1
|
Ye P, Zhang W, Liao Y, Hu T, Jiang CL. Unlocking the brain's code: The crucial role of post-translational modifications in neurodevelopment and neurological function. Phys Life Rev 2025; 53:187-214. [PMID: 40120399 DOI: 10.1016/j.plrev.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Post-translational modifications (PTMs) represent a crucial regulatory mechanism in the brain, influencing various processes, including neurodevelopment and neurological function. This review discusses the effects of PTMs, such as phosphorylation, ubiquitination, acetylation, and glycosylation, on neurodevelopment and central nervous system functionality. Although neurodevelopmental processes linked to PTMs are complex, proteins frequently converge within shared pathways. These pathways encompass neurodevelopmental processes, signaling mechanisms, neuronal migration, and synaptic connection formation, where PTMs act as dynamic regulators, ensuring the precise execution of brain functions. A detailed investigation of the fundamental mechanisms governing these pathways will contribute to a deeper understanding of nervous system functions and facilitate the identification of potential therapeutic targets. A thorough examination of the PTM landscape holds significant potential, not only in advancing knowledge but also in developing treatments for various neurological disorders.
Collapse
Affiliation(s)
- Peng Ye
- Department of Ear-Nose-Throat, Eastern Theater Naval Hospital, No. 98, Wen Hua Road, ZheJiang 316000, China.
| | - Wangzheqi Zhang
- School of Anesthesiology, Changhai Hospital, Naval Medical University, No. 168, Changhai Road, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Yan Liao
- School of Anesthesiology, Changhai Hospital, Naval Medical University, No. 168, Changhai Road, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, No. 800, Xiangyin Road, Shanghai 200433, China.
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, No. 800, Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
2
|
Deng Y, Banerjee T, Pal DS, Banerjee P, Zhan H, Borleis J, Igleias PA, Devreotes PN. PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613115. [PMID: 39314378 PMCID: PMC11419139 DOI: 10.1101/2024.09.15.613115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Symmetry breaking, polarity establishment, and spontaneous cell protrusion formation are fundamental but poorly explained cell behaviors. Here, we demonstrate that a biochemical network, where the mutually inhibitory localization of PIP5K and Ras activities plays a central role, governs these processes. First, in resting cells devoid of cytoskeletal activity, PIP5K is uniformly elevated on the plasma membrane, while Ras activity remains minimal. Symmetry is broken by spontaneous local displacements of PIP5K, coupled with simultaneous activations of Ras and downstream signaling events, including PI3K activation. Second, knockout of PIP5K dramatically increases both the incidence and size of Ras-PI3K activation patches, accompanied by branched F-actin assembly. This leads to enhanced cortical wave formation, increased protrusive activity, and a shift in migration mode. Third, high inducible overexpression of PIP5K virtually eliminates Ras-PI3K signaling, cytoskeletal activity, and cell migration, while acute recruitment of cytosolic PIP5K to the membrane induces contraction and blebs in cancer cells. These arrested phenotypes are reversed by reducing myosin II activity, indicating myosin's involvement in the PIP5K-Ras-centered regulatory network. Remarkably, low inducible overexpression of PIP5K unexpectedly facilitates polarity establishment, highlighting PIP5K as a highly sensitive master regulator of these processes. Simulations of a computational model combining an excitable system, cytoskeletal loops, and dynamic partitioning of PIP5K recreates the experimental observations. Taken together, our results reveal that a bistable, mutually exclusive localization of PIP5K and active Ras on the plasma membrane triggers the initial symmetry breaking. Coupled actomyosin reduction and increased actin polymerization lead to intermittently extended protrusions and, with feedback from the cytoskeleton, self-organizing, complementary gradients of PIP5K versus Ras steepen, raising the threshold of the networks at the rear and lowering it at the front to generate polarity for cell migration.
Collapse
Affiliation(s)
- Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Parijat Banerjee
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A. Igleias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Klimenko ES, Sukhareva KS, Vlasova Y, Smolina NA, Fomicheva Y, Knyazeva A, Muravyev AS, Sorokina MY, Gavrilova LS, Boldyreva LV, Medvedeva SS, Sejersen T, Kostareva AA. Flnc expression impacts mitochondrial function, autophagy, and calcium handling in C2C12 cells. Exp Cell Res 2024; 442:114174. [PMID: 39089502 DOI: 10.1016/j.yexcr.2024.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Affiliation(s)
- E S Klimenko
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - K S Sukhareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - YuA Vlasova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - N A Smolina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - YuV Fomicheva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A Knyazeva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A S Muravyev
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - M Yu Sorokina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - L S Gavrilova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - L V Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S S Medvedeva
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T Sejersen
- Department of Women's and Children's Health, Karolinska Institutet, Department of Child Neurology, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - A A Kostareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia; Department of Women's and Children's Health, Karolinska Institutet, Department of Child Neurology, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
4
|
Lin Y, Pal DS, Banerjee P, Banerjee T, Qin G, Deng Y, Borleis J, Iglesias PA, Devreotes PN. Ras suppression potentiates rear actomyosin contractility-driven cell polarization and migration. Nat Cell Biol 2024; 26:1062-1076. [PMID: 38951708 PMCID: PMC11364469 DOI: 10.1038/s41556-024-01453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Ras has been extensively studied as a promoter of cell proliferation, whereas few studies have explored its role in migration. To investigate the direct and immediate effects of Ras activity on cell motility or polarity, we focused on RasGAPs, C2GAPB in Dictyostelium amoebae and RASAL3 in HL-60 neutrophils and macrophages. In both cellular systems, optically recruiting the respective RasGAP to the cell front extinguished pre-existing protrusions and changed migration direction. However, when these respective RasGAPs were recruited uniformly to the membrane, cells polarized and moved more rapidly, whereas targeting to the back exaggerated these effects. These unexpected outcomes of attenuating Ras activity naturally had strong, context-dependent consequences for chemotaxis. The RasGAP-mediated polarization depended critically on myosin II activity and commenced with contraction at the cell rear, followed by sustained mTORC2-dependent actin polymerization at the front. These experimental results were captured by computational simulations in which Ras levels control front- and back-promoting feedback loops. The discovery that inhibiting Ras activity can produce counterintuitive effects on cell migration has important implications for future drug-design strategies targeting oncogenic Ras.
