1
|
Agnihotri TG, Salave S, Shinde T, Srikanth I, Gyanani V, Haley JC, Jain A. Understanding the role of endothelial cells in brain tumor formation and metastasis: a proposition to be explored for better therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:222-235. [PMID: 39035200 PMCID: PMC11256543 DOI: 10.1016/j.jncc.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 07/23/2024] Open
Abstract
Glioblastoma is one of the most devastating central nervous system disorders. Being a highly vascular brain tumor, it is distinguished by aberrant vessel architecture. This lends credence to the idea that endothelial cells (ECs) linked with glioblastoma vary fundamentally from ECs seen in the healthy human brain. To effectively design an antiangiogenic treatment, it is crucial to identify the functional and phenotypic characteristics of tumor-associated ECs. The ECs associated with glioblastoma are less prone to apoptosis than control cells and are resistant to cytotoxic treatments. Additionally, ECs associated with glioblastoma migrate more quickly than control ECs and naturally produce large amounts of growth factors such as endothelin-1, interleukin-8, and vascular endothelial growth factor (VEGF). For designing innovative antiangiogenic drugs that particularly target tumor-related ECs in gliomas, it is critical to comprehend these distinctive features of ECs associated with gliomas. This review discusses the process of angiogenesis, other factors involved in the genesis of tumors, and the possibility of ECs as a potential target in combating glioblastoma. It also sheds light on the association of tumor microenvironment and ECs with immunotherapy. This review, thus gives us the hope that neuro endothelial targeting with growth factors and angiogenesis regulators combined with gene therapy would open up new doorways and change our traditional perspective of treating cancer.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Tanuja Shinde
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Induri Srikanth
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Vijay Gyanani
- Long Acting Drug Delivery, Celanese Corporation, Irving, United States
| | - Jeffrey C. Haley
- Long Acting Drug Delivery, Celanese Corporation, Irving, United States
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| |
Collapse
|
2
|
Lim J, Baig AA, Donnelly BM, Chaves LD, Pol SU, Koenigsknecht C, Pionessa D, Levy BR, Gutierrez L, Tutino VM, Levy EI, Siddiqui AH. The first endovascular rat glioma model for pre-clinical evaluation of intra-arterial therapeutics. Interv Neuroradiol 2023:15910199231169597. [PMID: 37157800 DOI: 10.1177/15910199231169597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Several translational animal models have been described assessing intra-arterial (IA) treatments for malignant gliomas. We describe the first endovascular animal model that allows testing of IA drug delivery as a first-line treatment, which is difficult to do in actual patients. We report a unique protocol for vascular access and IA delivery in the rat model that, unlike prior reports, does not require direct puncture and opening of proximal cerebrovasculature which carries risk of ischemia in the animal brain post-delivery. METHODS Wistar rats underwent left femoral artery catherization with a Balt Magic 1.2F catheter or Marathon Flow directed 1.5F Microcatheter with an Asahi Chikai 0.008 micro-guidewire which was navigated to the left internal carotid artery under x-ray. 25% mannitol was administered to test blood brain barrier breakdown (BBBB). Additional rats were implanted with C6 glioma cells in the left frontal lobe. C6 Glioma-Implanted Rats (C6GRs) were monitored for overall survival and tumor growth. Tumor volumes from MRI images were calculated utilizing 3D slicer. Additional rats underwent femoral artery catheterization with Bevacizumab, carboplatin, or irinotecan injected into the left internal carotid artery to test feasibility and safety. RESULTS A successful endovascular access and BBBB protocol was established. BBBB was confirmed with positive Evans blue staining. 10 rats were successfully implanted with C6 gliomas with confirmed growths on MRI. Overall survival was 19.75 ± 2.21 days. 5 rats were utilized for the development of our femoral catheterization protocol and BBBB testing. With regards to IA chemotherapy dosage testing, control rats tolerated targeted 10 mg/kg of bevascizumab, 2.4 mg/kg of carboplatin, and 15 mg/kg of irinotecan IA ICA injections without any complications. CONCLUSIONS We present the first endovascular IA rat glioma model that allows selective catheterization of the intracranial vasculature and assessment of IA therapies for gliomas without need for access and sacrifice of proximal cerebrovasculature.
