1
|
Sheikh S, Fu CJ, Brown MW, Baldauf SL. The Acrasis kona genome and developmental transcriptomes reveal deep origins of eukaryotic multicellular pathways. Nat Commun 2024; 15:10197. [PMID: 39587099 PMCID: PMC11589745 DOI: 10.1038/s41467-024-54029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Acrasids are amoebae with the capacity to form multicellular fruiting bodies in a process known as aggregative multicellularity (AGM). This makes acrasids the only known example of multicellularity among the earliest branches of eukaryotes (the former Excavata). Here, we report the Acrasis kona genome sequence plus transcriptomes from pre-, mid- and post-developmental stages. The genome is rich in novelty and genes with strong signatures of horizontal transfer, and multigene families encode nearly half of the amoeba's predicted proteome. Development in A. kona appears molecularly simple relative to the AGM model, Dictyostelium discoideum. However, the acrasid also differs from the dictyostelid in that it does not appear to be starving during development. Instead, developing A. kona appears to be very metabolically active, does not induce autophagy and does not up-regulate its proteasomal genes. Together, these observations strongly suggest that starvation is not essential for AGM development. Nonetheless, development in the two amoebae appears to employ remarkably similar pathways for signaling, motility and, potentially, construction of an extracellular matrix surrounding the developing cell mass. Much of this similarity is also shared with animal development, suggesting that much of the basic tool kit for multicellular development arose early in eukaryote evolution.
Collapse
Affiliation(s)
- Sanea Sheikh
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Section of Terrestrial Ecology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cheng-Jie Fu
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Olink, Division of Thermo Fisher Scientific, Uppsala, Sweden
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Sandra L Baldauf
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Edelbroek B, Westholm JO, Bergquist J, Söderbom F. Multi-omics analysis of aggregative multicellularity. iScience 2024; 27:110659. [PMID: 39224513 PMCID: PMC11367525 DOI: 10.1016/j.isci.2024.110659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/14/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
All organisms have to carefully regulate their gene expression, not least during development. mRNA levels are often used as proxy for protein output; however, this approach ignores post-transcriptional effects. In particular, mRNA-protein correlation remains elusive for organisms that exhibit aggregative rather than clonal multicellularity. We addressed this issue by generating a paired transcriptomics and proteomics time series during the transition from uni-to multicellular stage in the social ameba Dictyostelium discoideum. Our data reveals that mRNA and protein levels correlate highly during unicellular growth, but decrease when multicellular development is initiated. This accentuates that transcripts alone cannot accurately predict protein levels. The dataset provides a useful resource to study gene expression during aggregative multicellular development. Additionally, our study provides an example of how to analyze and visualize mRNA and protein levels, which should be broadly applicable to other organisms and conditions.
Collapse
Affiliation(s)
- Bart Edelbroek
- Department of Cell and Molecular Biology, BMC, Uppsala University, 751 24 Uppsala, Sweden
| | - Jakub Orzechowski Westholm
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, BMC, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Oszoli I, Zachar I. Group-selection via aggregative propagule-formation enables cooperative multicellularity in an individual based, spatial model. PLoS Comput Biol 2024; 20:e1012107. [PMID: 38713735 PMCID: PMC11101088 DOI: 10.1371/journal.pcbi.1012107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/17/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
The emergence of multicellularity is one of the major transitions in evolution that happened multiple times independently. During aggregative multicellularity, genetically potentially unrelated lineages cooperate to form transient multicellular groups. Unlike clonal multicellularity, aggregative multicellular organisms do not rely on kin selection instead other mechanisms maintain cooperation against cheater phenotypes that benefit from cooperators but do not contribute to groups. Spatiality with limited diffusion can facilitate group selection, as interactions among individuals are restricted to local neighbourhoods only. Selection for larger size (e.g. avoiding predation) may facilitate the emergence of aggregation, though it is unknown, whether and how much role such selection played during the evolution of aggregative multicellularity. We have investigated the effect of spatiality and the necessity of predation on the stability of aggregative multicellularity via individual-based modelling on the ecological timescale. We have examined whether aggregation facilitates the survival of cooperators in a temporally heterogeneous environment against cheaters, where only a subset of the population is allowed to periodically colonize a new, resource-rich habitat. Cooperators constitutively produce adhesive molecules to promote aggregation and propagule-formation while cheaters spare this expense to grow faster but cannot aggregate on their own, hence depending on cooperators for long-term survival. We have compared different population-level reproduction modes with and without individual selection (predation) to evaluate the different hypotheses. In a temporally homogeneous environment without propagule-based colonization, cheaters always win. Predation can benefit cooperators, but it is not enough to maintain the necessary cooperator amount in successive dispersals, either randomly or by fragmentation. Aggregation-based propagation however can ensure the adequate ratio of cooperators-to-cheaters in the propagule and is sufficient to do so even without predation. Spatiality combined with temporal heterogeneity helps cooperators via group selection, thus facilitating aggregative multicellularity. External stress selecting for larger size (e.g. predation) may facilitate aggregation, however, according to our results, it is neither necessary nor sufficient for aggregative multicellularity to be maintained when there is effective group-selection.