Collapse
Affiliation(s)
- Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Parijat Banerjee
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Guanghui Qin
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Lasota S, Zimolag E, Bobis-Wozowicz S, Pilipiuk J, Madeja Z. The dynamics of the electrotactic reaction of mouse 3T3 fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119647. [PMID: 38092134 DOI: 10.1016/j.bbamcr.2023.119647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The molecular mechanisms behind electrotaxis remain largely unknown, with no identified primary direct current electric field (dcEF) sensor. Two leading hypotheses propose mechanisms involving the redistribution of charged components in the cell membrane (driven by electrophoresis or electroosmosis) and the asymmetric activation of ion channels. To investigate these mechanisms, we studied the dynamics of electrotactic behaviour of mouse 3T3 fibroblasts. We observed that 3T3 fibroblasts exhibit cathodal migration within just 1 min when exposed to physiological dcEF. This rapid response suggests the involvement of ion channels in the cell membrane. Our large-scale screening method identified several ion channel genes as potential key players, including the inwardly rectifying potassium channel Kir4.2. Blocking the Kir channel family with Ba2+ or silencing the Kcnj15 gene, encoding Kir4.2, significantly reduced the directional migration of 3T3 cells. Additionally, the levels of the intracellular regulators of Kir channels, spermine (SPM) and spermidine (SPD), had a significant impact on cell directionality. Interestingly, inhibiting Kir4.2 resulted in the temporary cessation of electrotaxis for approximately 1-2 h before its return. This observation suggests a two-phase mechanism for the electrotaxis of mouse 3T3 fibroblasts, where ion channel activation triggers the initial rapid response to dcEF, and the subsequent redistribution of membrane receptors sustains long-term directional movement. In summary, our study unveils the involvement of Kir channels and proposes a biphasic mechanism to explain the electrotactic behaviour of mouse 3T3 fibroblasts, shedding light on the molecular underpinnings of electrotaxis.
Collapse
Affiliation(s)
- Slawomir Lasota
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Eliza Zimolag
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Gronostajowa 7, 30-387 Kraków, Poland
| | - Sylwia Bobis-Wozowicz
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Gronostajowa 7, 30-387 Kraków, Poland
| | - Jagoda Pilipiuk
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Gronostajowa 7, 30-387 Kraków, Poland
| | - Zbigniew Madeja
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
6
|
Zhan H, Pal DS, Borleis J, Janetopoulos C, Huang CH, Devreotes PN. Self-organizing glycolytic waves fuel cell migration and cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577603. [PMID: 38328193 PMCID: PMC10849635 DOI: 10.1101/2024.01.28.577603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Glycolysis has traditionally been thought to take place in the cytosol but we observed the enrichment of glycolytic enzymes in propagating waves of the cell cortex in human epithelial cells. These waves reflect excitable Ras/PI3K signal transduction and F-actin/actomyosin networks that drive cellular protrusions, suggesting that localized glycolysis at the cortex provides ATP for cell morphological events such as migration, phagocytosis, and cytokinesis. Perturbations that altered cortical waves caused corresponding changes in enzyme localization and ATP production whereas synthetic recruitment of glycolytic enzymes to the cell cortex enhanced cell spreading and motility. Interestingly, the cortical waves and ATP levels were positively correlated with the metastatic potential of cancer cells. The coordinated signal transduction, cytoskeletal, and glycolytic waves in cancer cells may explain their increased motility and their greater reliance on glycolysis, often referred to as the Warburg effect.
Collapse
Affiliation(s)
- Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Chris Janetopoulos
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- Total Experience Learning, Albright College, Reading, PA 19612
| | - Chuan-Hsiang Huang
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- NDepartment of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- Lead Contact
| |
Collapse
|
7
|
Mierke CT. Editorial: A view of cell migration dynamics at the single-cell level. Front Cell Dev Biol 2023; 11:1348039. [PMID: 38149048 PMCID: PMC10749934 DOI: 10.3389/fcell.2023.1348039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023] Open
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Systems Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany
| |
Collapse
|
8
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. Nat Commun 2023; 14:7909. [PMID: 38036511 PMCID: PMC10689845 DOI: 10.1038/s41467-023-43615-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The plasma membrane is widely regarded as the hub of the numerous signal transduction activities. Yet, the fundamental biophysical mechanisms that spatiotemporally compartmentalize different classes of membrane proteins remain unclear. Using multimodal live-cell imaging, here we first show that several lipid-anchored membrane proteins are consistently depleted from the membrane regions where the Ras/PI3K/Akt/F-actin network is activated. The dynamic polarization of these proteins does not depend upon the F-actin-based cytoskeletal structures, recurring shuttling between membrane and cytosol, or directed vesicular trafficking. Photoconversion microscopy and single-molecule measurements demonstrate that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane which enable their selective segregation. When these diffusion coefficients are incorporated into an excitable network-based stochastic reaction-diffusion model, simulations reveal that the altered affinity mediated selective partitioning is sufficient to drive familiar propagating wave patterns. Furthermore, normally uniform integral and lipid-anchored membrane proteins partition successfully when membrane domain-specific peptides are optogenetically recruited to them. We propose "dynamic partitioning" as a new mechanism that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins during various physiological processes where membrane polarizes.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Lin Y, Pal DS, Banerjee P, Banerjee T, Qin G, Deng Y, Borleis J, Iglesias PA, Devreotes PN. Ras-mediated homeostatic control of front-back signaling dictates cell polarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555648. [PMID: 37693515 PMCID: PMC10491231 DOI: 10.1101/2023.08.30.555648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Studies in the model systems, Dictyostelium amoebae and HL-60 neutrophils, have shown that local Ras activity directly regulates cell motility or polarity. Localized Ras activation on the membrane is spatiotemporally regulated by its activators, RasGEFs, and inhibitors, RasGAPs, which might be expected to create a stable 'front' and 'back', respectively, in migrating cells. Focusing on C2GAPB in amoebae and RASAL3 in neutrophils, we investigated how Ras activity along the cortex controls polarity. Since existing gene knockout and overexpression studies can be circumvented, we chose optogenetic approaches to assess the immediate, local effects of these Ras regulators on the cell cortex. In both cellular systems, optically targeting the respective RasGAPs to the cell front extinguished existing protrusions and changed the direction of migration, as might be expected. However, when the expression of C2GAPB was induced globally, amoebae polarized within hours. Furthermore, within minutes of globally recruiting either C2GAPB in amoebae or RASAL3 in neutrophils, each cell type polarized and moved more rapidly. Targeting the RasGAPs to the cell backs exaggerated these effects on migration and polarity. Overall, in both cell types, RasGAP-mediated polarization was brought about by increased actomyosin contractility at the back and sustained, localized F-actin polymerization at the front. These experimental results were accurately captured by computational simulations in which Ras levels control front and back feedback loops. The discovery that context-dependent Ras activity on the cell cortex has counterintuitive, unanticipated effects on cell polarity can have important implications for future drug-design strategies targeting oncogenic Ras.