Collapse
Affiliation(s)
- Jaims Lim
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, NY, USA
| | - Ammad A Baig
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, NY, USA
| | - Brianna M Donnelly
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, NY, USA
| | - Lee D Chaves
- Department of Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Suyog U Pol
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
| | - Carmon Koenigsknecht
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
| | - Donald Pionessa
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
| | - Bennett R Levy
- George Washington University School of Medicine, Washington, DC, USA
| | - Liza Gutierrez
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
| | - Vincent M Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
- Jacobs Institute, Buffalo, NY, USA
- Mechanical and Aerospace Engineering, University at Buffalo School of Engineering and Applied Sciences, Buffalo, NY, USA
| | - Elad I Levy
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, NY, USA
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
- Jacobs Institute, Buffalo, NY, USA
| | - Adnan H Siddiqui
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, NY, USA
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
- Jacobs Institute, Buffalo, NY, USA
| |
Collapse
|
3
|
Preclinical models of glioblastoma: limitations of current models and the promise of new developments. Expert Rev Mol Med 2021; 23:e20. [PMID: 34852856 DOI: 10.1017/erm.2021.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumour, yet little progress has been made towards providing better treatment options for patients diagnosed with this devastating condition over the last few decades. The complex nature of the disease, heterogeneity, highly invasive potential of GBM tumours and until recently, reduced investment in research funding compared with other cancer types, are contributing factors to few advancements in disease management. Survival rates remain low with less than 5% of patients surviving 5 years. Another important contributing factor is the use of preclinical models that fail to fully recapitulate GBM pathophysiology, preventing efficient translation from the lab into successful therapies in the clinic. This review critically evaluates current preclinical GBM models, highlighting advantages and disadvantages of using such models, and outlines several emerging techniques in GBM modelling using animal-free approaches. These novel approaches to a highly complex disease such as GBM show evidence of a more truthful recapitulation of GBM pathobiology with high reproducibility. The resulting advancements in this field will offer new biological insights into GBM and its aetiology with potential to contribute towards the development of much needed improved treatments for GBM in future.
Collapse
|
4
|
Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery. BIOMED RESEARCH INTERNATIONAL 2015; 2015:731292. [PMID: 26579539 PMCID: PMC4633536 DOI: 10.1155/2015/731292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/04/2015] [Accepted: 10/04/2015] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery.
Collapse
|
5
|
Valiante S, Falanga A, Cigliano L, Iachetta G, Busiello RA, La Marca V, Galdiero M, Lombardi A, Galdiero S. Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood-brain barrier in rats. Int J Nanomedicine 2015; 10:1885-98. [PMID: 25792823 PMCID: PMC4364164 DOI: 10.2147/ijn.s77734] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peptide gH625, derived from glycoprotein H of herpes simplex virus type 1, can enter cells efficiently and deliver a cargo. Nanoparticles armed with gH625 are able to cross an in vitro model of the blood-brain barrier (BBB). In the present study, in vitro experiments were performed to investigate whether gH625 can enter and accumulate in neuron and astrocyte cell lines. The ability of gH625 to cross the BBB in vivo was also evaluated. gH625 was administered in vivo to rats and its presence in the liver and in the brain was detected. Within 3.5 hours of intravenous administration, gH625 can be found beyond the BBB in proximity to cell neurites. gH625 has no toxic effects in vivo, since it does not affect the maximal oxidative capacity of the brain or the mitochondrial respiration rate. Our data suggest that gH625, with its ability to cross the BBB, represents a novel nanocarrier system for drug delivery to the central nervous system. These results open up new possibilities for direct delivery of drugs into patients in the field of theranostics and might address the treatment of several human diseases.
Collapse
Affiliation(s)
| | - Annarita Falanga
- Department of Pharmacy, University of Naples Federico II, Naples, Italy ; DFM Scarl, University of Naples Federico II, Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | - Valeria La Marca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Stefania Galdiero
- Department of Biology, University of Naples Federico II, Naples, Italy ; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Abstract
Brain tumors remain a significant health problem. Advances in the biology of the blood-brain barrier are improving the ability of researchers to target therapeutic peptides, small molecules and other drugs to brain tumors. Simple methods to improve blood-brain barrier penetration include chemical modification, glycosylation and pegylation. Drug-delivery vehicles, such as nanoparticles and liposomes, are also under study. Targeting vectors include natural ligands (e.g., epidermal growth factor) or monoclonal antibodies to receptors (e.g., transferrin or insulin). Other vector-mediated delivery approaches involve the conjugation of a therapeutic peptide or protein with a targeting molecule that can induce transcytosis across blood-brain barrier endothelial cells. The most commonly used vectors are peptidomimetic antibodies to endothelial receptors, such as the transferrin and insulin receptors.
