1
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Xu Y, Gehlot R, Capon SJ, Albu M, Gretz J, Bloomekatz J, Mattonet K, Vucicevic D, Talyan S, Kikhi K, Günther S, Looso M, Firulli BA, Sanda M, Firulli AB, Lacadie SA, Yelon D, Stainier DYR. PDGFRA is a conserved HAND2 effector during early cardiac development. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1531-1548. [PMID: 39658721 PMCID: PMC11634778 DOI: 10.1038/s44161-024-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
The basic helix-loop-helix transcription factor HAND2 has multiple roles during vertebrate organogenesis, including cardiogenesis. However, much remains to be uncovered about its mechanism of action. Here, we show the generation of several hand2 mutant alleles in zebrafish and demonstrate that dimerization-deficient mutants display the null phenotype but DNA-binding-deficient mutants do not. Rescue experiments with Hand2 variants using a newly identified hand2 enhancer confirmed these observations. To identify Hand2 effectors critical for cardiogenesis, we analyzed the transcriptomes of hand2 loss- and gain-of-function embryonic cardiomyocytes and tested the function of eight candidate genes in vivo; pdgfra was most effective in rescuing myocardial migration in hand2 mutants. Accordingly, we identified a putative Hand2-binding region in the zebrafish pdgfra locus that is important for its expression. In addition, Hand2 loss- and gain-of-function experiments in mouse embryonic stem cell-derived cardiac cells decreased and increased Pdgfra expression, respectively. Altogether, these results further our mechanistic understanding of HAND2 function during early cardiogenesis.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rupal Gehlot
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Samuel J Capon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marga Albu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonas Gretz
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Joshua Bloomekatz
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, University of Mississippi, University, MS, USA
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Dubravka Vucicevic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Sweta Talyan
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Beth A Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Miloslav Sanda
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Scott Allen Lacadie
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
3
|
Rebuzzini P, Rustichelli S, Fassina L, Canobbio I, Zuccotti M, Garagna S. BPA Exposure Affects Mouse Gastruloids Axial Elongation by Perturbing the Wnt/β-Catenin Pathway. Int J Mol Sci 2024; 25:7924. [PMID: 39063166 PMCID: PMC11276681 DOI: 10.3390/ijms25147924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Mammalian embryos are very vulnerable to environmental toxicants (ETs) exposure. Bisphenol A (BPA), one of the most diffused ETs, exerts endocrine-disrupting effects through estro-gen-mimicking and hormone-like properties, with detrimental health effects, including on reproduction. However, its impact during the peri-implantation stages is still unclear. This study, using gastruloids as a 3D stem cell-based in vitro model of embryonic development, showed that BPA exposure arrests their axial elongation when present during the Wnt/β-catenin pathway activation period by β-catenin protein reduction. Gastruloid reshaping might have been impeded by the downregulation of Snail, Slug and Twist, known to suppress E-cadherin expression and to activate the N-cadherin gene, and by the low expression of the N-cadherin protein. Also, the lack of gastruloids elongation might be related to altered exit of BPA-exposed cells from the pluripotency condition and their following differentiation. In conclusion, here we show that the inhibition of gastruloids' axial elongation by BPA might be the result of the concomitant Wnt/β-catenin perturbation, reduced N-cadherin expression and Oct4, T/Bra and Cdx2 altered patter expression, which all together concur in the impaired development of mouse gastruloids.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
| | - Serena Rustichelli
- Laboratory of Biochemistry, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (S.R.); (I.C.)
- University School for Advanced Studies Pavia (IUSS), 27100 Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering (DIII), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy;
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Ilaria Canobbio
- Laboratory of Biochemistry, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (S.R.); (I.C.)
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| |
Collapse
|
4
|
Zhang G, Hou S, Li S, Wang Y, Cui W. Role of STAT3 in cancer cell epithelial‑mesenchymal transition (Review). Int J Oncol 2024; 64:48. [PMID: 38488027 PMCID: PMC11000535 DOI: 10.3892/ijo.2024.5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Since its discovery, the role of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in both normal physiology and the pathology of numerous diseases, including cancer, has been extensively studied. STAT3 is aberrantly activated in different types of cancer, fulfilling a critical role in cancer progression. The biological process, epithelial‑mesenchymal transition (EMT), is indispensable for embryonic morphogenesis. During the development of cancer, EMT is hijacked to confer motility, tumor cell stemness, drug resistance and adaptation to changes in the microenvironment. The aim of the present review was to outline recent advances in knowledge of the role of STAT3 in EMT, which may contribute to the understanding of the function of STAT3 in EMT in various types of cancer. Delineating the underlying mechanisms associated with the STAT3‑EMT signaling axis may generate novel diagnostic and therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Sen Hou
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Shuyue Li
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yequan Wang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wen Cui
- Department of Forensic Pathology, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
5
|
Abnizova I, Stapel C, Boekhorst RT, Lee JTH, Hemberg M. Integrative analysis of transcriptomic and epigenomic data reveals distinct patterns for developmental and housekeeping gene regulation. BMC Biol 2024; 22:78. [PMID: 38600550 PMCID: PMC11005181 DOI: 10.1186/s12915-024-01869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Regulation of transcription is central to the emergence of new cell types during development, and it often involves activation of genes via proximal and distal regulatory regions. The activity of regulatory elements is determined by transcription factors (TFs) and epigenetic marks, but despite extensive mapping of such patterns, the extraction of regulatory principles remains challenging. RESULTS Here we study differentially and similarly expressed genes along with their associated epigenomic profiles, chromatin accessibility and DNA methylation, during lineage specification at gastrulation in mice. Comparison of the three lineages allows us to identify genomic and epigenomic features that distinguish the two classes of genes. We show that differentially expressed genes are primarily regulated by distal elements, while similarly expressed genes are controlled by proximal housekeeping regulatory programs. Differentially expressed genes are relatively isolated within topologically associated domains, while similarly expressed genes tend to be located in gene clusters. Transcription of differentially expressed genes is associated with differentially open chromatin at distal elements including enhancers, while that of similarly expressed genes is associated with ubiquitously accessible chromatin at promoters. CONCLUSION Based on these associations of (linearly) distal genes' transcription start sites (TSSs) and putative enhancers for developmental genes, our findings allow us to link putative enhancers to their target promoters and to infer lineage-specific repertoires of putative driver transcription factors, within which we define subgroups of pioneers and co-operators.
Collapse
Affiliation(s)
- Irina Abnizova
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Carine Stapel
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | - Martin Hemberg
- Wellcome Sanger Institute, Hinxton, UK.
- The Gene Lay Institute of Immunology and Inflammation Brigham & Women's Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
6
|
Ferguson CA, Firulli BA, Zoia M, Osterwalder M, Firulli AB. Identification and characterization of Hand2 upstream genomic enhancers active in developing stomach and limbs. Dev Dyn 2024; 253:215-232. [PMID: 37551791 PMCID: PMC11365009 DOI: 10.1002/dvdy.646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The bHLH transcription factor HAND2 plays important roles in the development of the embryonic heart, face, limbs, and sympathetic and enteric nervous systems. To define how and when HAND2 regulates these developmental systems, requires understanding the transcriptional regulation of Hand2. RESULTS Remarkably, Hand2 is flanked by an extensive upstream gene desert containing a potentially diverse enhancer landscape. Here, we screened the regulatory interval 200 kb proximal to Hand2 for putative enhancers using evolutionary conservation and histone marks in Hand2-expressing tissues. H3K27ac signatures across embryonic tissues pointed to only two putative enhancer regions showing deep sequence conservation. Assessment of the transcriptional enhancer potential of these elements using transgenic reporter lines uncovered distinct in vivo enhancer activities in embryonic stomach and limb mesenchyme, respectively. Activity of the identified stomach enhancer was restricted to the developing antrum and showed expression within the smooth muscle and enteric neurons. Surprisingly, the activity pattern of the limb enhancer did not overlap Hand2 mRNA but consistently yielded a defined subectodermal anterior expression pattern within multiple transgenic lines. CONCLUSIONS Together, these results start to uncover the diverse regulatory potential inherent to the Hand2 upstream regulatory interval.
Collapse
Affiliation(s)
- Chloe A. Ferguson
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Beth A. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
7
|
Morris HT, Bamlet WR, Razidlo GL, Machesky LM. FSCN1 and epithelial mesenchymal transformation transcription factor expression in human pancreatic intraepithelial neoplasia and ductal adenocarcinoma. Pathol Res Pract 2023; 251:154836. [PMID: 37832352 DOI: 10.1016/j.prp.2023.154836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND The actin regulatory protein fascin (FSCN1) and epithelial mesenchymal transition (EMT) transcription factor (TF) SLUG/SNAI2 have been shown to be expressed in PDAC and its precursor lesions (pancreatic intraepithelial neoplasia (PanIN), graded 1-3) in in vitro and murine in vivo studies. Our aim was to investigate the expression of FSCN1 and EMT-TFs and their association with survival in human PanIN and PDAC. METHODS Expression was investigated in silico using TCGA PanCancer Atlas data (177 PDAC samples with mRNA data) and immunohistochemical staining of a tissue microarray (TMA) (59 PDAC patients). RESULTS High FSCN1 expression was associated with poorer overall survival (p = 0.02) in the TCGA data. EMT-TF expression was not associated with survival, however FSCN1 expression correlated with that of the EMT-TFs SLUG/SNAI2 (rho = 0.49, p < 0.001) and TWIST1 (rho = 0.52, p < 0.001). TMA IHC showed low expression of SNAI2 and TWIST1 in normal ductal epithelium, while FSCN1 was not expressed. SNAI2 increased slightly in PanIN1-2, then decreased in higher grade lesions. TWIST1 increased in PanIN2-3 and was retained in PDAC. FSCN1 was increasingly expressed from PanIN2 onwards. SNAI2 and TWIST1 expression positively correlated in all grades of PanIN and PDAC (rho = 0.52, p < 0.001). FSCN1 correlated positively with SNAI2 in PanIN1 (rho = 0.56, p < 0.01). CONCLUSIONS Increased expression of EMT-TFs in low-grade PanIN followed by FSCN1 in PanIN3 and PDAC suggests EMT-TFs may trigger FSCN1 expression and are potential early diagnostic markers. FSCN1 expression correlated with overall survival in PDAC and may have value as a prognostic marker.