Collapse
|
10
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
11
|
Pal DS, Banerjee T, Lin Y, de Trogoff F, Borleis J, Iglesias PA, Devreotes PN. Actuation of single downstream nodes in growth factor network steers immune cell migration. Dev Cell 2023; 58:1170-1188.e7. [PMID: 37220748 PMCID: PMC10524337 DOI: 10.1016/j.devcel.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Félix de Trogoff
- Department of Mechanical Engineering, STI School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Pal DS, Lin Y, Zhan H, Banerjee T, Kuhn J, Providence S, Devreotes PN. Optogenetic modulation of guanine nucleotide exchange factors of Ras superfamily proteins directly controls cell shape and movement. Front Cell Dev Biol 2023; 11:1195806. [PMID: 37492221 PMCID: PMC10363612 DOI: 10.3389/fcell.2023.1195806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
In this article, we provide detailed protocols on using optogenetic dimerizers to acutely perturb activities of guanine nucleotide exchange factors (GEFs) specific to Ras, Rac or Rho small GTPases of the migratory networks in various mammalian and amoeba cell lines. These GEFs are crucial components of signal transduction networks which link upstream G-protein coupled receptors to downstream cytoskeletal components and help cells migrate through their dynamic microenvironment. Conventional approaches to perturb and examine these signaling and cytoskeletal networks, such as gene knockout or overexpression, are protracted which allows networks to readjust through gene expression changes. Moreover, these tools lack spatial resolution to probe the effects of local network activations. To overcome these challenges, blue light-inducible cryptochrome- and LOV domain-based dimerization systems have been recently developed to control signaling or cytoskeletal events in a spatiotemporally precise manner. We illustrate that, within minutes of global membrane recruitment of full-length GEFs or their catalytic domains only, widespread increases or decreases in F-actin rich protrusions and cell size occur, depending on the particular node in the networks targeted. Additionally, we demonstrate localized GEF recruitment as a robust assay system to study local network activation-driven changes in polarity and directed migration. Altogether, these optical tools confirmed GEFs of Ras superfamily GTPases as regulators of cell shape, actin dynamics, and polarity. Furthermore, this optogenetic toolbox may be exploited in perturbing complex signaling interactions in varied physiological contexts including mammalian embryogenesis.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jonathan Kuhn
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Stephenie Providence
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Ingenuity Research Program, Baltimore Polytechnic Institute, Baltimore, MD, United States
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
13
|
Hirose S, Hesnard J, Ghazi N, Roussel D, Voituron Y, Cochet-Escartin O, Rieu JP, Anjard C, Funamoto K. The aerotaxis of Dictyostelium discoideum is independent of mitochondria, nitric oxide and oxidative stress. Front Cell Dev Biol 2023; 11:1134011. [PMID: 37397260 PMCID: PMC10307954 DOI: 10.3389/fcell.2023.1134011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Spatial and temporal variations of oxygen environments affect the behaviors of various cells and are involved in physiological and pathological events. Our previous studies with Dictyostelium discoideum as a model of cell motility have demonstrated that aerotaxis toward an oxygen-rich region occurs below 2% O2. However, while the aerotaxis of Dictyostelium seems to be an effective strategy to search for what is essential for survival, the mechanism underlying this phenomenon is still largely unclear. One hypothesis is that an oxygen concentration gradient generates a secondary oxidative stress gradient that would direct cell migration towards higher oxygen concentration. Such mechanism was inferred but not fully demonstrated to explain the aerotaxis of human tumor cells. Here, we investigated the role on aerotaxis of flavohemoglobins, proteins that can both act as potential oxygen sensors and modulators of nitric oxide and oxidative stress. The migratory behaviors of Dictyostelium cells were observed under both self-generated and imposed oxygen gradients. Furthermore, their changes by chemicals generating or preventing oxidative stress were tested. The trajectories of the cells were then analyzed through time-lapse phase-contrast microscopic images. The results indicate that both oxidative and nitrosative stresses are not involved in the aerotaxis of Dictyostelium but cause cytotoxic effects that are enhanced upon hypoxia.
Collapse
Affiliation(s)
- Satomi Hirose
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Institute of Fluid Science, Tohoku University, Sendai, Japan
| | - Julie Hesnard
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Nasser Ghazi
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Damien Roussel
- LEHNA, UMR CNRS 5023, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Yann Voituron
- LEHNA, UMR CNRS 5023, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Oliver Cochet-Escartin
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Jean-Paul Rieu
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Christophe Anjard
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
| | - Kenichi Funamoto
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Institute of Fluid Science, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
O'Neill KM, Saracino E, Barile B, Mennona NJ, Mola MG, Pathak S, Posati T, Zamboni R, Nicchia GP, Benfenati V, Losert W. Decoding Natural Astrocyte Rhythms: Dynamic Actin Waves Result from Environmental Sensing by Primary Rodent Astrocytes. Adv Biol (Weinh) 2023; 7:e2200269. [PMID: 36709481 DOI: 10.1002/adbi.202200269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Indexed: 01/30/2023]
Abstract
Astrocytes are key regulators of brain homeostasis, equilibrating ion, water, and neurotransmitter concentrations and maintaining essential conditions for proper cognitive function. Recently, it has been shown that the excitability of the actin cytoskeleton manifests in second-scale dynamic fluctuations and acts as a sensor of chemophysical environmental cues. However, it is not known whether the cytoskeleton is excitable in astrocytes and how the homeostatic function of astrocytes is linked to the dynamics of the cytoskeleton. Here it is shown that homeostatic regulation involves the excitable dynamics of actin in certain subcellular regions of astrocytes, especially near the cell boundary. The results further indicate that actin dynamics concentrate into "hotspot" regions that selectively respond to certain chemophysical stimuli, specifically the homeostatic challenges of ion or water concentration increases. Substrate topography makes the actin dynamics of astrocytes weaker. Super-resolution images demonstrate that surface topography is also associated with the predominant perpendicular alignment of actin filaments near the cell boundary, whereas flat substrates result in an actin cortex mainly parallel to the cell boundary. Additionally, coculture with neurons increases both the probability of actin dynamics and the strength of hotspots. The excitable systems character of actin thus makes astrocytes direct participants in neural cell network dynamics.