Collapse
Affiliation(s)
- Herbert B Newton
- Dardinger Neuro-oncology Center, Division of Neuro-oncology, 465 Means Hall, 1654 Upham Drive, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Khaitan D, Ningaraj NS. Targeting potassium channels for increasing delivery of imaging agents and therapeutics to brain tumors. Front Pharmacol 2013; 4:62. [PMID: 23755013 PMCID: PMC3665941 DOI: 10.3389/fphar.2013.00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/22/2013] [Indexed: 11/13/2022] Open
Abstract
Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/capillaries that form the blood-brain barrier not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB). Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells (ECs). In this study, we validated the non-invasive and clinically relevant dynamic contrast enhancing-magnetic resonance imaging (DCE-MRI) method with invasive, clinically irrelevant but highly accurate quantitative autoradiography method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa) channel activator NS-1619. Our results show that human gliomas and brain tumor ECs that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents' delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.
Collapse
Affiliation(s)
- Divya Khaitan
- Department of Molecular Oncology Research, Scintilla Academy for Applied Sciences' Research and Education Bangalore, Karnataka, India
| | | |
Collapse
|
8
|
Wang T, Agarwal S, Elmquist WF. Brain distribution of cediranib is limited by active efflux at the blood-brain barrier. J Pharmacol Exp Ther 2012; 341:386-95. [PMID: 22323823 PMCID: PMC3336816 DOI: 10.1124/jpet.111.190488] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/03/2012] [Indexed: 01/20/2023] Open
Abstract
Cediranib is an orally active tyrosine kinase inhibitor that targets the vascular endothelial growth factor receptor family. Because of its potent antiangiogenic and antitumor activities, cediranib has been evaluated for therapy in glioma, a primary brain tumor. This study investigated the influence of two important efflux transporters at the blood-brain barrier, P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), on the delivery of cediranib to the central nervous system. In vitro studies indicated that cediranib is a dual substrate for both P-gp and Bcrp. It is noteworthy that in spite of the in vitro data the in vivo mouse disposition studies conclusively showed that P-gp was the dominant transporter restricting the brain distribution of cediranib. The brain-to-plasma partitioning (AUC(brain)/AUC(plasma), where AUC is area under the curve) and the steady-state brain-to-plasma concentration ratio of cediranib were approximately 20-fold higher in Mdr1a/b⁻/⁻ and Mdr1a/b⁻/⁻Bcrp1⁻/⁻ mice compared with wild-type and Bcrp1⁻/⁻ mice. Moreover, there was no significant difference in brain distribution of cediranib between wild-type and Bcrp1⁻/⁻ mice and between Mdr1a/b⁻/⁻ and Mdr1a/b⁻/⁻Bcrp1⁻/⁻ mice. These results show that, unlike other tyrosine kinase inhibitors that are dual substrates for P-gp and Bcrp, Bcrp does not restrict the distribution of cediranib across the blood-brain barrier. We also show that inhibition of P-gp using specific or nonspecific inhibitors resulted in significantly enhanced delivery of cediranib to the brain. Concurrent administration of cediranib with chemical modulators of efflux transporters can be used as a strategy to enhance delivery and thus efficacy of cediranib in the brain. These findings are clinically relevant to the efficacy of cediranib chemotherapy in glioma.
Collapse
Affiliation(s)
- Tianli Wang
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
9
|
Abstract
GBM (glioblastoma multiforme) is a highly aggressive brain tumour with very poor prognosis despite multi-modalities of treatment. Furthermore, recent failure of targeted therapy for these tumours highlights the need of appropriate rodent models for preclinical studies. In this review, we highlight the most commonly used rodent models (U251, U86, GL261, C6, 9L and CNS-1) with a focus on the pathological and genetic similarities to the human disease. We end with a comprehensive review of the CNS-1 rodent model.
