischemic-injured and control mucosa were placed in Ussing chambers for measurement of transepithelial resistance and permeability to lipopolysaccharide. Histomorphometry was used to determine denuded villus surface area. Western blots for cyclooxygenase (COX)-1 and COX-2 were performed. Plasma thromboxane B(2) and prostaglandin E(2) metabolite (PGEM) concentrations were determined. RESULTS Pain scores did not significantly increase after surgery in horses receiving flunixin meglumine or firocoxib. Transepithelial resistance of ischemic-injured jejunum from horses treated with flunixin meglumine was significantly lower than in saline- or firocoxib-treated horses. Lipopolysaccharide permeability across ischemic-injured mucosa was significantly increased in horses treated with flunixin meglumine. Treatment did not affect epithelial restitution. Cyclooxygenase-1 was constitutively expressed and COX-2 was upregulated after 2 hours of ischemia. Thromboxane B(2) concentration decreased with flunixin meglumine treatment but increased with firocoxib or saline treatment. Flunixin meglumine and firocoxib prevented an increase in PGEM concentration after surgery. CONCLUSIONS AND CLINICAL RELEVANCE Flunixin meglumine retarded mucosal recovery in ischemic-injured jejunum, whereas firocoxib did not. Flunixin meglumine and firocoxib were effective visceral analgesics. Firocoxib may be advantageous in horses recovering from ischemic intestinal injury.
Collapse
Affiliation(s)
- Vanessa L Cook
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | |
Collapse
|
10
|
Handrick R, Ganswindt U, Faltin H, Goecke B, Daniel PT, Budach W, Belka C, Jendrossek V. Combined action of celecoxib and ionizing radiation in prostate cancer cells is independent of pro-apoptotic Bax. Radiother Oncol 2008; 90:413-21. [PMID: 19038466 DOI: 10.1016/j.radonc.2008.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 09/12/2008] [Accepted: 10/22/2008] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE The cyclooxygenase-2-inhibitor celecoxib has been shown to inhibit cell growth and to reduce prostatic intraepithelial neoplasia in mice. The drug was suggested to increase efficacy of ionizing radiation. However, extent and mechanisms of the suggested benefit of celecoxib on the radiation response are still unclear. The aim of the present study was to analyze cytotoxic efficacy of celecoxib in combination with irradiation on human prostate cancer cell lines and to define the importance of pro-apoptotic Bax in this process. MATERIALS AND METHODS Induction of apoptosis and global and clonogenic cell survival upon irradation- (2-10Gy), celecoxib- (10-75microM) or combined treatment were evaluated in prostate cancer cells by fluorescence microscopy, WST-1 assay and standard colony formation assays. RESULTS Celecoxib <25microM caused morphological changes and growth inhibition without substantial apoptosis or radiosensitization in terms of decreased clonogenic cell survival. In contrast, celecoxib 25microM increased radiation-induced cell death and clonogenic kill. While radiation-induced clonogenic death was increased in the presence of Bax, effects of celecoxib or combined treatment were Bax independent. CONCLUSIONS Our findings reveal Bax-independent beneficial effects of celecoxib on radiation-induced apoptosis and eradication of clonogenic prostate cancer cells in vitro providing a rationale for clinical evaluation of high-dose celecoxib in combination with irradiation in prostate cancer patients.
Collapse
Affiliation(s)
- René Handrick
- Department of Radiation Oncology, University of Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Smith KM, Scase TJ, Miller JL, Donaldson D, Sansom J. Expression of cyclooxygenase-2 by equine ocular and adnexal squamous cell carcinomas. Vet Ophthalmol 2008; 11 Suppl 1:8-14. [DOI: 10.1111/j.1463-5224.2008.00623.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Chuang HC, Kardosh A, Gaffney KJ, Petasis NA, Schönthal AH. COX-2 inhibition is neither necessary nor sufficient for celecoxib to suppress tumor cell proliferation and focus formation in vitro. Mol Cancer 2008; 7:38. [PMID: 18485224 PMCID: PMC2396175 DOI: 10.1186/1476-4598-7-38] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 05/16/2008] [Indexed: 12/11/2022] Open
Abstract
Background An increasing number of reports is challenging the notion that the antitumor potential of the selective COX-2 inhibitor celecoxib (Celebrex®) is mediated primarily via the inhibition of COX-2. We have investigated this issue by applying two different analogs of celecoxib that differentially display COX-2-inhibitory activity: the first analog, called unmethylated celecoxib (UMC), inhibits COX-2 slightly more potently than its parental compound, whereas the second analog, 2,5-dimethyl-celecoxib (DMC), has lost the ability to inhibit COX-2. Results With the use of glioblastoma and pancreatic carcinoma cell lines, we comparatively analyzed the effects of celecoxib, UMC, and DMC in various short-term (≤48 hours) cellular and molecular studies, as well as in long-term (≤3 months) focus formation assays. We found that DMC exhibited the most potent antitumor activity; celecoxib was somewhat less effective, and UMC clearly displayed the overall weakest antitumor potential in all aspects. The differential growth-inhibitory and apoptosis-stimulatory potency of these compounds in short-term assays did not at all correlate with their capacity to inhibit COX-2, but was closely aligned with their ability to trigger endoplasmic reticulum stress (ERS), as indicated by the induction of the ERS marker CHOP/GADD153 and activation of the ERS-associated caspase 7. In addition, we found that these compounds were able to restore contact inhibition and block focus formation during long-term, chronic drug exposure of tumor cells, and this was achieved at sub-toxic concentrations in the absence of ERS or inhibition of COX-2. Conclusion The antitumor activity of celecoxib in vitro did not involve the inhibition of COX-2. Rather, the drug's ability to trigger ERS, a known effector of cell death, might provide an alternative explanation for its acute cytotoxicity. In addition, the newly discovered ability of this drug to restore contact inhibition and block focus formation during chronic drug exposure, which involved neither ERS nor COX-2, suggests a novel, as yet unrecognized mechanism of celecoxib action.