Collapse
Affiliation(s)
- Hayley T Morris
- Department of Pathology, University Hospital Crosshouse, Kilmarnock KA2 0BE, United Kingdom; School of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - William R Bamlet
- Division of Clinical Trials & Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Division of Gastroenterology & Hepatology, Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura M Machesky
- School of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, United Kingdom; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
8
|
Bardag Gorce F, Al Dahan M, Narwani K, Terrazas J, Ferrini M, Calhoun CC, Uyanne J, Royce-Flores J, Crum E, Niihara Y. Human Oral Mucosa as a Potentially Effective Source of Neural Crest Stem Cells for Clinical Practice. Cells 2023; 12:2216. [PMID: 37759439 PMCID: PMC10526281 DOI: 10.3390/cells12182216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
We report in this study on the isolation and expansion of neural crest stem cells (NCSCs) from the epithelium of oral mucosa (OM) using reagents that are GMP-certified and FDA-approved for clinical use. Characterization analysis showed that the levels of keratins K2, K6C, K4, K13, K31, and K15-specific to OM epithelial cells-were significantly lower in the experimental NCSCs. While SOX10 was decreased with no statistically significant difference, the earliest neural crest specifier genes SNAI1/2, Ap2a, Ap2c, SOX9, SOX30, Pax3, and Twist1 showed a trend in increased expression in NCSCs. In addition, proteins of Oct4, Nestin and Noth1 were found to be greatly expressed, confirming NCSC multipotency. In conclusion, our study showed that the epithelium of OM contains NCSCs that can be isolated and expanded with clinical-grade reagents to supply the demand for multipotent cells required for clinical applications in regenerative medicine. Supported by Emmaus Medical Inc.
Collapse
Affiliation(s)
- Fawzia Bardag Gorce
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mais Al Dahan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Kavita Narwani
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
| | - Jesus Terrazas
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Monica Ferrini
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Colonya C. Calhoun
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Department of Oral & Maxillofacial Surgery and Hospital Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Jettie Uyanne
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Herman Ostrow School of Dentistry of USC, Los Angeles, CA 90089, USA
| | - Jun Royce-Flores
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Eric Crum
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Yutaka Niihara
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Emmaus Medical, Inc., Torrance, CA 90503, USA
| |
Collapse
|
9
|
Gruss MJ, O’Callaghan C, Donnellan M, Corsi AK. A Twist-Box domain of the C. elegans Twist homolog, HLH-8, plays a complex role in transcriptional regulation. Genetics 2023; 224:iyad066. [PMID: 37067863 PMCID: PMC10411555 DOI: 10.1093/genetics/iyad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
TWIST1 is a basic helix-loop-helix (bHLH) transcription factor in humans that functions in mesoderm differentiation. TWIST1 primarily regulates genes as a transcriptional repressor often through TWIST-Box domain-mediated protein-protein interactions. The TWIST-Box also can function as an activation domain requiring 3 conserved, equidistant amino acids (LXXXFXXXR). Autosomal dominant mutations in TWIST1, including 2 reported in these conserved amino acids (F187L and R191M), lead to craniofacial defects in Saethre-Chotzen syndrome (SCS). Caenorhabditis elegans has a single TWIST1 homolog, HLH-8, that functions in the differentiation of the muscles responsible for egg laying and defecation. Null alleles in hlh-8 lead to severely egg-laying defective and constipated animals due to defects in the corresponding muscles. TWIST1 and HLH-8 share sequence identity in their bHLH regions; however, the domain responsible for the transcriptional activity of HLH-8 is unknown. Sequence alignment suggests that HLH-8 has a TWIST-Box LXXXFXXXR motif; however, its function also is unknown. CRISPR/Cas9 genome editing was utilized to generate a domain deletion and several missense mutations, including those analogous to SCS patients, in the 3 conserved HLH-8 amino acids to investigate their functional role. The TWIST-Box alleles did not phenocopy hlh-8 null mutants. The strongest phenotype detected was a retentive (Ret) phenotype with late-stage embryos in the hermaphrodite uterus. Further, GFP reporters of HLH-8 downstream target genes (arg-1::gfp and egl-15::gfp) revealed tissue-specific, target-specific, and allele-specific defects. Overall, the TWIST-Box in HLH-8 is partially required for the protein's transcriptional activity, and the conserved amino acids contribute unequally to the domain's function.
Collapse
Affiliation(s)
- Michael J Gruss
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Colleen O’Callaghan
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Molly Donnellan
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Ann K Corsi
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| |
Collapse
|
10
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Hoshino Y, Takechi M, Moazen M, Steacy M, Koyabu D, Furutera T, Ninomiya Y, Nuri T, Pauws E, Iseki S. Synchondrosis fusion contributes to the progression of postnatal craniofacial dysmorphology in syndromic craniosynostosis. J Anat 2023; 242:387-401. [PMID: 36394990 PMCID: PMC9919486 DOI: 10.1111/joa.13790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Syndromic craniosynostosis (CS) patients exhibit early, bony fusion of calvarial sutures and cranial synchondroses, resulting in craniofacial dysmorphology. In this study, we chronologically evaluated skull morphology change after abnormal fusion of the sutures and synchondroses in mouse models of syndromic CS for further understanding of the disease. We found fusion of the inter-sphenoid synchondrosis (ISS) in Apert syndrome model mice (Fgfr2S252W/+ ) around 3 weeks old as seen in Crouzon syndrome model mice (Fgfr2cC342Y/+ ). We then examined ontogenic trajectories of CS mouse models after 3 weeks of age using geometric morphometrics analyses. Antero-ventral growth of the face was affected in Fgfr2S252W/+ and Fgfr2cC342Y/+ mice, while Saethre-Chotzen syndrome model mice (Twist1+/- ) did not show the ISS fusion and exhibited a similar growth pattern to that of control littermates. Further analysis revealed that the coronal suture synostosis in the CS mouse models induces only the brachycephalic phenotype as a shared morphological feature. Although previous studies suggest that the fusion of the facial sutures during neonatal period is associated with midface hypoplasia, the present study suggests that the progressive postnatal fusion of the cranial synchondrosis also contributes to craniofacial dysmorphology in mouse models of syndromic CS. These morphological trajectories increase our understanding of the progression of syndromic CS skull growth.
Collapse
Affiliation(s)
- Yukiko Hoshino
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Office of New Drug V, Pharmaceuticals and Medical Devices Agency (PMDA)TokyoJapan
| | - Masaki Takechi
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Anatomy and Life StructureJuntendo University Graduate School of MedicineTokyoJapan
| | - Mehran Moazen
- Department of UCL Mechanical EngineeringUniversity College LondonLondonUK
| | - Miranda Steacy
- Institute of Child Health, Great Ormond StreetUniversity College LondonLondonUK
| | - Daisuke Koyabu
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Research and Development Center for Precision MedicineTsukuba UniversityTsukubaJapan
| | - Toshiko Furutera
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Anatomy and Life StructureJuntendo University Graduate School of MedicineTokyoJapan
| | - Youichirou Ninomiya
- Research Organization of Information and SystemsNational Institute of InformaticsTokyoJapan
| | - Takashi Nuri
- Department of Plastic and Reconstructive SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Erwin Pauws
- Institute of Child Health, Great Ormond StreetUniversity College LondonLondonUK
| | - Sachiko Iseki
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
12
|
Zhao B, Huo W, Yu X, Shi X, Lv L, Yang Y, Kang J, Li S, Wu H. USP13 promotes breast cancer metastasis through FBXL14-induced Twist1 ubiquitination. Cell Oncol (Dordr) 2023; 46:717-733. [PMID: 36732432 DOI: 10.1007/s13402-023-00779-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Epithelial-to-mesenchymal transition (EMT) is an important cause of high mortality in breast cancer. Twist1 is one of the EMT transcription factors (EMT-TFs) with a noticeably short half-life, which is regulated by proteasome degradation pathways. Recent studies have found that USP13 stabilizes several specific oncogenic proteins. As yet, however, the relationship between Twist1 and USP13 has not been investigated. METHODS Co-Immunoprecipitation, GST-pulldown, Western blot, qRT-PCR and immunofluorescence assays were used to investigate the role of USP13 in de-ubiquitination of Twist1. Chromatin immunoprecipitation and Luciferase reporter assays were used to investigate the role of Twist1 in inhibiting USP13 reporter transcription. Scratch wound healing, cell migration and invasion assays, and a mouse lung metastases assay were used to investigate the roles of USP13 and Twist1 in promoting breast cancer metastasis. RESULTS We found that Twist1 can be de-ubiquitinated by USP13. In addition, we found that the protein levels of Twist1 dose-dependently increased with USP13 overexpression, while USP13 knockdown resulted in a decreased expression of endogenous Twist1. We also found that USP13 can directly interact with Twist1 and specifically cleave the K48-linked polyubiquitin chains of Twist1 induced by FBXL14. We found that the effect of USP13 in promoting the migration and invasion capacities of breast cancer cells can at least partly be achieved through its regulation of Twist1, while Twist1 can inhibit the transcriptional activity of USP13. CONCLUSIONS Our data indicate that an interplay between Twist1 and USP13 can form a negative physiological feedback loop. Our findings show that USP13 may play an essential role in breast cancer metastasis by regulating Twist1 and, as such, provide a potential target for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Wei Huo
- Central Hospital affiliated to Dalian University of Technology, Dalian, China
| | - Xiaomin Yu
- Central Hospital affiliated to Dalian University of Technology, Dalian, China
| | - Xiaoxia Shi
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Linlin Lv
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Jie Kang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China.
| |
Collapse
|
13
|
Galdos FX, Xu S, Goodyer WR, Duan L, Huang YV, Lee S, Zhu H, Lee C, Wei N, Lee D, Wu SM. devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data. Nat Commun 2022; 13:5271. [PMID: 36071107 PMCID: PMC9452519 DOI: 10.1038/s41467-022-33045-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
A major informatic challenge in single cell RNA-sequencing analysis is the precise annotation of datasets where cells exhibit complex multilayered identities or transitory states. Here, we present devCellPy a highly accurate and precise machine learning-enabled tool that enables automated prediction of cell types across complex annotation hierarchies. To demonstrate the power of devCellPy, we construct a murine cardiac developmental atlas from published datasets encompassing 104,199 cells from E6.5-E16.5 and train devCellPy to generate a cardiac prediction algorithm. Using this algorithm, we observe a high prediction accuracy (>90%) across multiple layers of annotation and across de novo murine developmental data. Furthermore, we conduct a cross-species prediction of cardiomyocyte subtypes from in vitro-derived human induced pluripotent stem cells and unexpectedly uncover a predominance of left ventricular (LV) identity that we confirmed by an LV-specific TBX5 lineage tracing system. Together, our results show devCellPy to be a useful tool for automated cell prediction across complex cellular hierarchies, species, and experimental systems.