Collapse
|
10
|
Annabi B, Vaillancourt-Jean E, Weil AG, Béliveau R. Pharmacological targeting of β-adrenergic receptor functions abrogates NF-κB signaling and MMP-9 secretion in medulloblastoma cells. Onco Targets Ther 2010; 3:219-226. [PMID: 21124749 PMCID: PMC2994204 DOI: 10.2147/ott.s14503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Targeting of the vascular endothelium compartment explains, in part, the therapeutic efficacy of the nonselective β-adrenergic antagonist propranolol against common endothelial tumors such as hemangiomas. In vitro, the antiangiogenic biological activity of propranolol was shown to inhibit human brain microvascular endothelial cell tubulogenesis. However, possible interference of propranolol with cell signaling associated with the tumoral compartment remains unexplored. We therefore assessed the potency of propranolol against a pediatric brain tumor- derived DAOY medulloblastoma cell model. Gene expression of β(1)-, β(2)-, and β(3)-adrenergic receptors was confirmed in DAOY cells by semiquantitative RT-PCR. We next found that propranolol dose-dependently inhibited induction of the key extracellular matrix-degrading and blood-brain barrier disrupting enzyme matrix metalloproteinase- 9 (MMP-9) by phorbol 12-myristate 13-acetate (PMA). Propranolol not only inhibited PMA- induced phosphorylation of the extracellular signal-regulated kinase (Erk), but also that of IkappaB (IκB), preventing the IκB phosphorylation which is a prerequisite for IκB degradation. Propranolol inhibition of IκB phosphorylation was shown to occur with optimal efficacy at 30 μM. Although propranolol, at up to 100 μM, did not affect cell viability, it potentiated PMA- mediated signaling that ultimately led to diminished phosphorylation of Akt. The anti-Erk and anti-Akt phosphorylation effects are both suggestive of antiproliferative and antisurvival signaling, respectively. Our data are therefore indicative of a pharmacological role for propranolol against β-adrenergic receptor signaling functions involving the nuclear factor-kappaB-mediated regulation of MMP-9.
Collapse
Affiliation(s)
- Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Centre de Recherche BioMED
| | | | - Alexander G Weil
- Department of Neurosurgery, CHUM Notre Dame, Montreal, Quebec, Canada
| | - Richard Béliveau
- Laboratory of Molecular Medicine, Université du Québec à Montréal, Quebec, Canada
- Department of Neurosurgery, CHUM Notre Dame, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Tahanian E, Lord-Dufour S, Das A, Khosla C, Roy R, Annabi B. Inhibition of tubulogenesis and of carcinogen-mediated signaling in brain endothelial cells highlight the antiangiogenic properties of a mumbaistatin analog. Chem Biol Drug Des 2010; 75:481-488. [PMID: 20486934 DOI: 10.1111/j.1747-0285.2010.00961.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A better understanding of the metabolic adaptations of the vascular endothelial cells (EC) that mediate tumor vascularization would help the development of new drugs and therapies. Novel roles in cell survival and metabolic adaptation to hypoxia have been ascribed to the microsomal glucose-6-phosphate translocase (G6PT). While antitumorigenic properties of G6PT inhibitors such as chlorogenic acid (CHL) have been documented, those of the G6PT inhibitor and semi-synthetic analog AD4-015 of the polyketide mumbaistatin are not understood. In the present study, we evaluated the in vitro antiangiogenic impact of AD4-015 on human brain microvascular endothelial cells (HBMEC), which play an essential role as structural and functional components in tumor angiogenesis. We found that in vitro HBMEC migration and tubulogenesis were reduced by AD4-015 but not by CHL. The mumbaistatin analog significantly inhibited the phorbol 12-myristate 13-acetate (PMA)-induced matrix-metalloproteinase (MMP)-9 secretion and gene expression as assessed by zymography and RT-PCR. PMA-mediated cell signaling leading to cyclooxygenase (COX)-2 expression and IkappaB downregulation was also inhibited, further confirming AD4-015 as a cell signaling inhibitor in tumor promoting conditions. G6PT functions may therefore account for the metabolic flexibility that enables EC-mediated neovascularization. This process could be specifically targeted within the vasculature of developing brain tumors by G6PT inhibitors.