Collapse
Affiliation(s)
- Huan-Ching Chuang
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, USA.
| | | | | | | | | |
Collapse
|
13
|
Kardosh A, Golden EB, Pyrko P, Uddin J, Hofman FM, Chen TC, Louie SG, Petasis NA, Schönthal AH. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res 2008; 68:843-51. [PMID: 18245486 DOI: 10.1158/0008-5472.can-07-5555] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The proteasome inhibitor bortezomib (Velcade) is known to trigger endoplasmic reticulum (ER) stress via the accumulation of obsolete and damaged proteins. The selective cyclooxygenase-2 (COX-2) inhibitor celecoxib (Celebrex) causes ER stress through a different mechanism (i.e., by causing leakage of calcium from the ER into the cytosol). Each of these two mechanisms has been implicated in the anticancer effects of the respective drug. We therefore investigated whether the combination of these two drugs would lead to further increased ER stress and would enhance their antitumor efficacy. With the use of human glioblastoma cell lines, we show that this is indeed the case. When combined, bortezomib and celecoxib triggered elevated expression of the ER stress markers GRP78/BiP and CHOP/GADD153, caused activation of c-Jun NH(2)-terminal kinase and ER stress-associated caspase-4, and greatly increased apoptotic cell death. Small interfering RNA-mediated knockdown of the protective ER chaperone GRP78/BiP further sensitized the tumor cells to killing by the drug combination. The contribution of celecoxib was independent of the inhibition of COX-2 because a non-coxib analogue of this drug, 2,5-dimethyl-celecoxib (DMC), faithfully and more potently mimicked these combination effects in vitro and in vivo. Taken together, our results show that combining bortezomib with celecoxib or DMC very potently triggers the ER stress response and results in greatly increased glioblastoma cytotoxicity. We propose that this novel drug combination should receive further evaluation as a potentially effective anticancer therapy.
Collapse
Affiliation(s)
- Adel Kardosh
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California 90089-9094, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schönthal AH. Induction of Apoptosis by Celecoxib in Cell Culture: An Uncertain Role for Cyclooxygenase-2: Figure 1. Cancer Res 2007; 67:5575-6; author reply 5576. [PMID: 17545641 DOI: 10.1158/0008-5472.can-06-3414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Klinger MB, Dattilio A, Vizzard MA. Expression of cyclooxygenase-2 in urinary bladder in rats with cyclophosphamide-induced cystitis. Am J Physiol Regul Integr Comp Physiol 2007; 293:R677-85. [PMID: 17537839 DOI: 10.1152/ajpregu.00305.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
These studies examined the expression of cyclooxygenase-2 (COX-2) expression in the urothelium and suburothelial space and detrusor from rats treated with cyclophosphamide (CYP) to induce acute (4 h), intermediate (48 h), or chronic (10-day) cystitis. Western blot analysis and immunohistochemistry were used to demonstrate COX-2 expression. In whole mount preparations of urinary bladder, nerve fibers in the suburothelial plexus, and inflammatory cell infiltrates were characterized for COX-2 expression after CYP-induced cystitis. COX-2 expression significantly (P <or= 0.01) increased in the urothelium + suburothelium and detrusor smooth muscle with acute, intermediate, and chronic (10-day) CYP-induced cystitis, but expression in urothelium + suburothelium was significantly greater. CYP-induced upregulation of COX-2 showed by immunostaining in the urothelium + suburothelium was similar to that observed with Western blot analysis and also demonstrated COX-2 inflammatory cell infiltrates (CD86+) and nerve fibers (PGP+) in the suburothelial plexus. Although COX-2 expression was significantly (P <or= 0.01) increased in detrusor smooth muscle, immunohistochemistry failed to demonstrate an obvious change in COX-2-immunoreactivity (IR) in detrusor muscle, but COX-2 inflammatory infiltrates were present throughout the detrusor. COX-2-IR nerve fibers exhibited increased density in the suburothelial plexus with acute or chronic CYP-induced cystitis. COX-2-IR macrophages (CD86+) were present throughout the urinary bladder with acute and chronic CYP-induced cystitis. These studies demonstrate cellular targets in the urinary bladder where COX-2 inhibitors may act.
Collapse
Affiliation(s)
- Mary Beth Klinger
- Univ. of Vermont College of Medicine, Dept. of Neurology, D415A Given Research Bldg., Burlington, VT 05405. )
| | | | | |
Collapse
|