Collapse
Affiliation(s)
- István Oszoli
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
| | - István Zachar
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- HUN-REN Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| |
Collapse
|
4
|
Roy M, Dumay A, Adiba S, Rozes S, Kobayashi S, Paradis V, Postic C, Rainteau D, Ogier-Denis E, Le Gall M, Meinzer U, Viennois E, Casado-Bedmar M, Mosca A, Hugot JP. Entamoeba muris mitigates metabolic consequences of high-fat diet in mice. Gut Microbes 2024; 16:2409210. [PMID: 39396247 PMCID: PMC11485694 DOI: 10.1080/19490976.2024.2409210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
Metabolic syndrome (MetS) is a cluster of several human conditions including abdominal obesity, hypertension, dyslipidemia, and hyperglycemia, all of which are risk factors of type 2 diabetes, cardiovascular disease, and metabolic dysfunction-associated steatotic liver disease (MASLD). Dietary pattern is a well-recognized MetS risk factor, but additional changes related to the modern Western life-style may also contribute to MetS. Here we hypothesize that the disappearance of amoebas in the gut plays a role in the emergence of MetS in association with dietary changes. Four groups of C57B/6J mice fed with a high-fat diet (HFD) or a normal diet (ND) were colonized or not with Entamoeba muris, a commensal amoeba. Seventy days after inoculation, cecal microbiota, and bile acid compositions were analyzed by high-throughput sequencing of 16S rDNA and mass spectrometry, respectively. Cytokine concentrations were measured in the gut, liver, and mesenteric fat looking for low-grade inflammation. The impact of HFD on liver metabolic dysfunction was explored by Oil Red O staining, triglycerides, cholesterol concentrations, and the expression of genes involved in β-oxidation and lipogenesis. Colonization with E. muris had a beneficial impact, with a reduction in dysbiosis, lower levels of fecal secondary bile acids, and an improvement in hepatic steatosis, arguing for a protective role of commensal amoebas in MetS and more specifically HFD-associated MASLD.
Collapse
Affiliation(s)
- Maryline Roy
- Inflammation Research Centre, UMR 1149, INSERM, Université Paris Cité, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Anne Dumay
- Inflammation Research Centre, UMR 1149, INSERM, Université Paris Cité, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Sandrine Adiba
- Département de biologie, institut de Biologie de l’ENS, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sylvana Rozes
- Inflammation Research Centre, UMR 1149, INSERM, Université Paris Cité, Paris, France
- Department of pediatric gastroenterology and nutrition, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Seiki Kobayashi
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Valérie Paradis
- Inflammation Research Centre, UMR 1149, INSERM, Université Paris Cité, Paris, France
- Department of pathology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Catherine Postic
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Dominique Rainteau
- INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Sorbonne Université, Paris, France
| | - Eric Ogier-Denis
- Inflammation Research Centre, UMR 1149, INSERM, Université Paris Cité, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Maud Le Gall
- Inflammation Research Centre, UMR 1149, INSERM, Université Paris Cité, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Ulrich Meinzer
- Inflammation Research Centre, UMR 1149, INSERM, Université Paris Cité, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Department of pediatric gastroenterology and nutrition, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emilie Viennois
- Inflammation Research Centre, UMR 1149, INSERM, Université Paris Cité, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Maite Casado-Bedmar
- Inflammation Research Centre, UMR 1149, INSERM, Université Paris Cité, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Alexis Mosca
- Inflammation Research Centre, UMR 1149, INSERM, Université Paris Cité, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Department of pediatric gastroenterology and nutrition, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Pierre Hugot
- Inflammation Research Centre, UMR 1149, INSERM, Université Paris Cité, Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Department of pediatric gastroenterology and nutrition, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
5
|