Collapse
|
12
|
Goldberg JS, Hirschi KK. Diverse roles of the vasculature within the neural stem cell niche. Regen Med 2010; 4:879-97. [PMID: 19903006 DOI: 10.2217/rme.09.61] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An interdependent relationship between the vascular and nervous systems begins during the earliest stages of development and persists through the mammalian lifespan. Accordingly, the process of adult neurogenesis involves the coordinated response of both systems to maintain a specialized microenvironment (niche) that tips the scale towards maintenance or regeneration, as needed. Understanding the nature and regulation of this balance will provide a foundation on which the potential for molecular- and stem cell-based therapies can be developed to treat prevalent CNS diseases and disorders. The vasculature is cited as a prominent feature within the adult subventricular zone and subgranular zone, known adult neural stem cell niches, helping to retain neural stem and progenitor cell potential. The vascular compartment within the neural stem cell niche has the unique opportunity to not only regulate neural stem and progenitor cells through direct contact with, and paracrine signaling from, endothelial and mural cells that make up blood vessels, but also integrates systemic signals into the local microenvironment via distribution of soluble factors from blood circulation to regulate stem cell niche behavior. Understanding the intricate role that the vasculature plays to influence neural stem cells in the context of niche regulation will help to bridge the gap from bench to bedside for the development of regeneration-based therapies for the CNS.
Collapse
Affiliation(s)
- Joshua S Goldberg
- Baylor College of Medicine, Department of Pediatrics & Molecular, Houston, TX 77030, USA
| | | |
Collapse
|
13
|
Annabi B, Lachambre MP, Plouffe K, Moumdjian R, Béliveau R. Propranolol adrenergic blockade inhibits human brain endothelial cells tubulogenesis and matrix metalloproteinase-9 secretion. Pharmacol Res 2009; 60:438-445. [PMID: 19467330 DOI: 10.1016/j.phrs.2009.05.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/15/2009] [Accepted: 05/16/2009] [Indexed: 11/29/2022]
Abstract
In recent clinical observation, the growth of endothelial tumors, such as hemangiomas of infancy, was repressed by the non-selective beta-adrenergic antagonist propranolol possibly through targeting of the vascular endothelial compartment. As human brain microvascular endothelial cells (HBMEC) play an essential role as structural and functional components in tumor angiogenesis, we assessed whether propranolol could target HBMEC's in vitro angiogenic properties. We found that biopsies from human glioblastoma as well as from experimental brain tumor-associated vasculature expressed high levels of the beta2-adrenergic receptor, suggesting adrenergic adaptative processes could take place during tumor vascularization. We observed that in vitro tubulogenesis was significantly reduced by propranolol when HBMEC were seeded on Matrigel. Propranolol, as much as 100microM, did not reduce cell viability and did not alter HBMEC migration as assessed with Boyden chambers. Secretion of the key angiogenic and extracellular matrix degrading enzymes MMP-2 and MMP-9 was assessed by zymography. Propranolol significantly reduced MMP-9 secretion upon treatment with the tumor-promoting agent phorbol 12-myristate 13-acetate, while secretion of MMP-2 remained unaffected. This was correlated with a decrease in MMP-9 gene expression which is, in part, explained by a decrease in the nucleocytoplasmic export of the mRNA stabilizing factor HuR. Our data are therefore indicative of a selective role for propranolol in inhibiting MMP-9 secretion and HBMEC tubulogenesis which could potentially add to propranolol's anti-angiogenic properties.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/pharmacology
- Angiogenesis Inhibitors/pharmacology
- Animals
- Brain/drug effects
- Brain Neoplasms/metabolism
- Cell Line
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Glioblastoma/metabolism
- Humans
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Propranolol/pharmacology
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
Collapse
Affiliation(s)
- Borhane Annabi
- Département de Chimie, Centre de Recherche BioMED, Université du Québec à Montréal, Canada
| | | | | | | | | |
Collapse
|
14
|
Shingaki T, Hidalgo IJ, Furubayashi T, Katsumi H, Sakane T, Yamamoto A, Yamashita S. The transnasal delivery of 5-fluorouracil to the rat brain is enhanced by acetazolamide (the inhibitor of the secretion of cerebrospinal fluid). Int J Pharm 2009; 377:85-91. [PMID: 19446619 DOI: 10.1016/j.ijpharm.2009.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/01/2009] [Accepted: 05/06/2009] [Indexed: 01/01/2023]
Abstract
The purpose of the research is to evaluate the effect of acetazolamide (AZA), an inhibitor of the secretion of cerebrospinal fluid (CSF), on the direct drug transport from the nasal cavity to the CSF and the brain uptake of a model drug, 5-fluorouracil (5FU). 5FU was infused intravenously or perfused nasally in the presence and absence of intravenously administered AZA. Concentrations of 5FU in plasma, CSF and the cerebral cortex were measured. The AUC and the concentration of 5FU in the brain were used to calculate the apparent brain uptake clearance (CL(up)) of 5FU, which is an index of drug delivery to the brain under the two experimental conditions. Intravenous AZA markedly increased the concentration of 5FU in the CSF and brain following the nasal perfusion of 5FU, although the plasma concentrations of 5FU were similar with intravenous infusion and nasal perfusions of 5FU. CL(up) of 5FU after the nasal perfusion with AZA was significantly increased by 104% and 46% as compared to intravenous infusion and nasal perfusion without AZA, respectively. AZA enhanced the 5FU delivery to the brain through a nose-to-brain pathway by increasing the concentration of the nasally applied drug in the CSF.