Collapse
Affiliation(s)
- Kate M O'Neill
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Emanuela Saracino
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Barbara Barile
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Nicholas J Mennona
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| | - Maria Grazia Mola
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Spandan Pathak
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Tamara Posati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Grazia P Nicchia
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Valentina Benfenati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
15
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522496. [PMID: 36712016 PMCID: PMC9881856 DOI: 10.1101/2023.01.03.522496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The plasma membrane is widely regarded as the hub of the signal transduction network activities that drives numerous physiological responses, including cell polarity and migration. Yet, the symmetry breaking process in the membrane, that leads to dynamic compartmentalization of different proteins, remains poorly understood. Using multimodal live-cell imaging, here we first show that multiple endogenous and synthetic lipid-anchored proteins, despite maintaining stable tight association with the inner leaflet of the plasma membrane, were unexpectedly depleted from the membrane domains where the signaling network was spontaneously activated such as in the new protrusions as well as within the propagating ventral waves. Although their asymmetric patterns resembled those of standard peripheral "back" proteins such as PTEN, unlike the latter, these lipidated proteins did not dissociate from the membrane upon global receptor activation. Our experiments not only discounted the possibility of recurrent reversible translocation from membrane to cytosol as it occurs for weakly bound peripheral membrane proteins, but also ruled out the necessity of directed vesicular trafficking and cytoskeletal supramolecular structure-based restrictions in driving these dynamic symmetry breaking events. Selective photoconversion-based protein tracking assays suggested that these asymmetric patterns instead originate from the inherent ability of these membrane proteins to "dynamically partition" into distinct domains within the plane of the membrane. Consistently, single-molecule measurements showed that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane. When these profiles were incorporated into an excitable network-based stochastic reaction-diffusion model of the system, simulations revealed that our proposed "dynamic partitioning" mechanism is sufficient to give rise to familiar asymmetric propagating wave patterns. Moreover, we demonstrated that normally uniform integral and lipid-anchored membrane proteins in Dictyostelium and mammalian neutrophil cells can be induced to partition spatiotemporally to form polarized patterns, by optogenetically recruiting membrane domain-specific peptides to these proteins. Together, our results indicate "dynamic partitioning" as a new mechanism of plasma membrane organization, that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins in different physiological processes.
Collapse
|
16
|
Banerjee T, Biswas D, Pal DS, Miao Y, Iglesias PA, Devreotes PN. Spatiotemporal dynamics of membrane surface charge regulates cell polarity and migration. Nat Cell Biol 2022; 24:1499-1515. [PMID: 36202973 PMCID: PMC10029748 DOI: 10.1038/s41556-022-00997-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/18/2022] [Indexed: 12/12/2022]
Abstract
During cell migration and polarization, numerous signal transduction and cytoskeletal components self-organize to generate localized protrusions. Although biochemical and genetic analyses have delineated many specific interactions, how the activation and localization of so many different molecules are spatiotemporally orchestrated at the subcellular level has remained unclear. Here we show that the regulation of negative surface charge on the inner leaflet of the plasma membrane plays an integrative role in the molecular interactions. Surface charge, or zeta potential, is transiently lowered at new protrusions and within cortical waves of Ras/PI3K/TORC2/F-actin network activation. Rapid alterations of inner leaflet anionic phospholipids-such as PI(4,5)P2, PI(3,4)P2, phosphatidylserine and phosphatidic acid-collectively contribute to the surface charge changes. Abruptly reducing the surface charge by recruiting positively charged optogenetic actuators was sufficient to trigger the entire biochemical network, initiate de novo protrusions and abrogate pre-existing polarity. These effects were blocked by genetic or pharmacological inhibition of key signalling components such as AKT and PI3K/TORC2. Conversely, increasing the negative surface charge deactivated the network and locally suppressed chemoattractant-induced protrusions or subverted EGF-induced ERK activation. Computational simulations involving excitable biochemical networks demonstrated that slight changes in feedback loops, induced by recruitment of the charged actuators, could lead to outsized effects on system activation. We propose that key signalling network components act on, and are in turn acted upon, by surface charge, closing feedback loops, which bring about the global-scale molecular self-organization required for spontaneous protrusion formation, cell migration and polarity establishment.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
17
|
Manes NP, Calzola JM, Kaplan PR, Fraser IDC, Germain RN, Meier-Schellersheim M, Nita-Lazar A. Absolute protein quantitation of the mouse macrophage Toll-like receptor and chemotaxis pathways. Sci Data 2022; 9:491. [PMID: 35961990 PMCID: PMC9374760 DOI: 10.1038/s41597-022-01612-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
The Toll-like receptor (TLR) and chemotaxis pathways are key components of the innate immune system. Subtle variation in the concentration, timing, and molecular structure of the ligands are known to affect downstream signaling and the resulting immune response. Computational modeling and simulation at the molecular interaction level can be used to study complex biological pathways, but such simulations require protein concentration values as model parameters. Here we report the development and application of targeted mass spectrometry assays to measure the absolute abundance of proteins of the mouse macrophage Toll-like receptor 4 (TLR4) and chemotaxis pathways. Two peptides per protein were quantified, if possible. The protein abundance values ranged from 1,332 to 227,000,000 copies per cell. They moderately correlated with transcript abundance values from a previously published mouse macrophage RNA-seq dataset, and these two datasets were combined to make proteome-wide abundance estimates. The datasets produced during this investigation can be used for pathway modeling and simulation, as well as for other studies of the TLR and chemotaxis pathways. Measurement(s) | molecules per cell | Technology Type(s) | nanoflow high-performance liquid chromatography-electrospray ionisation tandem mass spectrometry | Sample Characteristic - Organism | Mus musculus |
Collapse
Affiliation(s)
- Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica M Calzola
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pauline R Kaplan
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Iain D C Fraser
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ronald N Germain
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Martin Meier-Schellersheim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
18
|
Michaud A, Leda M, Swider ZT, Kim S, He J, Landino J, Valley JR, Huisken J, Goryachev AB, von Dassow G, Bement WM. A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4. J Cell Biol 2022; 221:e202203017. [PMID: 35708547 PMCID: PMC9206115 DOI: 10.1083/jcb.202203017] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023] Open
Abstract
Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, "chases" Rho waves in an F-actin-dependent manner, and when coexpressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces cortical behaviors ranging from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho, and F-actin form the core of a versatile circuit that drives a diverse range of cortical behaviors, and we demonstrate that the immature oocyte is a powerful model for characterizing these dynamics.