Lamża Ł. Diversity of 'simple' multicellular eukaryotes: 45 independent cases and six types of multicellularity. Biol Rev Camb Philos Soc 2023; 98:2188-2209. [PMID: 37475165 DOI: 10.1111/brv.13001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Multicellularity evolved multiple times in the history of life, with most reviewers agreeing that it appeared at least 20 times in eukaryotes. However, a specific list of multicellular eukaryotes with clear criteria for inclusion has not yet been published. Herein, an updated critical review of eukaryotic multicellularity is presented, based on current understanding of eukaryotic phylogeny and new discoveries in microbiology, phycology and mycology. As a result, 45 independent multicellular lineages are identified that fall into six distinct types. Functional criteria, as distinct from a purely topological definition of a cell, are introduced to bring uniformity and clarity to the existing definitions of terms such as colony, multicellularity, thallus or plasmodium. The category of clonal multicellularity is expanded to include: (i) septated multinucleated thalli found in Pseudofungi and early-branching Fungi such as Chytridiomycota and Blastocladiomycota; and (ii) multicellular reproductive structures formed by plasmotomy in intracellular parasites such as Phytomyxea. Furthermore, (iii) endogeneous budding, as found in Paramyxida, is described as a form of multicellularity. The best-known case of clonal multicellularity, i.e. (iv) non-separation of cells after cell division, as known from Metazoa and Ochrophyta, is also discussed. The category of aggregative multicellularity is expanded to include not only (v) pseudoplasmodial forms, such a sorocarp-forming Acrasida, but also (vi) meroplasmodial organisms, such as members of Variosea or Filoreta. A common set of topological, geometric, genetic and life-cycle criteria are presented that form a coherent, philosophically sound framework for discussing multicellularity. A possibility of a seventh type of multicellularity is discussed, that of multi-species superorganisms formed by protists with obligatory bacterial symbionts, such as some members of Oxymonada or Parabasalia. Its inclusion is dependent on the philosophical stance taken towards the concepts of individuality and organism in biology. Taxa that merit special attention are identified, such as colonial Centrohelea, and a new speculative form of multicellularity, possibly present in some reticulopodial amoebae, is briefly described. Because of insufficient phylogenetic and morphological data, not all lineages could be unequivocally identified, and the true total number of all multicellular eukaryotic lineages is therefore higher, likely close to a hundred.
Collapse
Affiliation(s)
- Łukasz Lamża
- Copernicus Center for Interdisciplinary Studies, Jagiellonian University, Szczepanska 1, Kraków, 31-011, Poland
| |
Collapse
|
6
|
Cornwallis CK, Svensson-Coelho M, Lindh M, Li Q, Stábile F, Hansson LA, Rengefors K. Single-cell adaptations shape evolutionary transitions to multicellularity in green algae. Nat Ecol Evol 2023; 7:889-902. [PMID: 37081145 PMCID: PMC10250200 DOI: 10.1038/s41559-023-02044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
The evolution of multicellular life has played a pivotal role in shaping biological diversity. However, we know surprisingly little about the natural environmental conditions that favour the formation of multicellular groups. Here we experimentally examine how key environmental factors (predation, nitrogen and water turbulence) combine to influence multicellular group formation in 35 wild unicellular green algae strains (19 Chlorophyta species). All environmental factors induced the formation of multicellular groups (more than four cells), but there was no evidence this was adaptive, as multicellularity (% cells in groups) was not related to population growth rate under any condition. Instead, population growth was related to extracellular matrix (ECM) around single cells and palmelloid formation, a unicellular life-cycle stage where two to four cells are retained within a mother-cell wall after mitosis. ECM production increased with nitrogen levels resulting in more cells being in palmelloids and higher rates of multicellular group formation. Examining the distribution of 332 algae species across 478 lakes monitored over 55 years, showed that ECM and nitrogen availability also predicted patterns of obligate multicellularity in nature. Our results highlight that adaptations of unicellular organisms to cope with environmental challenges may be key to understanding evolutionary routes to multicellular life.