Collapse
Affiliation(s)
- Tomotaka Shingaki
- Absorption Systems, 440 Creamery Way, Suite 300, Exton, PA 19341, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Soni S, Babbar AK, Sharma RK, Maitra A. Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels. J Drug Target 2008; 14:87-95. [PMID: 16608735 DOI: 10.1080/10611860600635608] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Random copolymeric micelles composed of N-isopropylacrylamide (NIPAAM) and N-vinylpyrrolidone (VP) cross-linked with N,N'-methylenebisacrylamide (MBA) have been used as nanogel carriers to encapsulate N-hexylcarbamoyl-5-fluorouracil (HCFU), a prodrug of 5-FU, and have been targeted to brain tissue across blood-brain barrier (BBB) after coating with polysorbate 80. Accumulation of nanogel particles in the brain and other tissues of "strain A" mice had been monitored by radiolabeling of nanogels with (99m)Tc. Gamma Scintigraphic technique was also performed to see the distribution of (99m)Tc labeled nanogels in the brain. The retention time in blood appeared to be slightly longer for coated nanogels than that of uncoated nanogels though the accumulation of coated nanogels in the RES was more or less same as that of uncoated nanogels. The blood however had almost double accumulation of polysorbate 80 coated nanogels in the initial 5 min compared to that shown by uncoated nanogels. We speculate that coating of nanogels with polysorbate 80 alters the surface properties of nanogels, which results in relatively higher uptake in the brain tissue. The studies revealed that a large portion of (99m)Tc labeled HCFU loaded nanogels are accumulated in the RES (lung, liver and spleen). The accumulation of the labeled nanogels in the brain, however, is much less compared to RES and it has been found that while an amount of uncoated labeled nanogels was found to be 0.18% of the injected dose, it increased to 0.52% on coating with polysorbate 80. The optimal amount of polysorbate 80 added to nanogels for the maximum delivery of particles to brain was found to be 1% w/w. These results were further supported by the gamma scintigrams of New Zealand rabbits. Thus, the present nanogel system has opened a new avenue for poorly soluble drugs to be targeted to brain by coating the particles with polysorbate 80.
Collapse
Affiliation(s)
- Sheetal Soni
- Nanotechnology and Stem Cell Research, Institute of Nuclear Medicine and Allied Sciences, Division of Radiopharmaceuticals, Lucknow Road, Delhi, 110 054, India
| | | | | | | |
Collapse
|
16
|
Demeule M, Régina A, Ché C, Poirier J, Nguyen T, Gabathuler R, Castaigne JP, Béliveau R. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 2008; 324:1064-72. [PMID: 18156463 DOI: 10.1124/jpet.107.131318] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
By controlling access to the brain, the blood-brain barrier (BBB) restricts the entry of proteins and potential drugs to cerebral tissues. We demonstrate here the transcytosis ability of aprotinin and peptides derived from Kunitz domains using an in vitro model of the BBB and in situ brain perfusion. Aprotinin transcytosis across bovine brain capillary endothelial cell (BBCEC) monolayers is at least 10-fold greater than that of holo-transferrin. Sucrose permeability was unaffected by high concentrations of aprotinin, indicating that transcytosis of aprotinin was unrelated to changes in the BBCEC monolayer integrity. Alignment of the amino acid sequence of aprotinin with the Kunitz domains of human proteins allowed the identification and design of a family of peptides, named Angiopeps. These peptides, and in particular Angiopep-2, exhibit higher transcytosis capacity and parenchyma accumulation than aprotinin. Overall, these results suggest that these Kunitz-derived peptides could be advantageously used as a new brain delivery system for pharmacological agents that do not readily enter the brain.