Collapse
Affiliation(s)
- Francisco X Galdos
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, USA
| | - Sidra Xu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - William R Goodyer
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Lauren Duan
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuhsin V Huang
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Soah Lee
- Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Han Zhu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, USA
| | - Carissa Lee
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Wei
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Lee
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, USA.
| |
Collapse
|
14
|
Liu L, Ning X, Wei L, Zhou Y, Zhao L, Ma F, Bai M, Yang X, Wang D, Sun S. Twist1 downregulation of PGC-1α decreases fatty acid oxidation in tubular epithelial cells, leading to kidney fibrosis. Theranostics 2022; 12:3758-3775. [PMID: 35664054 PMCID: PMC9131259 DOI: 10.7150/thno.71722] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/18/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: A deficiency of fatty acid oxidation (FAO) is the metabolic hallmark in proximal tubular cells (PTCs) in renal fibrosis owing to utilization of fatty acids by PTCs as the main energy source. Lipid accumulation may promote lipotoxicity-induced pathological injury in renal tissue. However, the molecular mechanism underlying lipotoxicity and renal tubulointerstitial fibrosis (TIF) remains unclear. Twist1 has been identified to play an essential role in fatty acid metabolism. We hypothesized that Twist1 may regulate FAO in PTCs and consequently facilitate lipotoxicity-induced TIF. Methods: We used hypoxia-induced Twist1 overexpression to incite defective mitochondrial FAO in PTCs, and used renal ischemia-reperfusion or unilateral ureteral obstruction to induce renal injury in mice. We used knockout cells, mice of Twist1, and Harmine to determine the role of Twist1 in FAO and TIF. Results: Overexpression of Twist1 downregulates the transcription of PGC-1α and further inhibits the expression of FAO-associated genes, such as PPARα, CPT1 and ACOX1. Consequently, reduced FAO and increased intracellular lipid droplet accumulation in a human PTC line (HK-2), leads to mitochondrial dysfunction, and production of increased profibrogenic factors. Twist1 knockout mice with renal injury had increased expression of PGC-1α, which restored FAO and obstructed progression of TIF. Strikingly, pharmacological inhibition of Twist1 by using Harmine reduced lipid accumulation and restored FAO in vitro and in vivo. Conclusion: Our findings suggest that Twist1-mediated inhibition of FAO in PTCs results in TIF and suggest that Twist1-targeted inhibition could provide a potential strategy for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Limin Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, Shaanxi, 710032, China.,School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, Shaanxi, 710032, China
| | - Lei Wei
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, Shaanxi, 710032, China
| | - Ying Zhou
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, Shaanxi, 710032, China
| | - Lijuan Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, Shaanxi, 710032, China
| | - Feng Ma
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, Shaanxi, 710032, China
| | - Ming Bai
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, Shaanxi, 710032, China
| | - Xiaoxia Yang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, Shaanxi, 710032, China
| | - Di Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, Shaanxi, 710032, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
15
|
Abstract
Atonal homologue 8 (atoh8) is a basic helix-loop-helix transcription factor expressed in a variety of embryonic tissues. While several studies have implicated atoh8 in various developmental pathways in other species, its role in zebrafish development remains uncertain. So far, no studies have dealt with an in-depth in situ analysis of the tissue distribution of atoh8 in embryonic zebrafish. We set out to pinpoint the exact location of atoh8 expression in a detailed spatio-temporal analysis in zebrafish during the first 24 h of development (hpf). To our surprise, we observed transcription from pre-segmentation stages in the paraxial mesoderm and during the segmentation stages in the somitic sclerotome and not—as previously reported—in the myotome. With progressing maturation of the somites, the restriction of atoh8 to the sclerotomal compartment became evident. Double in situ hybridisation with atoh8 and myoD revealed that both genes are expressed in the somites at coinciding developmental stages; however, their domains do not spatially overlap. A second domain of atoh8 expression emerged in the embryonic brain in the developing cerebellum and hindbrain. Here, we observed a specific expression pattern which was again in contrast to the previously published suggestion of atoh8 transcription in neural crest cells. Our findings point towards a possible role of atoh8 in sclerotome, cerebellum and hindbrain development. More importantly, the results of this expression analysis provide new insights into early sclerotome development in zebrafish—a field of research in developmental biology which has not received much attention so far.
Collapse
|
16
|
Kang E, Seo J, Yoon H, Cho S. The Post-Translational Regulation of Epithelial-Mesenchymal Transition-Inducing Transcription Factors in Cancer Metastasis. Int J Mol Sci 2021; 22:3591. [PMID: 33808323 PMCID: PMC8037257 DOI: 10.3390/ijms22073591] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is generally observed in normal embryogenesis and wound healing. However, this process can occur in cancer cells and lead to metastasis. The contribution of EMT in both development and pathology has been studied widely. This transition requires the up- and down-regulation of specific proteins, both of which are regulated by EMT-inducing transcription factors (EMT-TFs), mainly represented by the families of Snail, Twist, and ZEB proteins. This review highlights the roles of key EMT-TFs and their post-translational regulation in cancer metastasis.
Collapse
Affiliation(s)
| | | | | | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (E.K.); (J.S.); (H.Y.)
| |
Collapse
|
17
|
Zhao F, Grimm SA, Yao HHC. Molecular Actions Underlying Wolffian Duct Regression in Sexual Differentiation of Murine Reproductive Tracts. Sex Dev 2021; 14:51-59. [PMID: 33684916 PMCID: PMC8328876 DOI: 10.1159/000513878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sexually dimorphic establishment of the reproductive tract system requires sex-specific regression of the Wolffian duct and Müllerian duct in the mesonephros. In an XX embryo, the Wolffian duct regresses under the control of the mesenchymal transcription factor COUP-TFII. To understand cellular and molecular actions underlying Wolffian duct regression, we performed transcriptomic analyses of XX mesonephroi with or without Coup-tfII and genome-wide analysis of COUP-TFII chromatin occupancy in XX mesonephroi. The integrative analysis of COUP-TFII genome-wide binding and transcriptomic analysis revealed the suppression of muscle differentiation and extracellular matrix genes by COUP-TFII and identified a group of potential transcriptional partners of COUP-TFII in the mesenchyme that potentially facilitate Wolffian duct regression. These findings provide insights into the molecular action of COUP-TFII in the Wolffian duct mesenchyme and identify a list of biologically relevant candidate genes and pathways for future functional analyses in sexual differentiation of reproductive tracts.
Collapse
Affiliation(s)
- Fei Zhao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Humphrey H-C Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA,
| |
Collapse
|
18
|
Crespo NE, Torres-Bracero A, Renta JY, Desnick RJ, Cadilla CL. Expression Profiling Identifies TWIST2 Target Genes in Setleis Syndrome Patient Fibroblast and Lymphoblast Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1997. [PMID: 33669496 PMCID: PMC7922891 DOI: 10.3390/ijerph18041997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
Background: Setleis syndrome (SS) is a focal facial dermal dysplasia presenting with bilateral temporal skin lesions, eyelash abnormalities and absent meibomian glands. SS is a rare autosomal recessive disorder caused by mutations in the TWIST2 gene, which codes for a transcription factor of the bHLH family known to be involved in skin and facial development. Methods: We obtained gene expression profiles by microarray analyses from control and SS patient primary skin fibroblast and lymphoblastoid cell lines. Results: Out of 983 differentially regulated genes in fibroblasts (fold change ≥ 2.0), 479 were down-regulated and 509 were up-regulated, while in lymphoblasts, 1248 genes were down-regulated and 73 up-regulated. RT-PCR reactions confirmed altered expression of selected genes. Conclusions: TWIST2 is described as a repressor, but expression profiling suggests an important role in gene activation as well, as evidenced by the number of genes that are down-regulated, with a much higher proportion of down-regulated genes found in lymphoblastoid cells from an SS patient. As expected, both types of cell types showed dysregulation of cytokine genes. These results identify potential TWIST2 target genes in two important cell types relevant to rare disorders caused by mutations in this bHLH gene.
Collapse
Affiliation(s)
- Noe E. Crespo
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (N.E.C.); (A.T.-B.); (J.Y.R.)
| | - Alexandra Torres-Bracero
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (N.E.C.); (A.T.-B.); (J.Y.R.)
| | - Jessicca Y. Renta
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (N.E.C.); (A.T.-B.); (J.Y.R.)
| | - Robert J. Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Carmen L. Cadilla
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (N.E.C.); (A.T.-B.); (J.Y.R.)
| |
Collapse
|
19
|
Shalini V, Bhaduri U, Ravikkumar AC, Rengarajan A, Satyanarayana RMR. Genome-wide occupancy reveals the localization of H1T2 (H1fnt) to repeat regions and a subset of transcriptionally active chromatin domains in rat spermatids. Epigenetics Chromatin 2021; 14:3. [PMID: 33407810 PMCID: PMC7788777 DOI: 10.1186/s13072-020-00376-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background H1T2/H1FNT is a germ cell-specific linker histone variant expressed during spermiogenesis specifically in round and elongating spermatids. Infertile phenotype of homozygous H1T2 mutant male mice revealed the essential function of H1T2 for the DNA condensation and histone-to-protamine replacement in spermiogenesis. However, the mechanism by which H1T2 imparts the inherent polarity within spermatid nucleus including the additional protein partners and the genomic domains occupied by this linker histone are unknown. Results Sequence analysis revealed the presence of Walker motif, SR domains and putative coiled-coil domains in the C-terminal domain of rat H1T2 protein. Genome-wide occupancy analysis using highly specific antibody against the CTD of H1T2 demonstrated the binding of H1T2 to the LINE L1 repeat elements and to a significant percentage of the genic regions (promoter-TSS, exons and introns) of the rat spermatid genome. Immunoprecipitation followed by mass spectrometry analysis revealed the open chromatin architecture of H1T2 occupied chromatin encompassing the H4 acetylation and other histone PTMs characteristic of transcriptionally active chromatin. In addition, the present study has identified the interacting protein partners of H1T2-associated chromatin mainly as nucleo-skeleton components, RNA-binding proteins and chaperones. Conclusions Linker histone H1T2 possesses unique domain architecture which can account for the specific functions associated with chromatin remodeling events facilitating the initiation of histone to transition proteins/protamine transition in the polar apical spermatid genome. Our results directly establish the unique function of H1T2 in nuclear shaping associated with spermiogenesis by mediating the interaction between chromatin and nucleo-skeleton, positioning the epigenetically specialized chromatin domains involved in transcription coupled histone replacement initiation towards the apical pole of round/elongating spermatids.