Collapse
Affiliation(s)
| | | | - Markus Lindh
- Swedish Meteorological and Hydrological Institute, Västra Frölunda, Sweden
| | - Qinyang Li
- Department of Biology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
7
|
van der Wel H, Garcia AM, Gas-Pascual E, Willis MM, Kim HW, Bandini G, Gaye MM, Costello CE, Samuelson J, West CM. Spindly is a nucleocytosolic O-fucosyltransferase in Dictyostelium and related proteins are widespread in protists and bacteria. Glycobiology 2023; 33:225-244. [PMID: 36250576 PMCID: PMC10114647 DOI: 10.1093/glycob/cwac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2022] Open
Abstract
O-GlcNAcylation is a prominent modification of nuclear and cytoplasmic proteins in animals and plants and is mediated by a single O-GlcNAc transferase (OGT). Spindly (Spy), a paralog of OGT first discovered in higher plants, has an ortholog in the apicomplexan parasite Toxoplasma gondii, and both enzymes are now recognized as O-fucosyltransferases (OFTs). Here we investigate the evolution of spy-like genes and experimentally confirm OFT activity in the social amoeba Dictyostelium-a protist that is more related to fungi and metazoa. Immunofluorescence probing with the fucose-specific Aleuria aurantia lectin (AAL) and biochemical cell fractionation combined with western blotting suggested the occurrence of nucleocytoplasmic fucosylation. The absence of reactivity in mutants deleted in spy or gmd (unable to synthesize GDP-Fuc) suggested monofucosylation mediated by Spy. Genetic ablation of the modE locus, previously predicted to encode a GDP-fucose transporter, confirmed its necessity for fucosylation in the secretory pathway but not for the nucleocytoplasmic proteins. Affinity capture of these proteins combined with mass spectrometry confirmed monofucosylation of Ser and Thr residues of several known nucleocytoplasmic proteins. As in Toxoplasma, the Spy OFT was required for optimal proliferation of Dictyostelium under laboratory conditions. These findings support a new phylogenetic analysis of OGT and OFT evolution that indicates their occurrence in the last eukaryotic common ancestor but mostly complementary presence in its eukaryotic descendants with the notable exception that both occur in red algae and plants. Their generally exclusive expression, high degree of conservation, and shared monoglycosylation targets suggest overlapping roles in physiological regulation.
Collapse
Affiliation(s)
- Hanke van der Wel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ana Maria Garcia
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Obstetrics and Gynecology (OBGYN), 1951 SW 172nd Ave, Hollywood, FL 33029, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Macy M Willis
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Hyun W Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Giulia Bandini
- Department of Molecular and Cell Biology, Boston University Henry Goldman School of Dental Medicine, Boston, MA 02118, USA
- Clarivate Analytics (UK) Ltd., 70 St. Mary Axe, London, EC3A 8BE
| | - Maissa Mareme Gaye
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
- Chemistry Technology Center, Waters Corporation, Milford, MA 01757, USA
| | - Catherine E Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Henry Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Kouros CE, Makri V, Ouzounis CA, Chasapi A. Disease association and comparative genomics of compositional bias in human proteins. F1000Res 2023; 12:198. [PMID: 37082000 PMCID: PMC10111144 DOI: 10.12688/f1000research.129929.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Background: The evolutionary rate of disordered proteins varies greatly due to the lack of structural constraints. So far, few studies have investigated the presence/absence patterns of intrinsically disordered regions (IDRs) across phylogenies in conjunction with human disease. In this study, we report a genome-wide analysis of compositional bias association with disease in human proteins and their taxonomic distribution. Methods: The human genome protein set provided by the Ensembl database was annotated and analysed with respect to both disease associations and the detection of compositional bias. The Uniprot Reference Proteome dataset, containing 11297 proteomes was used as target dataset for the comparative genomics of a well-defined subset of the Human Genome, including 100 characteristic, compositionally biased proteins, some linked to disease. Results: Cross-evaluation of compositional bias and disease-association in the human genome reveals a significant bias towards low complexity regions in disease-associated genes, with charged, hydrophilic amino acids appearing as over-represented. The phylogenetic profiling of 17 disease-associated, low complexity proteins across 11297 proteomes captures characteristic taxonomic distribution patterns. Conclusions: This is the first time that a combined genome-wide analysis of low complexity, disease-association and taxonomic distribution of human proteins is reported, covering structural, functional, and evolutionary properties. The reported framework can form the basis for large-scale, follow-up projects, encompassing the entire human genome and all known gene-disease associations.