Collapse
Affiliation(s)
- Michel Demeule
- Laboratoire de Médecine Moléculaire, Centre d'Hémato-Oncologie, Hôpital Ste-Justine-Université du Québec à Montréal, Montréal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hayashi Y, Edwards NA, Proescholdt MA, Oldfield EH, Merrill MJ. Regulation and function of aquaporin-1 in glioma cells. Neoplasia 2007; 9:777-87. [PMID: 17898873 PMCID: PMC1993862 DOI: 10.1593/neo.07454] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/01/2007] [Accepted: 07/03/2007] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiformes (GBMs) express increased aquaporin (AQP) 1 compared to normal brain. AQPs may contribute to edema, cell motility, and shuttling of H(2)O and H(+) from intracellular to extracellular space. We sought to gain insight into AQP1 function in GBM. In cultured 9L gliosarcoma cells, AQP1 expression was induced by dexamethasone, platelet-derived growth factor, NaCl, hypoxia, D-glucose (but not L-glucose), and fructose. Induction of AQP1 expression correlated with the level of glycolysis, maximized by increasing medium D-glucose or fructose and decreasing O(2), and was quantified by measuring lactate dehydrogenase (LDH) activity and medium lactate concentration. Upregulation of the protease cathepsin B was also observed in 9L cells cultured under glycolytic conditions. Immunohistochemical staining of human GBM specimens revealed increased coincident expression of AQP1, LDH, and cathepsin B in glioma cells associated with blood vessels at the tumor periphery. GBMs are known to exhibit aerobic glycolysis. Increased glucose metabolism at the tumor periphery may provide a scenario by which upregulation of AQP1, LDH, and cathepsin B contributes to acidification of the extracellular milieu and to invasive potential of glioma cells in perivascular space. The specific upregulation and metabolic consequences of increased AQP1 in gliomas may provide a therapeutic target, both as a cell surface marker and as a functional intervention.
Collapse
Affiliation(s)
- Yasuhiko Hayashi
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
18
|
Huang RQ, Pei YY, Jiang C. Enhanced gene transfer into brain capillary endothelial cells using Antp-modified DNA-loaded nanoparticles. J Biomed Sci 2007; 14:595-605. [PMID: 17447157 DOI: 10.1007/s11373-007-9171-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 03/23/2007] [Indexed: 10/23/2022] Open
Abstract
Brain capillary endothelial cells (BCECs) have been considered as one of the primary targets for cerebral gene therapy. However, the cells, well-known for their poor function of endocytosis, are difficult to be transfected by general non-viral vectors. The aim of this study was to enhance the efficiency of transfection and expression in BCECs of DNA/polymer nanoparticles with the modification of membrane-penetrating peptide, Antennapedia peptide (Antp) polyethylenimine (PEI) and polyamidoamine (PAMAM) were chosen to prepare Antp-modified DNA-loaded nanoparticles with a complex coacervation technique. After a 20-min transfection, the efficiency, in terms of transfection and expression, of DNA/PEI NP or DNA/PAMAM NP was enhanced significantly with the modification of Antp. After a 3-h transfection of DNA/Antp/PEI NP, there was no difference in cellular uptake but an enhancement in gene expression, compared to DNA/PEI NP alone. However, both the transfection and expression efficiency of DNA/PAMAM NP were enhanced using Antp. These observations suggest that Antp can increase the membrane-penetrating ability of DNA-loaded nanoparticles, which can be employed as novel non-viral gene vectors.
Collapse
Affiliation(s)
- Rong-Qin Huang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, P.O. Box 232, Shanghai, 200032, China
| | | | | |
Collapse
|
19
|
Huang RQ, Ke WL, Qu YH, Zhu JH, Pei YY, Jiang C. Characterization of lactoferrin receptor in brain endothelial capillary
cells and mouse brain. J Biomed Sci 2006; 14:121-8. [PMID: 17048089 DOI: 10.1007/s11373-006-9121-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/15/2006] [Indexed: 10/24/2022] Open
Abstract
We present, herein, the evidence for lactoferrin (Lf) binding sites in brain endothelial capillary cells (BCECs) and mouse brain. The results from confocal microscopy showed the presence of Lf receptors on the surface of BCECs and the receptor-mediated endocytosis for Lf to enter the cells. Saturation binding analyses revealed that Lf receptors exhibited two classes of binding sites in BCECs (high affinity: dissociation constant (K (d)) = 6.77 nM, binding site density (B (max)) = 10.3 fmol bound/mug protein; low affinity: K (d) = 4815 nM, B (max) = 1190 fmol bound/mug protein) and membrane preparations of mouse brain (high affinity: K (d) = 10.61 nM, B (max) = 410 fmol bound/mug protein; low affinity: K (d) = 2228 nM, B (max) = 51641 fmol bound/mug protein). The distribution study indicated the effective uptake of (125)I-Lf in brain after intravenous administration. The present study provides experimental evidence for the application of Lf as a novel ligand for brain targeting.