Collapse
Affiliation(s)
- Ani Michaud
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI
| | - Marcin Leda
- Center for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - Zachary T. Swider
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI
| | - Songeun Kim
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI
| | - Jiaye He
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI
| | - Jennifer Landino
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, MI
| | - Jenna R. Valley
- Oregon Institute of Marine Biology, University of Oregon, Charleston, OR
| | - Jan Huisken
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI
| | - Andrew B. Goryachev
- Center for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, Charleston, OR
| | - William M. Bement
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
19
|
Stopp J, Sixt M. Plan your trip before you leave: The neutrophils' search-and-run journey. J Cell Biol 2022; 221:e202206127. [PMID: 35856919 PMCID: PMC9351625 DOI: 10.1083/jcb.202206127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Reading, interpreting and crawling along gradients of chemotactic cues is one of the most complex questions in cell biology. In this issue, Georgantzoglou et al. (2022. J. Cell. Biol.https://doi.org/10.1083/jcb.202103207) use in vivo models to map the temporal sequence of how neutrophils respond to an acutely arising gradient of chemoattractant.
Collapse
Affiliation(s)
| | - Michael Sixt
- ISTA, Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
20
|
Dieterich P, Lindemann O, Moskopp ML, Tauzin S, Huttenlocher A, Klages R, Chechkin A, Schwab A. Anomalous diffusion and asymmetric tempering memory in neutrophil chemotaxis. PLoS Comput Biol 2022; 18:e1010089. [PMID: 35584137 PMCID: PMC9154114 DOI: 10.1371/journal.pcbi.1010089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/31/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
The motility of neutrophils and their ability to sense and to react to chemoattractants in their environment are of central importance for the innate immunity. Neutrophils are guided towards sites of inflammation following the activation of G-protein coupled chemoattractant receptors such as CXCR2 whose signaling strongly depends on the activity of Ca2+ permeable TRPC6 channels. It is the aim of this study to analyze data sets obtained in vitro (murine neutrophils) and in vivo (zebrafish neutrophils) with a stochastic mathematical model to gain deeper insight into the underlying mechanisms. The model is based on the analysis of trajectories of individual neutrophils. Bayesian data analysis, including the covariances of positions for fractional Brownian motion as well as for exponentially and power-law tempered model variants, allows the estimation of parameters and model selection. Our model-based analysis reveals that wildtype neutrophils show pure superdiffusive fractional Brownian motion. This so-called anomalous dynamics is characterized by temporal long-range correlations for the movement into the direction of the chemotactic CXCL1 gradient. Pure superdiffusion is absent vertically to this gradient. This points to an asymmetric 'memory' of the migratory machinery, which is found both in vitro and in vivo. CXCR2 blockade and TRPC6-knockout cause tempering of temporal correlations in the chemotactic gradient. This can be interpreted as a progressive loss of memory, which leads to a marked reduction of chemotaxis and search efficiency of neutrophils. In summary, our findings indicate that spatially differential regulation of anomalous dynamics appears to play a central role in guiding efficient chemotactic behavior.
Collapse
Affiliation(s)
| | - Otto Lindemann
- Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Mats Leif Moskopp
- Institut für Physiologie, TU Dresden, Dresden, Germany
- Klinik für Neurochirurgie, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Sebastien Tauzin
- Department of Biology, Utah Valley University, Orem, Utah, United States of America
| | - Anna Huttenlocher
- Huttenlocher Lab, Department of Medical Microbiology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rainer Klages
- School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
- Max Planck Institut für Physik komplexer Systeme, Dresden, Germany
| | - Aleksei Chechkin
- Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wrocław, Poland
- Institute for Theoretical Physics, NSC KIPT, Kharkov, Ukraine
| | - Albrecht Schwab
- Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
21
|
Forbes G, Schilde C, Lawal H, Kin K, Du Q, Chen ZH, Rivero F, Schaap P. Interactome and evolutionary conservation of Dictyostelid small GTPases and their direct regulators. Small GTPases 2022; 13:239-254. [PMID: 34565293 PMCID: PMC8923023 DOI: 10.1080/21541248.2021.1984829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GTP binding proteins known as small GTPases make up one of the largest groups of regulatory proteins and control almost all functions of living cells. Their activity is under, respectively, positive and negative regulation by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which together with their upstream regulators and the downstream targets of the small GTPases form formidable signalling networks. While genomics has revealed the large size of the GTPase, GEF and GAP repertoires, only a small fraction of their interactions and functions have yet been experimentally explored. Dictyostelid social amoebas have been particularly useful in unravelling the roles of many proteins in the Rac-Rho and Ras-Rap families of GTPases in directional cell migration and regulation of the actin cytoskeleton. Genomes and cell-type specific and developmental transcriptomes are available for Dictyostelium species that span the 0.5 billion years of evolution of the group from their unicellular ancestors. In this work, we identified all GTPases, GEFs and GAPs from genomes representative of the four major taxon groups and investigated their phylogenetic relationships and evolutionary conservation and changes in their functional domain architecture and in their developmental and cell-type specific expression. We performed a hierarchical cluster analysis of the expression profiles of the ~2000 analysed genes to identify putative interacting sets of GTPases, GEFs and GAPs, which highlight sets known to interact experimentally and many novel combinations. This work represents a valuable resource for research into all fields of cellular regulation.
Collapse
Affiliation(s)
- Gillian Forbes
- School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Hajara Lawal
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Koryu Kin
- School of Life Sciences, University of Dundee, Dundee, UK,CSIC-Universitat Pompeu Fabra, Institut de Biologia Evolutiva (Csic-universitat Pompeu Fabra), Barcelona, Spain
| | - Qingyou Du
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Zhi-hui Chen
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, UK,CONTACT Pauline Schaap ; School of Life Sciences, University of Dundee, Msi/wtb Complex, Dundee, DD15EH, UK
| |
Collapse
|
22
|
Biondo M, Panuzzo C, Ali SM, Bozzaro S, Osella M, Bracco E, Pergolizzi B. The Dynamics of Aerotaxis in a Simple Eukaryotic Model. Front Cell Dev Biol 2021; 9:720623. [PMID: 34888305 PMCID: PMC8650612 DOI: 10.3389/fcell.2021.720623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023] Open
Abstract
In aerobic organisms, oxygen is essential for efficient energy production, and it acts as the last acceptor of the mitochondrial electron transport chain and as regulator of gene expression. However, excessive oxygen can lead to production of deleterious reactive oxygen species. Therefore, the directed migration of single cells or cell clumps from hypoxic areas toward a region of optimal oxygen concentration, named aerotaxis, can be considered an adaptive mechanism that plays a major role in biological and pathological processes. One relevant example is the development of O2 gradients when tumors grow beyond their vascular supply, leading frequently to metastasis. In higher eukaryotic organisms, aerotaxis has only recently begun to be explored, but genetically amenable model organisms suitable to dissect this process remain an unmet need. In this regard, we sought to assess whether Dictyostelium cells, which are an established model for chemotaxis and other motility processes, could sense oxygen gradients and move directionally in their response. By assessing different physical parameters, our findings indicate that both growing and starving Dictyostelium cells under hypoxic conditions migrate directionally toward regions of higher O2 concentration. This migration is characterized by a specific pattern of cell arrangement. A thickened circular front of high cell density (corona) forms in the cell cluster and persistently moves following the oxygen gradient. Cells in the colony center, where hypoxia is more severe, are less motile and display a rounded shape. Aggregation-competent cells forming streams by chemotaxis, when confined under hypoxic conditions, undergo stream or aggregate fragmentation, giving rise to multiple small loose aggregates that coordinately move toward regions of higher O2 concentration. By testing a panel of mutants defective in chemotactic signaling, and a catalase-deficient strain, we found that the latter and the pkbR1null exhibited altered migration patterns. Our results suggest that in Dictyostelium, like in mammalian cells, an intracellular accumulation of hydrogen peroxide favors the migration toward optimal oxygen concentration. Furthermore, differently from chemotaxis, this oxygen-driven migration is a G protein-independent process.