Collapse
Affiliation(s)
- Christos E. Kouros
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Makri
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos A. Ouzounis
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- BCPL, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
| | - Anastasia Chasapi
- BCPL, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
| |
Collapse
|
9
|
Kouros CE, Makri V, Ouzounis CA, Chasapi A. Disease association and comparative genomics of compositional bias in human proteins. F1000Res 2023; 12:198. [PMID: 37082000 PMCID: PMC10111144 DOI: 10.12688/f1000research.129929.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/25/2023] Open
Abstract
Background: The evolutionary rate of disordered protein regions varies greatly due to the lack of structural constraints. So far, few studies have investigated the presence/absence patterns of compositional bias, indicative of disorder, across phylogenies in conjunction with human disease. In this study, we report a genome-wide analysis of compositional bias association with disease in human proteins and their taxonomic distribution. Methods: The human genome protein set provided by the Ensembl database was annotated and analysed with respect to both disease associations and the detection of compositional bias. The Uniprot Reference Proteome dataset, containing 11297 proteomes was used as target dataset for the comparative genomics of a well-defined subset of the Human Genome, including 100 characteristic, compositionally biased proteins, some linked to disease. Results: Cross-evaluation of compositional bias and disease-association in the human genome reveals a significant bias towards biased regions in disease-associated genes, with charged, hydrophilic amino acids appearing as over-represented. The phylogenetic profiling of 17 disease-associated, proteins with compositional bias across 11297 proteomes captures characteristic taxonomic distribution patterns. Conclusions: This is the first time that a combined genome-wide analysis of compositional bias, disease-association and taxonomic distribution of human proteins is reported, covering structural, functional, and evolutionary properties. The reported framework can form the basis for large-scale, follow-up projects, encompassing the entire human genome and all known gene-disease associations.
Collapse
Affiliation(s)
- Christos E. Kouros
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Makri
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos A. Ouzounis
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- BCPL, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
| | - Anastasia Chasapi
- BCPL, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
| |
Collapse
|
10
|
Bao L, Ren J, Nguyen M, Slusarczyk AS, Thole JM, Martinez SP, Huang J, Fujita T, Running MP. The cellular function of ROP GTPase prenylation is important for multicellularity in the moss Physcomitrium patens. Development 2022; 149:275605. [DOI: 10.1242/dev.200279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 01/27/2023]
Abstract
ABSTRACT
A complete picture of how signaling pathways lead to multicellularity is largely unknown. Previously, we generated mutations in a protein prenylation enzyme, GGB, and showed that it is essential for maintaining multicellularity in the moss Physcomitrium patens. Here, we show that ROP GTPases act as downstream factors that are prenylated by GGB and themselves play an important role in the multicellularity of P. patens. We also show that the loss of multicellularity caused by the suppression of GGB or ROP GTPases is due to uncoordinated cell expansion, defects in cell wall integrity and the disturbance of the directional control of cell plate orientation. Expressing prenylatable ROP in the ggb mutant not only rescues multicellularity in protonemata but also results in development of gametophores. Although the prenylation of ROP is important for multicellularity, a higher threshold of active ROP is required for gametophore development. Thus, our results suggest that ROP activation via prenylation by GGB is a key process at both cell and tissue levels, facilitating the developmental transition from one dimension to two dimensions and to three dimensions in P. patens.