Collapse
Affiliation(s)
- Vasantha Shalini
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Utsa Bhaduri
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Life Sciences, University of Trieste, Trieste, Italy.,European Union's H2020 TRIM-NET ITN, Marie Sklodowska-Curie Actions (MSCA), Leiden, The Netherlands
| | - Anjhana C Ravikkumar
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Anusha Rengarajan
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Rao M R Satyanarayana
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
20
|
Babaei G, Aziz SGG, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother 2020; 133:110909. [PMID: 33227701 DOI: 10.1016/j.biopha.2020.110909] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/29/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and Cancer stem-like cells (CSCs) are major factors contributing to the metastasis of cancer cells. Consequently, the signaling pathways involved in both processes are appropriate therapeutic targets in the treatment of metastasis. Autophagy is another process that has recently attracted the attention of many researchers; depending on the type of cancer and tissue and the stage of cancer, this process can play a dual role in the development of cancer cells. Studies on cancer cells have shown that different signaling pathways are involved in all three processes, namely, cancer stem cells, autophagy, and EMT. The purpose of this study was to investigate and elucidate the relationship between the effective signaling pathways in all three processes, which could play an effective role in determining appropriate therapeutic goals.
Collapse
Affiliation(s)
- Ghader Babaei
- Department of Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | | | - Nasrin Zare Zavieyh Jaghi
- Department of Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran
| |
Collapse
|
21
|
Suzuki N, Ochi H. Regeneration enhancers: A clue to reactivation of developmental genes. Dev Growth Differ 2020; 62:343-354. [PMID: 32096563 PMCID: PMC7383998 DOI: 10.1111/dgd.12654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
During tissue and organ regeneration, cells initially detect damage and then alter nuclear transcription in favor of tissue/organ reconstruction. Until recently, studies of tissue regeneration have focused on the identification of relevant genes. These studies show that many developmental genes are reused during regeneration. Concurrently, comparative genomics studies have shown that the total number of genes does not vastly differ among vertebrate taxa. Moreover, functional analyses of developmental genes using various knockout/knockdown techniques demonstrated that the functions of these genes are conserved among vertebrates. Despite these data, the ability to regenerate damaged body parts varies widely between animals. Thus, it is important to determine how regenerative transcriptional programs are triggered and why animals with low regenerative potential fail to express developmental genes after injury. Recently, we discovered relevant enhancers and named them regeneration signal-response enhancers (RSREs) after identifying their activation mechanisms in a Xenopus laevis transgenic system. In this review, we summarize recent studies of injury/regeneration-associated enhancers and then discuss their mechanisms of activation.
Collapse
Affiliation(s)
- Nanoka Suzuki
- Amphibian Research CenterHiroshima UniversityHigashi‐HiroshimaJapan
| | - Haruki Ochi
- Institute for Promotion of Medical Science ResearchFaculty of MedicineYamagata UniversityYamagataJapan
| |
Collapse
|
22
|
TWIST1 Homodimers and Heterodimers Orchestrate Lineage-Specific Differentiation. Mol Cell Biol 2020; 40:MCB.00663-19. [PMID: 32179550 DOI: 10.1128/mcb.00663-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/27/2020] [Indexed: 01/09/2023] Open
Abstract
The extensive array of basic helix-loop-helix (bHLH) transcription factors and their combinations as dimers underpin the diversity of molecular function required for cell type specification during embryogenesis. The bHLH factor TWIST1 plays pleiotropic roles during development. However, which combinations of TWIST1 dimers are involved and what impact each dimer imposes on the gene regulation network controlled by TWIST1 remain elusive. In this work, proteomic profiling of human TWIST1-expressing cell lines and transcriptome analysis of mouse cranial mesenchyme have revealed that TWIST1 homodimers and heterodimers with TCF3, TCF4, and TCF12 E-proteins are the predominant dimer combinations. Disease-causing mutations in TWIST1 can impact dimer formation or shift the balance of different types of TWIST1 dimers in the cell, which may underpin the defective differentiation of the craniofacial mesenchyme. Functional analyses of the loss and gain of TWIST1-E-protein dimer activity have revealed previously unappreciated roles in guiding lineage differentiation of embryonic stem cells: TWIST1-E-protein heterodimers activate the differentiation of mesoderm and neural crest cells, which is accompanied by the epithelial-to-mesenchymal transition. At the same time, TWIST1 homodimers maintain the stem cells in a progenitor state and block entry to the endoderm lineage.
Collapse
|
23
|
An ENU-induced mutation in Twist1 transactivation domain causes hindlimb polydactyly with complete penetrance and dominant-negatively impairs E2A-dependent transcription. Sci Rep 2020; 10:2501. [PMID: 32051525 PMCID: PMC7016005 DOI: 10.1038/s41598-020-59455-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/29/2020] [Indexed: 11/08/2022] Open
Abstract
Twist1 encodes a basic helix-loop-helix transcription factor (TF), which forms homodimer or heterodimer with other TFs, like E2A, to regulate target genes' expression. Mutations in TWIST1 are associated with Saethre-Chotzen syndrome (SCS), a rare congenital disorder characterized with osteogenesis abnormalities. However, how dysfunction of TWIST1 leads to SCS is still largely unknown. Here, using an unbiased ENU-induced mutagenesis screening, we identified a novel Twist1 mutation and the mutant mouse phenocopies some features of SCS in a dominant manner. Physically, our mutation p.F191S lies at the edge of a predicted α-helix in Twist1 transactivation (TA) domain. Adjacent to F191, a consecutive three-residue (AFS) has been hit by 3 human and 2 mouse disease-associated mutations, including ours. Unlike previously reported mouse null and p.S192P alleles that lead to hindlimb polydactyly with incomplete penetrance but a severe craniofacial malformation, our p.F191S causes the polydactyly (84.2% bilateral and 15.8% unilateral) with complete penetrance but a mild craniofacial malformation. Consistent with the higher penetrance, p.F191S has stronger impairment on E2A-dependent transcription than p.S192P. Although human p.A186T and mouse p.S192P disease mutations are adjacent to ours, these three mutations function differently to impair the E2A-dependent transcription. Unlike p.A186T and p.S192S that disturb local protein conformation and unstabilize the mutant proteins, p.F191S keeps the mutant protein stable and its interaction with E2A entire. Therefore, we argue that p.F191S we identified acts in a dominant-negative manner to impair E2A-dependent transcription and to cause the biological consequences. In addition, the mutant mouse we provided here could be an additional and valuable model for better understanding the disease mechanisms underlying SCS caused by TWIST1 dysfunction.
Collapse
|
24
|
Ren J, Crowley SD. Twist1: A Double-Edged Sword in Kidney Diseases. KIDNEY DISEASES 2020; 6:247-257. [PMID: 32903940 DOI: 10.1159/000505188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022]
Abstract
Background Twist1 is a basic helix-loop-helix domain containing transcription factor that regulates cell differentiation, migration, proliferation, survival, and inflammatory responses by transcriptionally regulating a wide range of downstream target genes. Its homologous protein, Twist2, shares many structural and functional similarities with Twist1. Summary Accumulating evidence from both preclinical and clinical studies suggests that Twist1 is a pivotal regulator of several forms of renal disease. Twist1 is persistently activated following renal insults, particularly in chronic kidney diseases, and contributes to the renal inflammatory responses, tubular cell transformation programs, and possibly fibroblast activation, all of which are involved in the initiation and progression of kidney diseases. Key Message This review will specifically focus on Twist1 and outline our understanding of its functions in kidney disorders along with the introduction of Twist2 where pertinent. The thorough knowledge of Twist1's actions in the pathogenesis of kidney diseases should facilitate the development of novel therapeutics for kidney injury.
Collapse
Affiliation(s)
- Jiafa Ren
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina, USA
| |
Collapse
|
25
|
Wang Y, Shi L, Li J, Wang H, Yang H. Involvement of twist in NNK exposure-promoted lung cancer cell migration and invasion. Toxicol In Vitro 2019; 63:104740. [PMID: 31759049 DOI: 10.1016/j.tiv.2019.104740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 01/06/2023]
Abstract
Nicotine-derived nitrosamine ketone (NNK), one of the potent carcinogens in cigarette smoke, has been reported to facilitate lung cancer cell migration and invasion. Twist plays an important role in regulating migration and invasion of lung cancer cells. However, it is unclear whether Twist is implicated in NNK-induced migration and invasion of lung cancer cells. Lung cancer cells were exposed to various doses of NNK for four weeks. The expression levels of protein and mRNA were detected by western blot and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Small interfering RNA (siRNA) was applied to knock down the expression of Twist. The ability of cell migration and invasion was evaluated by wound-healing assay and Transwell invasion assay. NNK exposure increased the levels of Twist protein and mRNA expression in lung cancer cells compared to solvent control. Lung cancer cells exposed to NNK exhibited higher ability of migration and invasion than those with solvent control did. Twist silencing could block NNK-promoted migration and invasion of lung cancer cells. NNK exposure increased the expression levels of N-cadherin mRNA and decreased the expression levels of E-cadherin mRNA in lung cancer cells, which could be modulated by Twist silencing. In conclusion, Twist was involved in NNK-induced migration and invasion of lung cancer cells.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China.
| | - Li Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangmin Li
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China
| | - Haiyu Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
26
|
Wang BT, Yu XY, Zhu YJ, Zhuang M, Zhang ZM, Jin L, Jin FJ. Research progress on the basic helix-loop-helix transcription factors of Aspergillus species. ADVANCES IN APPLIED MICROBIOLOGY 2019; 109:31-59. [PMID: 31677646 DOI: 10.1016/bs.aambs.2019.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Basic helix-loop-helix (bHLH) proteins belong to a superfamily of transcription factors, and they are widely distributed in eukaryotic organisms. Members of the bHLH protein family can form homodimers or heterodimers with themselves or other family members, and they often play bifunctional roles as activators and repressors to uniquely regulate the transcription of downstream target genes. The bHLH transcription factors are usually involved in developmental processes, including cellular proliferation and differentiation. Therefore, these transcription factors often play crucial roles in regulating growth, development, and differentiation in eukaryotes. Aspergillus species fungi are widely distributed in the environment, and they play important roles not only in the decomposition of organic matter as an important environmental microorganism but also in the fermentation and the food processing industry. Furthermore, some pathogenic fungi, such as Aspergillus flavus and Aspergillus fumigatus, affect the environment and human health in important ways. Recent research has shown that some Aspergillus bHLH proteins are significantly involved in the regulation of asexual and sexual reproduction, secondary metabolite production, carbohydrate metabolism, conidial and sclerotial production, among other processes. Here, we review the regulatory mechanisms and biological functions of the bHLH transcription factors of the Aspergillus genus to provide a theoretical reference for further study on the growth and development of Aspergillus and the functions of bHLHs.