Collapse
Affiliation(s)
- Marta Biondo
- Department of Physics, INFN, University of Turin, Turin, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Shahzad M Ali
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Matteo Osella
- Department of Physics, INFN, University of Turin, Turin, Italy
| | - Enrico Bracco
- Department of Oncology, University of Turin, Turin, Italy
| | - Barbara Pergolizzi
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| |
Collapse
|
23
|
Kirolos SA, Gomer RH. A chemorepellent inhibits local Ras activation to inhibit pseudopod formation to bias cell movement away from the chemorepellent. Mol Biol Cell 2021; 33:ar9. [PMID: 34788129 PMCID: PMC8886819 DOI: 10.1091/mbc.e20-10-0656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of cells to sense chemical gradients is essential during development, morphogenesis, and immune responses. Although much is known about chemoattraction, chemorepulsion remains poorly understood. Proliferating Dictyostelium cells secrete a chemorepellent protein called AprA. AprA prevents pseudopod formation at the region of the cell closest to the source of AprA, causing the random movement of cells to be biased away from the AprA. Activation of Ras proteins in a localized sector of a cell cortex helps to induce pseudopod formation, and Ras proteins are needed for AprA chemorepulsion. Here we show that AprA locally inhibits Ras cortical activation through the G protein–coupled receptor GrlH, the G protein subunits Gβ and Gα8, Ras protein RasG, protein kinase B, the p21-activated kinase PakD, and the extracellular signal–regulated kinase Erk1. Diffusion calculations and experiments indicate that in a colony of cells, high extracellular concentrations of AprA in the center can globally inhibit Ras activation, while a gradient of AprA that naturally forms at the edge of the colony allows cells to activate Ras at sectors of the cell other than the sector of the cell closest to the center of the colony, effectively inducing both repulsion from the colony and cell differentiation. Together, these results suggest that a pathway that inhibits local Ras activation can mediate chemorepulsion.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| |
Collapse
|
24
|
Vincent O, Antón-Esteban L, Bueno-Arribas M, Tornero-Écija A, Navas MÁ, Escalante R. The WIPI Gene Family and Neurodegenerative Diseases: Insights From Yeast and Dictyostelium Models. Front Cell Dev Biol 2021; 9:737071. [PMID: 34540850 PMCID: PMC8442847 DOI: 10.3389/fcell.2021.737071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/12/2021] [Indexed: 02/01/2023] Open
Abstract
WIPIs are a conserved family of proteins with a characteristic 7-bladed β-propeller structure. They play a prominent role in autophagy, but also in other membrane trafficking processes. Mutations in human WIPI4 cause several neurodegenerative diseases. One of them is BPAN, a rare disease characterized by developmental delay, motor disorders, and seizures. Autophagy dysfunction is thought to play an important role in this disease but the precise pathological consequences of the mutations are not well established. The use of simple models such as the yeast Saccharomyces cerevisiae and the social amoeba Dictyostelium discoideum provides valuable information on the molecular and cellular function of these proteins, but also sheds light on possible pathways that may be relevant in the search for potential therapies. Here, we review the function of WIPIs as well as disease-causing mutations with a special focus on the information provided by these simple models.
Collapse
Affiliation(s)
- Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | - Laura Antón-Esteban
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | | | - Alba Tornero-Écija
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | - María-Ángeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| |
Collapse
|
25
|
Cole A, Buckler S, Marcucci J, Artemenko Y. Differential Roles of Actin Crosslinking Proteins Filamin and α-Actinin in Shear Flow-Induced Migration of Dictyostelium discoideum. Front Cell Dev Biol 2021; 9:743011. [PMID: 34485315 PMCID: PMC8415421 DOI: 10.3389/fcell.2021.743011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 07/28/2021] [Indexed: 01/28/2023] Open
Abstract
Shear flow-induced migration is an important physiological phenomenon experienced by multiple cell types, including leukocytes and cancer cells. However, molecular mechanisms by which cells sense and directionally migrate in response to mechanical perturbation are not well understood. Dictyostelium discoideum social amoeba, a well-established model for studying amoeboid-type migration, also exhibits directional motility when exposed to shear flow, and this behavior is preceded by rapid and transient activation of the same signal transduction network that is activated by chemoattractants. The initial response, which can also be observed following brief 2 s stimulation with shear flow, requires an intact actin cytoskeleton; however, what aspect of the cytoskeletal network is responsible for sensing and/or transmitting the signal is unclear. We investigated the role of actin crosslinkers filamin and α-actinin by analyzing initial shear flow-stimulated responses in cells with or without these proteins. Both filamin and α-actinin showed rapid and transient relocalization from the cytosol to the cortex following shear flow stimulation. Using spatiotemporal analysis of Ras GTPase activation as a readout of signal transduction network activity, we demonstrated that lack of α-actinin did not reduce, and, in fact, slightly improved the response to acute mechanical stimulation compared to cells expressing α-actinin. In contrast, shear flow-induced Ras activation was significantly more robust in filamin-null cells rescued with filamin compared to cells expressing empty vector. Reduced responsiveness appeared to be specific to mechanical stimuli and was not due to a change in the basal activity since response to global stimulation with a chemoattractant and random migration was comparable between cells with or without filamin. Finally, while filamin-null cells rescued with filamin efficiently migrated upstream when presented with continuous flow, cells lacking filamin were defective in directional migration. Overall, our study suggests that filamin, but not α-actinin, is involved in sensing and/or transmitting mechanical stimuli that drive directed migration; however, other components of the actin cytoskeleton likely also contribute to the initial response since filamin-null cells were still able to activate the signal transduction network. These findings could have implications for our fundamental understanding of shear flow-induced migration of leukocytes, cancer cells and other amoeboid-type cells.