Collapse
Affiliation(s)
- Liang Bao
- University of Louisville 1 Department of Biology , , Louisville, KY 40208 , USA
| | - Junling Ren
- University of Louisville 1 Department of Biology , , Louisville, KY 40208 , USA
| | - Mary Nguyen
- University of Louisville 1 Department of Biology , , Louisville, KY 40208 , USA
| | | | - Julie M. Thole
- Saint Louis University 3 Department of Biology , , St Louis, MO 63103 , USA
| | | | - Jinling Huang
- East Carolina University 4 Department of Biology , , Greenville, NC 27858
| | - Tomomichi Fujita
- Hokkaido University 5 Faculty of Science , , Sapporo 060-0810 , Japan
| | - Mark P. Running
- University of Louisville 1 Department of Biology , , Louisville, KY 40208 , USA
| |
Collapse
|
11
|
Forbes G, Chen ZH, Kin K, Schaap P. Novel RNAseq-Informed Cell-type Markers and Their Regulation Alter Paradigms of Dictyostelium Developmental Control. Front Cell Dev Biol 2022; 10:899316. [PMID: 35602609 PMCID: PMC9117722 DOI: 10.3389/fcell.2022.899316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell differentiation is traditionally monitored with a few marker genes, which may bias results. To understand the evolution and regulation of the spore, stalk, cup and basal disc cells in Dictyostelia, we previously performed RNAseq on purified cell-types of taxon-group representative dictyostelids. Using promoter-lacZ constructs in D. discoideum, we here investigate the spatio-temporal expression pattern of 29 cell-type specific genes. Genes selected for spore- or cup-specificity in RNAseq were validated as such by lacZ expression, but genes selected for stalk-specificity showed variable additional expression in basal disc, early cup or prestalk populations. We measured responses of 25 genes to 15 single or combined regimes of induction by stimuli known to regulate cell differentiation. The outcomes of these experiments were subjected to hierarchical clustering to identify whether common modes of regulation were correlated with specific expression patterns. The analysis identified a cluster combining the spore and cup genes, which shared upregulation by 8-bromo cyclic AMP and down-regulation by Differentiation Inducing Factor 1 (DIF-1). Most stalk-expressed genes combined into a single cluster and shared strong upregulation by cyclic di-guanylate (c-di-GMP), and synergistic upregulation by combined DIF-1 and c-di-GMP. There was no clustering of genes expressed in other soma besides the stalk, but two genes that were only expressed in the stalk did not respond to any stimuli. In contrast to current models, the study indicates the existence of a stem-cell like soma population in slugs, whose members only acquire ultimate cell fate after progressing to their terminal location during fruiting body morphogenesis.
Collapse
Affiliation(s)
- Gillian Forbes
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Zhi-Hui Chen
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Koryu Kin
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- *Correspondence: Pauline Schaap,
| |
Collapse
|
12
|
Selective drivers of simple multicellularity. Curr Opin Microbiol 2022; 67:102141. [PMID: 35247708 DOI: 10.1016/j.mib.2022.102141] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/21/2022]
Abstract
In order to understand the evolution of multicellularity, we must understand how and why selection favors the first steps in this process: the evolution of simple multicellular groups. Multicellularity has evolved many times in independent lineages with fundamentally different ecologies, yet no work has yet systematically examined these diverse selective drivers. Here we review recent developments in systematics, comparative biology, paleontology, synthetic biology, theory, and experimental evolution, highlighting ten selective drivers of simple multicellularity. Our survey highlights the many ecological opportunities available for simple multicellularity, and stresses the need for additional work examining how these first steps impact the subsequent evolution of complex multicellularity.
Collapse
|
13
|
Love A, Wagner GP. Co-option of stress mechanisms in the origin of evolutionary novelties. Evolution 2021; 76:394-413. [PMID: 34962651 PMCID: PMC9303342 DOI: 10.1111/evo.14421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
It is widely accepted that stressful conditions can facilitate evolutionary change. The mechanisms elucidated thus far accomplish this with a generic increase in heritable variation that facilitates more rapid adaptive evolution, often via plastic modifications of existing characters. Through scrutiny of different meanings of stress in biological research, and an explicit recognition that stressors must be characterized relative to their effect on capacities for maintaining functional integrity, we distinguish between: (1) previously identified stress‐responsive mechanisms that facilitate evolution by maintaining an adaptive fit with the environment, and (2) the co‐option of stress‐responsive mechanisms that are specific to stressors leading to the origin of novelties via compensation. Unlike standard accounts of gene co‐option that identify component sources of evolutionary change, our model documents the cost‐benefit trade‐offs and thereby explains how one mechanism—an immediate response to acute stress—is transformed evolutionarily into another—routine protection from recurring stressors. We illustrate our argument with examples from cell type origination as well as processes and structures at higher levels of organization. These examples suggest a general principle of evolutionary origination based on the capacity to switch between regulatory states related to reproduction and proliferation versus survival and differentiation.