Collapse
Affiliation(s)
- Bao-Teng Wang
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xing-Ye Yu
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yun-Jia Zhu
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Miao Zhuang
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhi-Min Zhang
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Long Jin
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
27
|
Zhou L, Li Q, Chen A, Liu N, Chen N, Chen X, Zhu L, Xia B, Gong Y, Chen X. KLF15-activating Twist2 ameliorated hepatic steatosis by inhibiting inflammation and improving mitochondrial dysfunction via NF-κB-FGF21 or SREBP1c-FGF21 pathway. FASEB J 2019; 33:14254-14269. [PMID: 31648561 DOI: 10.1096/fj.201901347rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Twist-related protein 2 (TWIST2) is identified as a basic helix-loop-helix (b-HLH) transcription repressor by dimerizing with other b-HLH proteins. The significance of TWIST2 has been emphasized in various tumors; however, few studies report its functions in metabolism and metabolic diseases. Here we aimed to explore the novel role and regulation mechanism of TWIST2 in hepatic steatosis. Our results showed that Twist2 knockdown caused mice obesity, insulin resistance, and hepatic steatosis, which were accompanied with inflammation, endoplasmic reticulum stress, and mitochondrial dysfunction. In vitro, TWIST2 overexpression ameliorated hepatocellular steatosis, inhibited inflammation, and improved mitochondrial content and function with a fibroblast growth factor 21 (FGF21)-dependent pattern. NF-κB negatively regulated FGF21 transcription by directly binding to FGF21 promoter DNA, which was eliminated by TWIST2 overexpression by inhibiting NF-κB expression and translocation to nucleus. TWIST2 overexpression decreased intracellular reactive oxygen species level, increased mitochondrial DNA and biogenesis, and enhanced ATP production and antioxidation ability. Additionally, TWIST2 expression was repressed by insulin-targeting sterol regulatory element-binding protein 1c (SREBP1c) and forkhead box protein O1 and was enhanced by dexamethasone targeting Krüppel-like factor 15, which directly interacted with Twist2 promoter DNA. Together, our studies identify an important role and regulation mechanism of TWIST2 in maintaining hepatic homeostasis by ameliorating steatosis, inflammation, and oxidative stress via the NF-κB-FGF21 or SREBP1c-FGF21 pathway, which may provide a new therapeutic scheme for nonalcoholic fatty liver disease.-Zhou, L., Li, Q., Chen, A., Liu, N., Chen, N., Chen, X., Zhu, L., Xia, B., Gong, Y., Chen, X. KLF15-activating Twist2 ameliorated hepatic steatosis by inhibiting inflammation and improving mitochondrial dysfunction via NF-κB-FGF21 or SREBP1c-FGF21 pathway.
Collapse
Affiliation(s)
- Lulu Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qinjin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ao Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Na Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ning Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojun Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Benzeng Xia
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Gong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Affiliation(s)
- Haixia Niu
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati.,Hoxworth Blood Center, University of Cincinnati Academic Health Center, OH, USA
| |
Collapse
|
29
|
Transcriptional Landscape of PARs in Epithelial Malignancies. Int J Mol Sci 2018; 19:ijms19113451. [PMID: 30400241 PMCID: PMC6275037 DOI: 10.3390/ijms19113451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/22/2018] [Accepted: 10/27/2018] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of cell receptors, act as important regulators of diverse signaling pathways. Our understanding of the impact of GPCRs in tumors is emerging, yet there is no therapeutic platform based on GPCR driver genes. As cancer progresses, it disrupts normal epithelial organization and maintains the cells outside their normal niche. The dynamic and flexible microenvironment of a tumor contains both soluble and matrix-immobilized proteases that contribute to the process of cancer advancement. An example is the activation of cell surface protease-activated receptors (PARs). Mammalian PARs are a subgroup of GPCRs that form a family of four members, PAR1–4, which are uniquely activated by proteases found in the microenvironment. PAR1 and PAR2 play central roles in tumor biology, and PAR3 acts as a coreceptor. The significance of PAR4 in neoplasia is just beginning to emerge. PAR1 has been shown to be overexpressed in malignant epithelia, in direct correlation with tumor aggressiveness, but there is no expression in normal epithelium. In this review, the involvement of key transcription factors such as Egr1, p53, Twist, AP2, and Sp1 that control PAR1 expression levels specifically, as well as hormone transcriptional regulation by both estrogen receptors (ER) and androgen receptors (AR) are discussed. The cloning of the human protease-activated receptor 2; Par2 (hPar2) promoter region and transcriptional regulation of estrogen (E2) via binding of the E2–ER complex to estrogen response elements (ERE) are shown. In addition, evidence that TEA domain 4 (TEAD4) motifs are present within the hPar2 promoter is presented since the YAP oncogene, which plays a central part in tumor etiology, acts via the TEAD4 transcription factor. As of now, no information is available on regulation of the hPar3 promoter. With regard to hPar4, only data showing CpG methylation promoter regulation is available. Characterization of the PAR transcriptional landscape may identify powerful targets for cancer therapies.
Collapse
|
30
|
George RM, Firulli AB. Hand Factors in Cardiac Development. Anat Rec (Hoboken) 2018; 302:101-107. [PMID: 30288953 DOI: 10.1002/ar.23910] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/01/2018] [Accepted: 02/15/2018] [Indexed: 12/23/2022]
Abstract
Congenital heart defects account for 1% of infant mortality and 10% of in utero deaths. As the vertebrate embryo develops, multiple tissue types develop in tandem to morphologically pattern the functional heart. Underlying cardiac development is a network of transcription factors known to tightly control these morphological events. Members of the Twist family of basic helix-loop-helix transcription factors, Hand1 and Hand2, are essential to this process. The expression patterns and functional role of Hand factors in neural crest cells, endocardium, myocardium, and epicardium is indicative of their importance during cardiogenesis; however, to date, an extensive understanding of the transcriptional targets of Hand proteins and their overall mechanism of action remain unclear. In this review, we summarize the recent findings that further outline the crucial functions of Hand factors during heart development and in post-natal heart function. Anat Rec, 302:101-107, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
31
|
Firulli BA, Toolan KP, Harkin J, Millar H, Pineda S, Firulli AB. The HAND1 frameshift A126FS mutation does not cause hypoplastic left heart syndrome in mice. Cardiovasc Res 2018; 113:1732-1742. [PMID: 29016838 DOI: 10.1093/cvr/cvx166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
Aims To test if a human Hand1 frame shift mutation identified in human samples is causative of hypoplastic left heart syndrome (HLHS). Methods and results HLHS is a poorly understood single ventricle congenital heart defect that affects two to three infants in every 10 000 live births. The aetiologies of HLHS are largely unknown. The basic helix-loop-helix transcription factor HAND1 is required for normal heart development. Interrogation of HAND1 sequence from fixed HLHS tissues identified a somatic frame-shift mutation at Alanine 126 (NP_004812.1 p.Ala126Profs13X defined as Hand1A126fs). Hand1A126fs creates a truncated HAND1 protein that predictively functions as dominant negative. To determine if this mutation is causative of HLHS, we engineered a conditional Hand1A126fs mouse allele. Activation of this allele with Nkx2.5Cre results in E14.5 lethality accompanied by cardiac outflow tract and intraventricular septum abnormalities. Using αMHC-Cre or Mef2CAHF-Cre to activate Hand1A126fs results in reduced phenotype and limited viability. Left ventricles of Hand1A126FS mutant mice are not hypoplastic. Conclusions Somatically acquired Hand1A126FS mutation is not causative of HLHS. Hand1A126FS mutation does exhibit embryonic lethal cardiac defects that reflect a dominant negative function supporting the critical role of Hand1 in cardiogenesis.
Collapse
Affiliation(s)
- Beth A Firulli
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Kevin P Toolan
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Jade Harkin
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Hannah Millar
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Santiago Pineda
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
32
|
Gou W, Zhou X, Liu Z, Wang L, Shen J, Xu X, Li Z, Zhai X, Zuo D, Wu Y. CD74-ROS1 G2032R mutation transcriptionally up-regulates Twist1 in non-small cell lung cancer cells leading to increased migration, invasion, and resistance to crizotinib. Cancer Lett 2018; 422:19-28. [DOI: 10.1016/j.canlet.2018.02.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/16/2018] [Accepted: 02/20/2018] [Indexed: 01/18/2023]
|
33
|
Ning X, Zhang K, Wu Q, Liu M, Sun S. Emerging role of Twist1 in fibrotic diseases. J Cell Mol Med 2018; 22:1383-1391. [PMID: 29314610 PMCID: PMC5824384 DOI: 10.1111/jcmm.13465] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/20/2017] [Indexed: 01/04/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a pathological process that occurs in a variety of diseases, including organ fibrosis. Twist1, a basic helix–loop–helix transcription factor, is involved in EMT and plays significant roles in various fibrotic diseases. Suppression of the EMT process represents a promising approach for the treatment of fibrotic diseases. In this review, we discuss the roles and the underlying molecular mechanisms of Twist1 in fibrotic diseases, including those affecting kidney, lung, skin, oral submucosa and other tissues. We aim at providing new insight into the pathogenesis of various fibrotic diseases and facilitating the development of novel diagnostic and therapeutic methods for their treatment.
Collapse
Affiliation(s)
- Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qingfeng Wu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Minna Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Wei WF, Zhou CF, Wu XG, He LN, Wu LF, Chen XJ, Yan RM, Zhong M, Yu YH, Liang L, Wang W. MicroRNA-221-3p, a TWIST2 target, promotes cervical cancer metastasis by directly targeting THBS2. Cell Death Dis 2017; 8:3220. [PMID: 29242498 PMCID: PMC5870596 DOI: 10.1038/s41419-017-0077-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/26/2017] [Accepted: 09/27/2017] [Indexed: 01/05/2023]
Abstract
MicroRNAs have implicated in the relapse and metastasis of cervical cancer, which is the leading cause of cervical cancer-related mortality. However, the underlying molecular mechanisms need further elucidation. Our present study revealed that miR-221-3p is transcriptionally promoted in metastatic cervical cancer tissues compared with non-metastatic cervical cancer tissues. Forced overexpression of miR-221-3p facilitated EMT and promoted cell migration and invasion in vitro and lymphatic metastasis in vivo. Twist homolog 2 (TWIST2) was found to be a key transcription factor binding to the promoter of miR-221-3p. Inhibitors of miR-221-3p drastically reduced the induction of EMT and decreased cell migration and invasion mediated by TWIST2. By combined computational and experimental approaches, THBS2 was recognized to be an important downstream target gene of miR-221-3p. In cervical cancer tissues, especially with lymphatic metastasis, miR-221-3p and TWIST2 were increased and THBS2 was decreased, suggesting that TWIST2 induces miR-221-3p expression and consequently suppresses its direct target THBS2 in lymphatic metastasis CC. Our findings uncover a mechanistic role for miR-221-3p in lymph node metastasis, suggesting that miR-221-3p is upregulated by the transcription factor TWIST2 and downregulates its target THBS2, which may potentially promote lymph node metastasis in cervical cancer.