Collapse
Affiliation(s)
- Rong-qin Huang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
20
|
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7:41-53. [PMID: 16371949 DOI: 10.1038/nrn1824] [Citation(s) in RCA: 3841] [Impact Index Per Article: 202.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier, which is formed by the endothelial cells that line cerebral microvessels, has an important role in maintaining a precisely regulated microenvironment for reliable neuronal signalling. At present, there is great interest in the association of brain microvessels, astrocytes and neurons to form functional 'neurovascular units', and recent studies have highlighted the importance of brain endothelial cells in this modular organization. Here, we explore specific interactions between the brain endothelium, astrocytes and neurons that may regulate blood-brain barrier function. An understanding of how these interactions are disturbed in pathological conditions could lead to the development of new protective and restorative therapies.
Collapse
Affiliation(s)
- N Joan Abbott
- Wolfson Centre for Age-Related Diseases, King's College London, UK.
| | | | | |
Collapse
|
21
|
Isenberg JS, Tabatabai N, Spinelli HM. Nitric oxide modulation of low-density mononuclear cell transendothelial migration. Microsurgery 2005; 25:452-6. [PMID: 16032722 DOI: 10.1002/micr.20144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The blood-endothelial cell interface is a region of significant importance in many physiologic and pathologic processes. Blood-borne macromolecules and cells gain access to the subendothelial space and extravascular tissues by traversing the endothelium. Yet the various factors responsible for modulation of this process remain only partially elucidated. Several agents were found to be involved in this process, including nitric oxide (NO) and vascular endothelial growth factor (VEGF). It is known that under stress conditions (e.g., inflammation), NO can modulate the permeability of endothelial-cell monolayers to low-density mononuclear cells (LDMNCs). However, it is not known if NO can modulate such effects in the absence of inflammatory stimulation. In the present study, we utilized a Transwell chamber model to examine endothelial-cell monolayer permeability to LDMNCs in the absence of inflammatory stimuli. We noted that NO donor and L-arginine increased transendothelial-cell migration, whereas nitric oxide synthase (NOS) inhibition decreased migration. These effects were not significantly abrogated by VEGF antibody, suggesting that they were not VEGF-dependent.
Collapse
Affiliation(s)
- J S Isenberg
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
22
|
Williams MJ, Lowrie MB, Bennett JP, Firth JA, Clark P. Cadherin-10 is a novel blood-brain barrier adhesion molecule in human and mouse. Brain Res 2005; 1058:62-72. [PMID: 16181616 DOI: 10.1016/j.brainres.2005.07.078] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/27/2005] [Accepted: 07/27/2005] [Indexed: 11/30/2022]
Abstract
Maintenance of the specialised environment of the central nervous system requires barriers provided by the endothelium of brain microvessels (the blood-brain barrier (BBB)) or the epithelium lining the ventricles (CSF-brain barrier) or the choroid plexus (blood-CSF barrier). Inter-endothelial junctions are more extensive in the BBB than in other tissues, with elaborate tight junctions. However, few differences in the molecular composition of these junctions have been described. Here, we show, in both human and mouse brain, that the type II classical cadherin, cadherin-10, is expressed in BBB and retinal endothelia, but not in the leaky microvessels of brain circumventricular organs (CVO), or in those of non-CNS tissues. This expression pattern is distinct from, and reciprocal to, VE-cadherin, which is reduced or absent in tight cortical microvessels, but present in leaky CVO vessels. In CVO, the barrier function is switched from the microvasculature to the adjacent ventricular epithelium, which we also find to express cadherin-10. In the vessels of gliobastoma multiforme tumours, where BBB is lost, cadherin-10 is not detected. This demonstration of a distinctive expression pattern of cadherin-10 suggests that it has a pivotal role in the development and maintenance of brain barriers.
Collapse
Affiliation(s)
- Matthew J Williams
- Division of Biomedical Sciences, Imperial College London, South Kensington, London, UK
| | | | | | | | | |
Collapse
|