Collapse
Affiliation(s)
- Aaron Cole
- Department of Biological Sciences, State University of New York Oswego, Oswego, NY, United States
| | - Sarah Buckler
- Department of Biological Sciences, State University of New York Oswego, Oswego, NY, United States
| | - Jack Marcucci
- Department of Biological Sciences, State University of New York Oswego, Oswego, NY, United States
| | - Yulia Artemenko
- Department of Biological Sciences, State University of New York Oswego, Oswego, NY, United States
| |
Collapse
|
26
|
Laplaud V, Levernier N, Pineau J, Roman MS, Barbier L, Sáez PJ, Lennon-Duménil AM, Vargas P, Kruse K, du Roure O, Piel M, Heuvingh J. Pinching the cortex of live cells reveals thickness instabilities caused by myosin II motors. SCIENCE ADVANCES 2021; 7:eabe3640. [PMID: 34215576 PMCID: PMC11057708 DOI: 10.1126/sciadv.abe3640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The cell cortex is a contractile actin meshwork, which determines cell shape and is essential for cell mechanics, migration, and division. Because its thickness is below optical resolution, there is a tendency to consider the cortex as a thin uniform two-dimensional layer. Using two mutually attracted magnetic beads, one inside the cell and the other in the extracellular medium, we pinch the cortex of dendritic cells and provide an accurate and time-resolved measure of its thickness. Our observations draw a new picture of the cell cortex as a highly dynamic layer, harboring large fluctuations in its third dimension because of actomyosin contractility. We propose that the cortex dynamics might be responsible for the fast shape-changing capacity of highly contractile cells that use amoeboid-like migration.
Collapse
Affiliation(s)
- Valentin Laplaud
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Nicolas Levernier
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| | - Judith Pineau
- Institut Curie, INSERM U932, PSL University, Paris, France
| | | | - Lucie Barbier
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Pablo J Sáez
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | | | - Pablo Vargas
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Karsten Kruse
- Departments of Biochemistry and Theoretical Physics and NCCR for Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Olivia du Roure
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France.
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France.
| | - Julien Heuvingh
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France.
| |
Collapse
|
27
|
Bodinier R, Sabra A, Leiba J, Marchetti A, Lamrabet O, Ayadi I, Filić V, Kawata T, Weber I, Cosson P. Role of LrrkA in the Control of Phagocytosis and Cell Motility in Dictyostelium discoideum. Front Cell Dev Biol 2021; 9:629200. [PMID: 33763419 PMCID: PMC7982419 DOI: 10.3389/fcell.2021.629200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/15/2021] [Indexed: 11/21/2022] Open
Abstract
LrrkA is a Dictyostelium discoideum kinase with leucine-rich repeats. LrrkA stimulates Kil2 and intra-phagosomal killing of ingested bacteria in response to folate. In this study, we show that genetic inactivation of lrrkA also causes a previously unnoticed phenotype: lrrkA KO cells exhibit enhanced phagocytosis and cell motility compared to parental cells. This phenotype is cell autonomous, is reversible upon re-expression of LrrkA, and is not due to an abnormal response to inhibitory quorum-sensing factors secreted by D. discoideum in its medium. In addition, folate increases motility in parental D. discoideum cells, but not in lrrkA KO cells, suggesting that LrrkA plays a pivotal role in the cellular response to folate. On the contrary, lrrkA KO cells regulate gene transcription in response to folate in a manner indistinguishable from parental cells. Overall, based on analysis of mutant phenotypes, we identify gene products that participate in the control of intracellular killing, cell motility, and gene transcription in response to folate. These observations reveal a mechanism by which D. discoideum encountering bacterially-secreted folate can migrate, engulf, and kill bacteria more efficiently.
Collapse
Affiliation(s)
- Romain Bodinier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ayman Sabra
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jade Leiba
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Imen Ayadi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vedrana Filić
- Division of Molecular Biology, Ruder Boskovic Institute, Zagreb, Croatia
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Tokyo, Japan
| | - Igor Weber
- Division of Molecular Biology, Ruder Boskovic Institute, Zagreb, Croatia
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Baluška F, Miller WB, Reber AS. Biomolecular Basis of Cellular Consciousness via Subcellular Nanobrains. Int J Mol Sci 2021; 22:ijms22052545. [PMID: 33802617 PMCID: PMC7961929 DOI: 10.3390/ijms22052545] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cells emerged at the very beginning of life on Earth and, in fact, are coterminous with life. They are enclosed within an excitable plasma membrane, which defines the outside and inside domains via their specific biophysical properties. Unicellular organisms, such as diverse protists and algae, still live a cellular life. However, fungi, plants, and animals evolved a multicellular existence. Recently, we have developed the cellular basis of consciousness (CBC) model, which proposes that all biological awareness, sentience and consciousness are grounded in general cell biology. Here we discuss the biomolecular structures and processes that allow for and maintain this cellular consciousness from an evolutionary perspective.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
- Correspondence:
| | | | - Arthur S. Reber
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
29
|
Pears CJ, Gross JD. Microbe Profile: Dictyostelium discoideum: model system for development, chemotaxis and biomedical research. MICROBIOLOGY-SGM 2021; 167. [PMID: 33646931 DOI: 10.1099/mic.0.001040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The social amoeba Dictyostelium discoideum is a versatile organism that is unusual in alternating between single-celled and multi-celled forms. It possesses highly-developed systems for cell motility and chemotaxis, phagocytosis, and developmental pattern formation. As a soil amoeba growing on microorganisms, it is exposed to many potential pathogens; it thus provides fruitful ways of investigating host-pathogen interactions and is emerging as an influential model for biomedical research.