Collapse
Affiliation(s)
- Wen-Fei Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Chen-Fei Zhou
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Li-Na He
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Lan-Fang Wu
- Department of Obstetrics and Gynecology, Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiao-Jing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Rui-Ming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yan-Hong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Li Liang
- Department of pathology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
35
|
Prakash S, Borreguero LJJ, Sylva M, Flores Ruiz L, Rezai F, Gunst QD, de la Pompa JL, Ruijter JM, van den Hoff MJB. Deletion of Fstl1 (Follistatin-Like 1) From the Endocardial/Endothelial Lineage Causes Mitral Valve Disease. Arterioscler Thromb Vasc Biol 2017; 37:e116-e130. [PMID: 28705792 DOI: 10.1161/atvbaha.117.309089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/22/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Fstl1 (Follistatin-like 1) is a secreted protein that is expressed in the atrioventricular valves throughout embryonic development, postnatal maturation, and adulthood. In this study, we investigated the loss of Fstl1 in the endocardium/endothelium and their derived cells. APPROACH AND RESULTS We conditionally ablated Fstl1 from the endocardial lineage using a transgenic Tie2-Cre mouse model. These mice showed a sustained Bmp and Tgfβ signaling after birth. This resulted in ongoing proliferation and endocardial-to-mesenchymal transition and ultimately in deformed nonfunctional mitral valves and a hypertrophic dilated heart. Echocardiographic and electrocardiographic analyses revealed that loss of Fstl1 leads to mitral regurgitation and left ventricular diastolic dysfunction. Cardiac function gradually deteriorated resulting in heart failure with preserved ejection fraction and death of the mice between 2 and 4 weeks after birth. CONCLUSIONS We report on a mouse model in which deletion of Fstl1 from the endocardial/endothelial lineage results in deformed mitral valves, which cause regurgitation, heart failure, and early cardiac death. The findings provide a potential molecular target for the clinical research into myxomatous mitral valve disease.
Collapse
Affiliation(s)
- Stuti Prakash
- From the Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (S.P., M.S., F.R., Q.D.G., J.M.R., M.J.B.v.d.H.); Cardiovascular Imaging Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (L.J.J.B., L.F.R.); and Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (J.-L.d.l.P.)
| | - Luis J J Borreguero
- From the Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (S.P., M.S., F.R., Q.D.G., J.M.R., M.J.B.v.d.H.); Cardiovascular Imaging Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (L.J.J.B., L.F.R.); and Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (J.-L.d.l.P.)
| | - Marc Sylva
- From the Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (S.P., M.S., F.R., Q.D.G., J.M.R., M.J.B.v.d.H.); Cardiovascular Imaging Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (L.J.J.B., L.F.R.); and Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (J.-L.d.l.P.)
| | - Lorena Flores Ruiz
- From the Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (S.P., M.S., F.R., Q.D.G., J.M.R., M.J.B.v.d.H.); Cardiovascular Imaging Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (L.J.J.B., L.F.R.); and Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (J.-L.d.l.P.)
| | - Fereshte Rezai
- From the Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (S.P., M.S., F.R., Q.D.G., J.M.R., M.J.B.v.d.H.); Cardiovascular Imaging Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (L.J.J.B., L.F.R.); and Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (J.-L.d.l.P.)
| | - Quinn D Gunst
- From the Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (S.P., M.S., F.R., Q.D.G., J.M.R., M.J.B.v.d.H.); Cardiovascular Imaging Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (L.J.J.B., L.F.R.); and Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (J.-L.d.l.P.)
| | - José-Luis de la Pompa
- From the Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (S.P., M.S., F.R., Q.D.G., J.M.R., M.J.B.v.d.H.); Cardiovascular Imaging Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (L.J.J.B., L.F.R.); and Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (J.-L.d.l.P.)
| | - Jan M Ruijter
- From the Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (S.P., M.S., F.R., Q.D.G., J.M.R., M.J.B.v.d.H.); Cardiovascular Imaging Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (L.J.J.B., L.F.R.); and Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (J.-L.d.l.P.)
| | - Maurice J B van den Hoff
- From the Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (S.P., M.S., F.R., Q.D.G., J.M.R., M.J.B.v.d.H.); Cardiovascular Imaging Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (L.J.J.B., L.F.R.); and Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigación Cardiovascular, Madrid, Spain (J.-L.d.l.P.).
| |
Collapse
|
36
|
Lee BH, Aggarwal A, Slavotinek A, Edelmann L, Chen B, Desnick RJ. The focal facial dermal dysplasias: phenotypic spectrum and molecular genetic heterogeneity. J Med Genet 2017; 54:585-590. [PMID: 28663233 DOI: 10.1136/jmedgenet-2017-104561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 11/03/2022]
Abstract
Focal facial dermal dysplasias (FFDDs) are rare genetic/developmental disorders characterised by bilateral 'scar-like' facial lesions. Four subtypes are classified by the bitemporal (FFDD1-3) or preauricular (FFDD4) lesion location. FFDD1-3 are differentiated by additional facial abnormalities and inheritance patterns. Although the genetic defects causing FFDD1 and FFDD2 remain unknown, recent studies identified defects causing FFDD3 and FFDD4. Here, the clinical phenotypes, genetic defects and inheritance of the four FFDD subtypes are described. In addition, the overlapping facial abnormalities in FFDD3 and two other genetic disorders, Ablepharon macrostomia syndrome and Barber-Say syndrome, are noted. Familiarity with the FFDDs by clinicians will further delineate the phenotypes and genetic/developmental defects of these dermal facial disorders.
Collapse
Affiliation(s)
- Beom Hee Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Aneel Aggarwal
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anne Slavotinek
- Department of Pediatrics, UCSF School of Medicine, San Francisco, USA
| | - Lisa Edelmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Brenden Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
37
|
Mammoto T, Jiang A, Jiang E, Mammoto A. Role of Twist1 Phosphorylation in Angiogenesis and Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 55:633-644. [PMID: 27281171 DOI: 10.1165/rcmb.2016-0012oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive lung disease in which microvessel remodeling is deregulated. However, the mechanism by which deregulated angiogenesis contributes to the pathogenesis of pulmonary fibrosis remains unclear. Here we show that a transcription factor, Twist1, controls angiogenesis through the angiopoietin-Tie2 pathway, and that deregulation of this mechanism mediates pathological angiogenesis and collagen deposition in a bleomycin-induced mouse pulmonary fibrosis model. Twist1 knockdown decreases Tie2 expression and attenuates endothelial cell sprouting in vitro. Angiogenesis is also inhibited in fibrin gel implanted on Tie2-specific Twist1 conditional knockout (Twist1fl/fl/Tie2-cre) mouse lung in vivo. Inhibition of Twist1 phosphorylation at the serine 42 (Ser42) residue by treating endothelial cells with a mutant construct (Twist1S42A) decreases Tie2 expression and attenuates angiogenesis compared with full-length Twist1 in vitro and in vivo. Bleomycin challenge up-regulates Twist1 Ser42 phosphorylation and Tie2 expression, increases blood vessel density, and induces collagen deposition in the mouse lung, whereas these effects are attenuated in Twist1fl/fl/Tie2-cre mice or in mice treated with Twist1S42A mutant construct. These results indicate that Twist1 Ser42 phosphorylation contributes to the pathogenesis of bleomycin-induced pulmonary fibrosis through angiopoietin-Tie2 signaling.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda Jiang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elisabeth Jiang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Akiko Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Firulli BA, Milliar H, Toolan KP, Harkin J, Fuchs RK, Robling AG, Firulli AB. Defective Hand1 phosphoregulation uncovers essential roles for Hand1 in limb morphogenesis. Development 2017; 144:2480-2489. [PMID: 28576769 PMCID: PMC5536869 DOI: 10.1242/dev.149963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/18/2017] [Indexed: 11/20/2022]
Abstract
The morphogenesis of the vertebrate limbs is a complex process in which cell signaling and transcriptional regulation coordinate diverse structural adaptations in diverse species. In this study, we examine the consequences of altering Hand1 dimer choice regulation within developing vertebrate limbs. Although Hand1 deletion via the limb-specific Prrx1-Cre reveals a non-essential role for Hand1 in mouse limb morphogenesis, altering Hand1 phosphoregulation, and consequently Hand1 dimerization affinities, results in a severe truncation of proximal-anterior limb elements. Molecular analysis reveals a non-cell-autonomous mechanism that causes widespread cell death within the embryonic limb bud. In addition, we observe changes in proximal-anterior gene regulation, including a reduction in the expression of Irx3, Irx5, Gli3 and Alx4, all of which are upregulated in Hand2 limb conditional knockouts. A reduction of Hand2 and Shh gene dosage improves the integrity of anterior limb structures, validating the importance of the Twist-family bHLH dimer pool in limb morphogenesis. Summary: Altering Hand1 phosphoregulation, and consequently Hand1 dimerization affinities, results in a severe truncation of anterior-proximal limb elements in mice.
Collapse
Affiliation(s)
- Beth A Firulli
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Departments of Anatomy and Cell Biology, Biochemistry, Medical and Molecular Genetics, Indiana University School of Medicine
| | - Hannah Milliar
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Departments of Anatomy and Cell Biology, Biochemistry, Medical and Molecular Genetics, Indiana University School of Medicine
| | - Kevin P Toolan
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Departments of Anatomy and Cell Biology, Biochemistry, Medical and Molecular Genetics, Indiana University School of Medicine
| | - Jade Harkin
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Departments of Anatomy and Cell Biology, Biochemistry, Medical and Molecular Genetics, Indiana University School of Medicine
| | - Robyn K Fuchs
- Department of Physical Therapy and the Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Science, Indiana University, Indianapolis, IN 46202, USA
| | - Alex G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Departments of Anatomy and Cell Biology, Biochemistry, Medical and Molecular Genetics, Indiana University School of Medicine
| |
Collapse
|
39
|
Transcription factor SPZ1 promotes TWIST-mediated epithelial-mesenchymal transition and oncogenesis in human liver cancer. Oncogene 2017; 36:4405-4414. [PMID: 28368406 PMCID: PMC5543259 DOI: 10.1038/onc.2017.69] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 12/17/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an important process in the progression of cancer. However, its occurrence and mechanism of regulation are not fully understood. We propose a regulatory pathway in which spermatogenic leucine zipper 1 (SPZ1) promotes EMT through its transactivating ability in increasing TWIST1 expression. We compared the expression of SPZ1 and TWIST1 in specimens of hepatocarcinoma cells (HCCs) and non-HCCs. Expression of SPZ1 exhibited a tumor-specific expression pattern and a high correlation with patients' survival time, tumor size, tumor number and progression stage. Moreover, forced expression and knockdown of SPZ1 in hepatoma cells showed that SPZ1 was able to regulate the cellular proliferation, invasion, and tumorigenic activity in a TWIST1-dependent manner in vitro and in vivo. These data demonstrate that SPZ1, a newly dscribed molecule, transactivates TWIST1 promoters, and that this SPZ1-TWIST axis mediates EMT signaling and exerts significant regulatory effects on tumor oncogenesis.