Collapse
Affiliation(s)
- Alan Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT-06520.,Yale Systems Biology Institute, West Haven, CT-06516.,Department of Evolutionary Biology, University of Vienna, Austria
| |
Collapse
|
14
|
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively known as Batten disease, are a group of neurological diseases that affect all ages and ethnicities worldwide. There are 13 different subtypes of NCL, each caused by a mutation in a distinct gene. The NCLs are characterized by the accumulation of undigestible lipids and proteins in various cell types. This leads to progressive neurodegeneration and clinical symptoms including vision loss, progressive motor and cognitive decline, seizures, and premature death. These diseases have commonly been characterized by lysosomal defects leading to the accumulation of undigestible material but further research on the NCLs suggests that altered protein secretion may also play an important role. This has been strengthened by recent work in biomedical model organisms, including Dictyostelium discoideum, mice, and sheep. Research in D. discoideum has reported the extracellular localization of some NCL-related proteins and the effects of NCL-related gene loss on protein secretion during unicellular growth and multicellular development. Aberrant protein secretion has also been observed in mammalian models of NCL, which has allowed examination of patient-derived cerebrospinal fluid and urine for potential diagnostic and prognostic biomarkers. Accumulated evidence links seven of the 13 known NCL-related genes to protein secretion, suggesting that altered secretion is a common hallmark of multiple NCL subtypes. This Review highlights the impact of altered protein secretion in the NCLs, identifies potential biomarkers of interest and suggests that future work in this area can provide new therapeutic insight. Summary: This Review discusses work in different model systems and humans, examining the impact of altered protein secretion in the neuronal ceroid lipofuscinoses group of diseases to provide novel therapeutic insights.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Life & Health Sciences Building, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
15
|
Vincent O, Antón-Esteban L, Bueno-Arribas M, Tornero-Écija A, Navas MÁ, Escalante R. The WIPI Gene Family and Neurodegenerative Diseases: Insights From Yeast and Dictyostelium Models. Front Cell Dev Biol 2021; 9:737071. [PMID: 34540850 PMCID: PMC8442847 DOI: 10.3389/fcell.2021.737071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/12/2021] [Indexed: 02/01/2023] Open
Abstract
WIPIs are a conserved family of proteins with a characteristic 7-bladed β-propeller structure. They play a prominent role in autophagy, but also in other membrane trafficking processes. Mutations in human WIPI4 cause several neurodegenerative diseases. One of them is BPAN, a rare disease characterized by developmental delay, motor disorders, and seizures. Autophagy dysfunction is thought to play an important role in this disease but the precise pathological consequences of the mutations are not well established. The use of simple models such as the yeast Saccharomyces cerevisiae and the social amoeba Dictyostelium discoideum provides valuable information on the molecular and cellular function of these proteins, but also sheds light on possible pathways that may be relevant in the search for potential therapies. Here, we review the function of WIPIs as well as disease-causing mutations with a special focus on the information provided by these simple models.
Collapse
Affiliation(s)
- Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | - Laura Antón-Esteban
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | | | - Alba Tornero-Écija
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | - María-Ángeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| |
Collapse
|
16
|
Intercellular communication and the organization of simple multicellular animals. Cells Dev 2021; 169:203726. [PMID: 34450344 DOI: 10.1016/j.cdev.2021.203726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
Animal cells are amazing examples of decentralized systems: By interchanging information about their position and internal state, cells coordinate their behavior and organize themselves in time and space. Examples of this behavior are the development of an embryo or of an organoid. In this work we have asked which are the "rules of intercellular relationship" that allow the organization of an abstract cell collective into structures similar to simple metazoans, without being specific about the (molecular, cellular or physical) nature of the processes involved. To do so, we have used a computational modeling approach following a modified version of the "Swarmalator" concept introduced by O'Keeffe, Hong and Strogatz (2017): a collection of interacting particles ("swarmalators"), each of which defined by a position in space and an internal state (a phase). The key feature is that swarmalators are coupled, so that their position and internal state are both affected by the position and state of all other swarmalators. This model can be easily analogized to biological systems, with "cells" being the swarmalators, and their phase the cell's internal state or "cell type". With this model we explore the conditions (represented by the coupling parameters) that would allow the organization of a multicellular "bioswarmer" and its dynamics along a sort of life cycle. Originally developed in 2D, we implement the model in 3D as well. We describe how changing the strength of intercellular communication can alter the structure and differentiation state of the bioswarmer, how internal polarization can arise and trigger collective directed migration, or how partly erasing the cellular memory of cell state is critical to allow bioswarmers to transit through different states. In addition, we show that the size of a multicellular ensemble might control the differentiation of its constituent cells without changing its rules of relationship.