Collapse
Affiliation(s)
- Catherine J Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Julian D Gross
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
30
|
Li X, Pal DS, Biswas D, Iglesias PA, Devreotes PN. Reverse fountain flow of phosphatidylinositol-3,4-bisphosphate polarizes migrating cells. EMBO J 2021; 40:e105094. [PMID: 33586225 PMCID: PMC7883298 DOI: 10.15252/embj.2020105094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
The ability of cells to polarize and move toward external stimuli plays a crucial role in development, as well as in normal and pathological physiology. Migrating cells maintain dynamic complementary distributions of Ras activity and of the phospholipid phosphatidylinositol‐3,4‐bisphosphate (PI(3,4)P2). Here, we show that lagging‐edge component PI(3,4)P2 also localizes to retracting leading‐edge protrusions and nascent macropinosomes, even in the absence of phosphatidylinositol 3,4,5‐trisphosphate (PIP3). Once internalized, macropinosomes break up into smaller PI(3,4)P2‐enriched vesicles, which fuse with the plasma membrane at the rear of the cell. Subsequently, the phosphoinositide diffuses toward the front of the cell, where it is degraded. Computational modeling confirms that this cycle gives rise to stable back‐to‐front gradient. These results uncover a surprising “reverse‐fountain flow” of PI(3,4)P2 that regulates polarity.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
31
|
An Excitable Ras/PI3K/ERK Signaling Network Controls Migration and Oncogenic Transformation in Epithelial Cells. Dev Cell 2020; 54:608-623.e5. [PMID: 32877650 DOI: 10.1016/j.devcel.2020.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
The Ras/PI3K/extracellular signal-regulated kinases (ERK) signaling network plays fundamental roles in cell growth, survival, and migration and is frequently activated in cancer. Here, we show that the activities of the signaling network propagate as coordinated waves, biased by growth factor, which drive actin-based protrusions in human epithelial cells. The network exhibits hallmarks of biochemical excitability: the annihilation of oppositely directed waves, all-or-none responsiveness, and refractoriness. Abrupt perturbations to Ras, PI(4,5)P2, PI(3,4)P2, ERK, and TORC2 alter the threshold, observations that define positive and negative feedback loops within the network. Oncogenic transformation dramatically increases the wave activity, the frequency of ERK pulses, and the sensitivity to EGF stimuli. Wave activity was progressively enhanced across a series of increasingly metastatic breast cancer cell lines. The view that oncogenic transformation is a shift to a lower threshold of excitable Ras/PI3K/ERK network, caused by various combinations of genetic insults, can facilitate the assessment of cancer severity and effectiveness of interventions.
Collapse
|
32
|
Yoshioka D, Fukushima S, Koteishi H, Okuno D, Ide T, Matsuoka S, Ueda M. Single-molecule imaging of PI(4,5)P 2 and PTEN in vitro reveals a positive feedback mechanism for PTEN membrane binding. Commun Biol 2020; 3:92. [PMID: 32111929 PMCID: PMC7048775 DOI: 10.1038/s42003-020-0818-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023] Open
Abstract
PTEN, a 3-phosphatase of phosphoinositide, regulates asymmetric PI(3,4,5)P3 signaling for the anterior-posterior polarization and migration of motile cells. PTEN acts through posterior localization on the plasma membrane, but the mechanism for this accumulation is poorly understood. Here we developed an in vitro single-molecule imaging assay with various lipid compositions and use it to demonstrate that the enzymatic product, PI(4,5)P2, stabilizes PTEN's membrane-binding. The dissociation kinetics and lateral mobility of PTEN depended on the PI(4,5)P2 density on artificial lipid bilayers. The basic residues of PTEN were responsible for electrostatic interactions with anionic PI(4,5)P2 and thus the PI(4,5)P2-dependent stabilization. Single-molecule imaging in living Dictyostelium cells revealed that these interactions were indispensable for the stabilization in vivo, which enabled efficient cell migration by accumulating PTEN posteriorly to restrict PI(3,4,5)P3 distribution to the anterior. These results suggest that PI(4,5)P2-mediated positive feedback and PTEN-induced PI(4,5)P2 clustering may be important for anterior-posterior polarization.
Collapse
Affiliation(s)
- Daisuke Yoshioka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 565-0043, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Seiya Fukushima
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 565-0043, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroyasu Koteishi
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Daichi Okuno
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Toru Ide
- Graduate School of Natural Science and Technology, Okayama University, Okayama-shi, Okayama, 700-8530, Japan
| | - Satomi Matsuoka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 565-0043, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Masahiro Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 565-0043, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
33
|
Yamazaki SI, Hashimura H, Morimoto YV, Miyanaga Y, Matsuoka S, Kamimura Y, Ueda M. Talin B regulates collective cell migration via PI3K signaling in Dictyostelium discoideum mounds. Biochem Biophys Res Commun 2020; 525:372-377. [PMID: 32098673 DOI: 10.1016/j.bbrc.2020.02.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 01/23/2023]
Abstract
Collective cell migration is a key process during the development of multicellular organisms, in which the migrations of individual cells are coordinated through chemical guidance and physical contact between cells. Talin has been implicated in mechanical linkage between actin-based motile machinery and adhesion molecules, but how talin contributes to collective cell migration is unclear. Here we show that talin B is involved in chemical coordination between cells for collective cell migration at the multicellular mound stage in the development of Dictyostelium discoideum. From early aggregation to the mound formation, talB-null cells exhibited collective migration normally with cAMP relay. Subsequently, talB-null cells showed developmental arrest at the mound stage, and at the same time, they had impaired collective migration and cAMP relay, while wild-type cells exhibited rotational cell migration continuously in concert with cAMP relay during the mound stage. Genetic suppression of PI3K activity partially restored talB-null phenotypes in collective cell migration and cAMP relay. Overall, our observations suggest that talin B regulates chemical coordination via PI3K-mediated signaling in a stage-specific manner for the multicellular development of Dictyostelium cells.
Collapse
Affiliation(s)
- Shin-Ichi Yamazaki
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Hidenori Hashimura
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan; Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902, Tokyo, Japan
| | - Yusuke V Morimoto
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan; Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Yukihiro Miyanaga
- Laboratory of Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satomi Matsuoka
- Laboratory of Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan.
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan; Laboratory of Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
34
|
Li X, Miao Y, Pal DS, Devreotes PN. Excitable networks controlling cell migration during development and disease. Semin Cell Dev Biol 2019; 100:133-142. [PMID: 31836289 DOI: 10.1016/j.semcdb.2019.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
The directed movements of individual, groups, or sheets of cells at specific times in particular locations bring about form and complexity to developing organisms. Cells move by extending protrusions, such as macropinosomes, pseudopods, lamellipods, filopods, or blebs. Although many of the cytoskeletal components within these structures are known, less is known about the mechanisms that determine their location, number, and characteristics. Recent evidence suggests that control may be exerted by a signal transduction excitable network whose components and activities, including Ras, PI3K, TorC2, and phosphoinositides, self-organize on the plasma membrane and propagate in waves. The waves drive the various types of protrusions, which in turn, determine the modes of cell migration. Acute perturbations at specific points in the network produce abrupt shifts in protrusion type, including transitions from pseudopods to filopods or lamellipods. These observations have also contributed to a delineation of the signal transduction network, including candidate fast positive and delayed negative feedback loops. The network contains many oncogenes and tumor suppressors, and other molecules which have recently been implicated in developmental and metabolic abnormalities. Thus, the concept of signal transduction network excitability in cell migration can be used to understand disease states and morphological changes occurring in development.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|