Collapse
|
40
|
A Twist2-dependent progenitor cell contributes to adult skeletal muscle. Nat Cell Biol 2017; 19:202-213. [PMID: 28218909 PMCID: PMC5332283 DOI: 10.1038/ncb3477] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/18/2017] [Indexed: 02/06/2023]
Abstract
Skeletal muscle possesses remarkable regenerative potential due to satellite cells, an injury-responsive stem cell population located beneath the muscle basal lamina that expresses Pax7. By lineage tracing of progenitor cells expressing the Twist2 (Tw2) transcription factor in mice, we discovered a myogenic lineage that resides outside the basal lamina of adult skeletal muscle. Tw2+ progenitors are molecularly and anatomically distinct from satellite cells, are highly myogenic in vitro, and can fuse with themselves and with satellite cells. Tw2+ progenitors contribute specifically to type IIb/x myofibers during adulthood and muscle regeneration, and their genetic ablation causes wasting of type IIb myofibers. We show that Tw2 expression maintains progenitor cells in an undifferentiated state that is poised to initiate myogenesis in response to appropriate cues that extinguish Tw2 expression. Tw2-expressing myogenic progenitors represent a previously unrecognized, fiber-type specific stem cell involved in post-natal muscle growth and regeneration.
Collapse
|
41
|
Redl E, Scherholz M, Wollesen T, Todt C, Wanninger A. Cell Proliferation Pattern and Twist Expression in an Aplacophoran Mollusk Argue Against Segmented Ancestry of Mollusca. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:422-436. [PMID: 27966274 PMCID: PMC5299467 DOI: 10.1002/jez.b.22714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023]
Abstract
The study of aplacophoran mollusks (i.e., Solenogastres or Neomeniomorpha and Caudofoveata or Chaetodermomorpha) has traditionally been regarded as crucial for reconstructing the morphology of the last common ancestor of the Mollusca. Since their proposed close relatives, the Polyplacophora, show a distinct seriality in certain organ systems, the aplacophorans are also in the focus of attention with regard to the question of a potential segmented ancestry of mollusks. To contribute to this question, we investigated cell proliferation patterns and the expression of the twist ortholog during larval development in solenogasters. In advanced to late larvae, during the outgrowth of the trunk, a pair of longitudinal bands of proliferating cells is found subepithelially in a lateral to ventrolateral position. These bands elongate during subsequent development as the trunk grows longer. Likewise, expression of twist occurs in two laterally positioned, subepithelial longitudinal stripes in advanced larvae. Both, the pattern of proliferating cells and the expression domain of twist demonstrate the existence of extensive and long-lived mesodermal bands in a worm-shaped aculiferan, a situation which is similar to annelids but in stark contrast to conchiferans, where the mesodermal bands are usually rudimentary and ephemeral. Yet, in contrast to annelids, neither the bands of proliferating cells nor the twist expression domain show a separation into distinct serial subunits, which clearly argues against a segmented ancestry of mollusks. Furthermore, the lack of twist expression during the development of the ventromedian muscle argues against homology of a ventromedian longitudinal muscle in protostomes with the notochord of chordates.
Collapse
Affiliation(s)
- Emanuel Redl
- Faculty of Life SciencesDepartment of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Maik Scherholz
- Faculty of Life SciencesDepartment of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Tim Wollesen
- Faculty of Life SciencesDepartment of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Christiane Todt
- University Museum, The Natural History CollectionsUniversity of BergenBergenNorway
| | - Andreas Wanninger
- Faculty of Life SciencesDepartment of Integrative ZoologyUniversity of ViennaViennaAustria
| |
Collapse
|
42
|
Rodriguez Y, Gonzalez-Mendez RR, Cadilla CL. Evolution of the Twist Subfamily Vertebrate Proteins: Discovery of a Signature Motif and Origin of the Twist1 Glycine-Rich Motifs in the Amino-Terminus Disordered Domain. PLoS One 2016; 11:e0161029. [PMID: 27556926 PMCID: PMC4996418 DOI: 10.1371/journal.pone.0161029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022] Open
Abstract
Twist proteins belong to the basic helix-loop-helix (bHLH) family of multifunctional transcriptional factors. These factors are known to use domains other than the common bHLH in protein-protein interactions. There has been much work characterizing the bHLH domain and the C-terminus in protein-protein interactions but despite a few attempts more focus is needed at the N-terminus. Since the region of highest diversity in Twist proteins is the N-terminus, we analyzed the conservation of this region in different vertebrate Twist proteins and study the sequence differences between Twist1 and Twist2 with emphasis on the glycine-rich regions found in Twist1. We found a highly conserved sequence motif in all Twist1 (SSSPVSPADDSLSNSEEE) and Twist2 (SSSPVSPVDSLGTSEEE) mammalian species with unknown function. Through sequence comparison we demonstrate that the Twist protein family ancestor was “Twist2-like” and the two glycine-rich regions found in Twist1 sequences were acquired late in evolution, apparently not at the same time. The second glycine-rich region started developing first in the fish vertebrate group, while the first glycine region arose afterwards within the reptiles. Disordered domain and secondary structure predictions showed that the amino acid sequence and disorder feature found at the N-terminus is highly evolutionary conserved and could be a functional site that interacts with other proteins. Detailed examination of the glycine-rich regions in the N-terminus of Twist1 demonstrate that the first region is completely aliphatic while the second region contains some polar residues that could be subject to post-translational modification. Phylogenetic and sequence space analysis showed that the Twist1 subfamily is the result of a gene duplication during Twist2 vertebrate fish evolution, and has undergone more evolutionary drift than Twist2. We identified a new signature motif that is characteristic of each Twist paralog and identified important residues within this motif that can be used to distinguish between these two paralogs, which will help reduce Twist1 and Twist2 sequence annotation errors in public databases.
Collapse
Affiliation(s)
- Yacidzohara Rodriguez
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Ricardo R. Gonzalez-Mendez
- Department of Radiological Sciences, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Carmen L. Cadilla
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
43
|
Sozen B, Pehlivanoglu S, Demir N. Differential expression pattern of Twist1 in mouse preimplantation embryos suggests its multiple roles during early development. J Assist Reprod Genet 2016; 33:1533-1540. [PMID: 27544279 DOI: 10.1007/s10815-016-0794-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/11/2016] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The purpose of the present study is to understand Twist-related protein 1 (Twist1) spatiotemporal expression patterns and functions during early embryo development. METHODS We performed whole-mount double immunofluorescence staining and reverse transcription (RT)-PCR analysis of the Twist1 protein and gene throughout the preimplantation development in mice. RESULTS We determined that after compaction, the expression of Twist1 becomes developmentally differentiated and targeted in the inner cells of embryos. In blastocysts at E4.5, uniform staining of the inner cell mass was apparent, and it had been gradually translocated to the nucleus of hatched embryonic cells at E4.75. Furthermore, the effect of potential regulators of Twist on its expression level during blastocyst development was also sought. Accordingly, Twist1 expression appeared to be upregulated in both mRNA and protein level following culture of embryos in the presence of high glucose. CONCLUSIONS Our study revealed the dynamic Twist localization within the early stage of embryo. The results are discussed in terms of potential roles of Twist1 in the processes of lineage segregation, hatching, and implantation in post-compaction embryos and in blastocysts.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Histology and Embryology, School of Medicine, Akdeniz University Campus, 07070, Antalya, Turkey
| | - Suray Pehlivanoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090, Konya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, School of Medicine, Akdeniz University Campus, 07070, Antalya, Turkey.
| |
Collapse
|
44
|
Wu C, Zhuang Y, Jiang S, Liu S, Zhou J, Wu J, Teng Y, Xia B, Wang R, Zou X. Interaction between Wnt/β-catenin pathway and microRNAs regulates epithelial-mesenchymal transition in gastric cancer (Review). Int J Oncol 2016; 48:2236-2246. [PMID: 27082441 DOI: 10.3892/ijo.2016.3480] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) is the third primary cause of cancer-related mortality and one of the most common type of malignant diseases worldwide. Despite remarkable progress in multimodality therapy, advanced GC with high aggressiveness always ends in treatment failure. Epithelial-mesenchymal transition (EMT) has been widely recognized to be a key process associating with GC evolution, during which cancer cells go through phenotypic variations and acquire the capability of migration and invasion. Wnt/β-catenin pathway has established itself as an EMT regulative signaling due to its maintenance of epithelial integrity as well as tight adherens junctions while mutations of its components will lead to GC initiation and diffusion. The E-cadherin/β-catenin complex plays an important role in stabilizing β-catenin at cell membrane while disruption of this compound gives rise to nuclear translocation of β-catenin, which accounts for upregulation of EMT biomarkers and unfavorable prognosis. Additionally, several microRNAs positively or negatively modify EMT by reciprocally acting with certain target genes of Wnt/β-catenin pathway in GC. Thus, this review centers on the strong associations between Wnt/β-catenin pathway and microRNAs during alteration of EMT in GC, which may induce advantageous therapeutic strategies for human gastric cancer.