Collapse
|
17
|
Why have aggregative multicellular organisms stayed simple? Curr Genet 2021; 67:871-876. [PMID: 34114051 DOI: 10.1007/s00294-021-01193-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Multicellularity has evolved numerous times across the tree of life. One of the most fundamental distinctions among multicellular organisms is their developmental mode: whether they stay together during growth and develop clonally, or form a group through the aggregation of free-living cells. The five eukaryotic lineages to independently evolve complex multicellularity (animals, plants, red algae, brown algae, and fungi) all develop clonally. This fact has largely been explained through social evolutionary theory's lens of cooperation and conflict, where cheating within non-clonal groups has the potential to undermine multicellular adaptation. Multicellular organisms that form groups via aggregation could mitigate the costs of cheating by evolving kin recognition systems that prevent the formation of chimeric groups. However, recent work suggests that selection for the ability to aggregate quickly may constrain the evolution of highly specific kin recognition, sowing the seeds for persistent evolutionary conflict. Importantly, other features of aggregative multicellular life cycles may independently act to constrain the evolution of complex multicellularity. All known aggregative multicellular organisms are facultatively multicellular (as opposed to obligately multicellular), allowing unicellular-level adaptation to environmental selection. Because they primarily exist in a unicellular state, it may be difficult for aggregative multicellular organisms to evolve multicellular traits that carry pleiotropic cell-level fitness costs. Thus, even in the absence of social conflict, aggregative multicellular organisms may have limited potential for the evolution of complex multicellularity.
Collapse
|
18
|
Mitochondrial Processes during Early Development of Dictyostelium discoideum: From Bioenergetic to Proteomic Studies. Genes (Basel) 2021; 12:genes12050638. [PMID: 33923051 PMCID: PMC8145953 DOI: 10.3390/genes12050638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
The slime mold Dictyostelium discoideum’s life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria’s structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.
Collapse
|
19
|
Pears CJ, Gross JD. Microbe Profile: Dictyostelium discoideum: model system for development, chemotaxis and biomedical research. MICROBIOLOGY-SGM 2021; 167. [PMID: 33646931 DOI: 10.1099/mic.0.001040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The social amoeba Dictyostelium discoideum is a versatile organism that is unusual in alternating between single-celled and multi-celled forms. It possesses highly-developed systems for cell motility and chemotaxis, phagocytosis, and developmental pattern formation. As a soil amoeba growing on microorganisms, it is exposed to many potential pathogens; it thus provides fruitful ways of investigating host-pathogen interactions and is emerging as an influential model for biomedical research.
Collapse
Affiliation(s)
- Catherine J Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Julian D Gross
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
20
|
Kjellin J, Avesson L, Reimegård J, Liao Z, Eichinger L, Noegel A, Glöckner G, Schaap P, Söderbom F. Abundantly expressed class of noncoding RNAs conserved through the multicellular evolution of dictyostelid social amoebas. Genome Res 2021; 31:436-447. [PMID: 33479022 PMCID: PMC7919456 DOI: 10.1101/gr.272856.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/15/2021] [Indexed: 01/26/2023]
Abstract
Aggregative multicellularity has evolved multiple times in diverse groups of eukaryotes, exemplified by the well-studied development of dictyostelid social amoebas, for example, Dictyostelium discoideum However, it is still poorly understood why multicellularity emerged in these amoebas while the majority of other members of Amoebozoa are unicellular. Previously, a novel type of noncoding RNA, Class I RNAs, was identified in D. discoideum and shown to be important for normal multicellular development. Here, we investigated Class I RNA evolution and its connection to multicellular development. We identified a large number of new Class I RNA genes by constructing a covariance model combined with a scoring system based on conserved upstream sequences. Multiple genes were predicted in representatives of each major group of Dictyostelia and expression analysis confirmed that our search approach identifies expressed Class I RNA genes with high accuracy and sensitivity and that the RNAs are developmentally regulated. Further studies showed that Class I RNAs are ubiquitous in Dictyostelia and share highly conserved structure and sequence motifs. In addition, Class I RNA genes appear to be unique to dictyostelid social amoebas because they could not be identified in outgroup genomes, including their closest known relatives. Our results show that Class I RNA is an ancient class of ncRNAs, likely to have been present in the last common ancestor of Dictyostelia dating back at least 600 million years. Based on previous functional analyses and the presented evolutionary investigation, we hypothesize that Class I RNAs were involved in evolution of multicellularity in Dictyostelia.
Collapse
Affiliation(s)
- Jonas Kjellin
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| | - Lotta Avesson
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, Uppsala S-75124, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala S-75124, Sweden
| | - Zhen Liao
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| | - Ludwig Eichinger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Angelika Noegel
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Gernot Glöckner
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| |
Collapse
|