Collapse
Affiliation(s)
- Cunen Wu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yuwen Zhuang
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Shan Jiang
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Shenlin Liu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jinyong Zhou
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Wu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yuhao Teng
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Baomei Xia
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ruiping Wang
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xi Zou
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
45
|
Kozin VV, Filimonova DA, Kupriashova EE, Kostyuchenko RP. Mesoderm patterning and morphogenesis in the polychaete Alitta virens (Spiralia, Annelida): Expression of mesodermal markers Twist, Mox, Evx and functional role for MAP kinase signaling. Mech Dev 2016; 140:1-11. [PMID: 27000638 DOI: 10.1016/j.mod.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
Mesoderm represents the evolutionary youngest germ layer and forms numerous novel tissues in bilaterian animals. Despite the established conservation of the gene regulatory networks that drive mesoderm differentiation (e.g. myogenesis), mechanisms of mesoderm specification are highly variable in distant model species. Thus, broader phylogenetic sampling is required to reveal common features of mesoderm formation across bilaterians. Here we focus on a representative of Spiralia, the marine annelid Alitta virens, whose mesoderm development is still poorly investigated on the molecular level. We characterize three novel early mesodermal markers for A. virens - Twist, Mox, and Evx - which are differentially expressed within the mesodermal lineages. The Twist mRNA is ubiquitously distributed in the fertilized egg and exhibits specific expression in endomesodermal- and ectomesodermal-founder cells at gastrulation. Twist is expressed around the blastopore and later in a segmental metameric pattern. We consider this expression to be ancestral, and in support of the enterocoelic hypothesis of mesoderm evolution. We also revealed an early pattern of the MAPK activation in A. virens that is different from the previously reported pattern in spiralians. Inhibition of the MAPK pathway by U0126 disrupts the metameric Twist and Mox expression, indicating an early requirement of the MAPK cascade for proper morphogenesis of endomesodermal tissues.
Collapse
Affiliation(s)
- Vitaly V Kozin
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia.
| | - Daria A Filimonova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Ekaterina E Kupriashova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Roman P Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia.
| |
Collapse
|
46
|
Cho MS, Rupaimoole R, Choi HJ, Noh K, Chen J, Hu Q, Sood AK, Afshar-Kharghan V. Complement Component 3 Is Regulated by TWIST1 and Mediates Epithelial-Mesenchymal Transition. THE JOURNAL OF IMMUNOLOGY 2015; 196:1412-8. [PMID: 26718342 DOI: 10.4049/jimmunol.1501886] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/03/2015] [Indexed: 01/08/2023]
Abstract
We have previously shown that complement component 3 (C3) is secreted by malignant epithelial cells. To understand the mechanism of upregulation of C3 expression in tumor cells, we studied the C3 promoter and identified that twist basic helix-loop-helix transcription factor 1 (TWIST1) binds to the C3 promoter and enhances its expression. Because TWIST1 mediates epithelial-mesenchymal transition (EMT), we studied the effect of C3 on EMT and found that C3 decreased E-cadherin expression on cancer cells and promoted EMT. We showed that C3-induced reduction in E-cadherin expression in ovarian cancer cells was mediated by C3a and is Krüppel-like factor 5 dependent. We investigated the association between TWIST1 and C3 in malignant tumors and in murine embryos. TWIST1 and C3 colocalized at the invasive tumor edges, and in the neural crest and limb buds of mouse embryos. Our results identified TWIST1 as a transcription factor that regulates C3 expression during pathologic and physiologic EMT.
Collapse
Affiliation(s)
- Min Soon Cho
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Hyun-Jin Choi
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kyunghee Noh
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jichao Chen
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Qianghua Hu
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030; and Center for RNA Intereference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Vahid Afshar-Kharghan
- Section of Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, TX 77030;
| |
Collapse
|
47
|
Sakamoto A, Akiyama Y, Shimada S, Zhu WG, Yuasa Y, Tanaka S. DNA Methylation in the Exon 1 Region and Complex Regulation of Twist1 Expression in Gastric Cancer Cells. PLoS One 2015; 10:e0145630. [PMID: 26695186 PMCID: PMC4687923 DOI: 10.1371/journal.pone.0145630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/06/2015] [Indexed: 02/06/2023] Open
Abstract
Twist1 overexpression is frequently observed in various cancers including gastric cancer (GC). Although DNA methylation of the Twist1 gene has been reported in cancer cells, the mechanisms underlying transcriptional activation remain uncertain. In this study, we first examined epigenetic alterations of the Twist1 using Twist1 transcription-positive and -negative cell lines that are derived from our established diffuse-type GC mouse model. Treatment with a DNA demethylation agent 5-aza-dC re-activated Twist1 expression in Twist1 expression-negative GC cells. According to methylation-specific PCR and bisulfite sequencing analysis, methylation at the CpG-rich region within Twist1 coding exon 1, rather than its promoter region, was tightly linked to transcriptional silencing of the Twist1 expression in mouse GC cells. Chromatin immunoprecipitation assays revealed that active histone mark H3K4me3 was enriched in Twist1 expression-positive cells, and inactive histone mark H3K9me3 was enriched in Twist1 expression-negative cells. The expression levels of Suv39h1 and Suv39h2, histone methyltransferases for H3K9me3, were inversely correlated with Twist1 expression, and knockdown of Suv39h1 or Suv39h2 induced Twist1 expression. Moreover, Sp1 transcription factor bound to the exon 1 CpG-rich region in Twist1 expression-positive cell lines, and Twist1 expression was diminished by mithramycin, which that interferes with Sp1 binding to CpG-rich regulatory sequences. Our studies suggested that the Twist1 transcription in GC cells might be regulated through potential cooperation of DNA methylation, histone modification in complex with Sp1 binding to CpG-rich regions within the exon 1 region.
Collapse
Affiliation(s)
- Ayuna Sakamoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
48
|
Goodnough LH, Dinuoscio GJ, Atit RP. Twist1 contributes to cranial bone initiation and dermal condensation by maintaining Wnt signaling responsiveness. Dev Dyn 2015; 245:144-56. [PMID: 26677825 DOI: 10.1002/dvdy.24367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Specification of cranial bone and dermal fibroblast progenitors in the supraorbital arch mesenchyme is Wnt/β-catenin signaling-dependent. The mechanism underlying how these cells interpret instructive signaling cues and differentiate into these two lineages is unclear. Twist1 is a target of the Wnt/β-catenin signaling pathway and is expressed in cranial bone and dermal lineages. RESULTS Here, we show that onset of Twist1 expression in the mouse cranial mesenchyme is dependent on ectodermal Wnts and mesenchymal β-catenin activity. Conditional deletion of Twist1 in the supraorbital arch mesenchyme leads to cranial bone agenesis and hypoplastic dermis, as well as craniofacial malformation of eyes and palate. Twist1 is preferentially required for cranial bone lineage commitment by maintaining Wnt responsiveness. In the conditional absence of Twist1, the cranial dermis fails to condense and expand apically leading to extensive cranial dermal hypoplasia with few and undifferentiated hair follicles. CONCLUSIONS Thus, Twist1, a target of canonical Wnt/β-catenin signaling, also functions to maintain Wnt responsiveness and is a key effector for cranial bone fate selection and dermal condensation.
Collapse
Affiliation(s)
- L Henry Goodnough
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Gregg J Dinuoscio
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio.,Department of Dermatology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
49
|
Deng X, Pan H, Wang J, Wang B, Cheng Z, Cheng L, Zhao L, Li H, Ma X. Functional Analysis of Two Novel Mutations in TWIST1 Protein Motifs Found in Ventricular Septal Defect Patients. Pediatr Cardiol 2015; 36:1602-9. [PMID: 25981568 DOI: 10.1007/s00246-015-1202-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate the possible genetic effect of sequence variations in TWIST1 on the pathogenesis of ventricular septal defect in humans. We examined the coding region of TWIST1 in a cohort of 196 Chinese people with non-syndromic ventricular septal defect patients and 200 healthy individuals as the controls. We identified two novel potential disease-associated mutations, NM_000474.3:c.247G>A (G83S) and NM_000474.3:c.283A>G (S95G). Both of them were identified for the first time and were not observed in the 200 controls without congenital heart disease. Using a dual-luciferase reporter assay, we showed that both of the mutations significantly down-regulated the repressive effect of TWIST1 on the E-cadherin promoter. Furthermore, a mammalian two-hybrid assay showed that both of the mutations significantly affected the interaction between TWIST1 and KAT2B. New mutations in the transcription factor TWIST1 that affect protein function were identified in 1.0 % (2/196) of Chinese patients with ventricular septal defect. Our data show, for the first time, that TWIST1 has a potential causative effect on the development of ventricular septal defect.
Collapse
Affiliation(s)
- Xiaopeng Deng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Hong Pan
- Graduate School, Peking Union Medical College, Beijing, 100080, China.,Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian, Beijing, 100081, China
| | - Jing Wang
- Graduate School, Peking Union Medical College, Beijing, 100080, China.,Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian, Beijing, 100081, China
| | - Binbin Wang
- Graduate School, Peking Union Medical College, Beijing, 100080, China.,Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian, Beijing, 100081, China
| | - Zhi Cheng
- Graduate School, Peking Union Medical College, Beijing, 100080, China.,Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian, Beijing, 100081, China
| | - Longfei Cheng
- Graduate School, Peking Union Medical College, Beijing, 100080, China.,Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian, Beijing, 100081, China
| | - Lixi Zhao
- Graduate School, Peking Union Medical College, Beijing, 100080, China.,Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian, Beijing, 100081, China
| | - Hui Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Xu Ma
- Graduate School, Peking Union Medical College, Beijing, 100080, China. .,Center for Genetics, National Research Institute for Family Planning, 12 Dahuisi Road, Haidian, Beijing, 100081, China. .,World Health Organization Collaborating Centre for Research in Human Reproduction, Beijing, 100081, China.
| |
Collapse
|
50
|
Fleming A, Kishida MG, Kimmel CB, Keynes RJ. Building the backbone: the development and evolution of vertebral patterning. Development 2015; 142:1733-44. [PMID: 25968309 DOI: 10.1242/dev.118950] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The segmented vertebral column comprises a repeat series of vertebrae, each consisting of two key components: the vertebral body (or centrum) and the vertebral arches. Despite being a defining feature of the vertebrates, much remains to be understood about vertebral development and evolution. Particular controversy surrounds whether vertebral component structures are homologous across vertebrates, how somite and vertebral patterning are connected, and the developmental origin of vertebral bone-mineralizing cells. Here, we assemble evidence from ichthyologists, palaeontologists and developmental biologists to consider these issues. Vertebral arch elements were present in early stem vertebrates, whereas centra arose later. We argue that centra are homologous among jawed vertebrates, and review evidence in teleosts that the notochord plays an instructive role in segmental patterning, alongside the somites, and contributes to mineralization. By clarifying the evolutionary relationship between centra and arches, and their varying modes of skeletal mineralization, we can better appreciate the detailed mechanisms that regulate and diversify vertebral patterning.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Marcia G Kishida
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Charles B Kimmel
- Institute of Neuroscience, 1254 University of Oregon, Eugene OR 97403-1254, USA
| | - Roger J Keynes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| |
Collapse
|